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Abstract: In this work, a mathematical model of a three-phase nonlinear transformer is suggested.
The model enables simulating the transformer operation with allowance for its nonlinearity and
covers needs of the relay protection. Our model has been developed on the basis of a mathematical
model with phase coordinates, where differential equations are composed by the Kirchhoff’s phase-
voltage law. Based on this model, we first compose a mathematical model for simulating steady-
state operation modes of a transformer, taking into account the asymmetry and nonlinearity of
its ferromagnetic core. In this model, the initial values of inductances and mutual inductances
of loops are determined from the main phase inductance calculated by the experimentally found
no-load current, and their current values are determined from the currents in windings and the
magnetic fluxes in legs of the transformer core. The magnetic fluxes are calculated by the nodal-
pair method. This improved mathematical model is verified through a comparison between the
calculated harmonic components of the phase currents and the experimental results. The harmonic
components are calculated with the use of Fourier expansion of the calculated phase currents. Their
experimental values are determined with a spectrum analyzer. The calculated and experimental
harmonic components of the currents of phase A during no-load and rated-load operation of the
transformer are tabulated. The comparison of these results shows that the mathematical model of a
three-phase transformer we suggest makes it possible to simulate currents in transformer windings
under steady-state operation modes with accuracy acceptable for relay protection.

Keywords: nonlinear transformer; mathematical model; electrical circuit; magnetic circuit; inductance;
mutual inductance; winding current harmonic components

1. Introduction

A great number of power transformers are used in electric power systems to convert
one voltage class to another. For example, about 461,864 substations are equipped with
them in Russia [1]. Three-phase two-winding asymmetrical transformers are most often
used for these purposes due to their high performance.

World practice in operating three-phase transformers has shown turn-to-turn faults
to be among the most common short circuits in them. According to [1,2], they are up to
70–80% of all transformer failures depending on the power and operating conditions.

One of the main ways of decreasing the statistics of failures and extending the service
life of transformers is the use of relay protection devices based on current transformers [3–5]
and nonconventional high-sensitive protection devices based on inductive measuring
transducers [2,6]. Such devices can be improved, in particular, their sensitivity to turn-
to-turn faults can be increased, by means of receiving information about characteristic
features of currents in the transformer windings in the form of the spectrum of harmonic
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components of the currents during transformer operation. This is especially important
for choosing the response threshold of relay protection devices, the operation of which is
based on the differential principle, which consists of comparing two electrical quantities
with different spectra. Both currents in the transformer windings [3–5] and their magnetic
leakage fluxes [2,6] can be used as compared parameters.

The experimental way of acquiring this information is the easiest. For this, necessary
measurements are made during the operation of a three-phase power transformer. However,
the comprehensive study of a transformer during its operation is not always possible. For
example, currents in the secondary windings attain 150 kA in ore furnace transformers;
therefore, current transformers are not installed on them, and currents in the load circuit
cannot be measured. Hence, a mathematical simulation is more convenient.

Many mathematical models of transformers have been developed by now for different
purposes. Most of these models are reviewed in [7,8]. Some of them are intended for
the description of the current transformer operation [9]. The model in [10] is used for
simulating transient processes in a single-phase transformer. The authors of work [11]
suggested using the finite different method for simulating transient processes in network
transformers, thus increasing computational costs and requiring an external circuit interface.
Reference [12] suggests an equivalent scheme for determining multiwinding transformer-
leakage inductances. The mathematical model proposed by [13] enables the simulation of
three-phase saturating transformers. An equivalent scheme for the real-time simulation
of nonlinear power transformers was developed in detail in [14]. However, the models
of [12–14] require a significant amount of initial data, thus making these models unsuitable
for practical purposes, in particular, when these data should be received from working
transformers. Moreover, output of certain models cannot be used to implement relay
protection. Thus, to estimate capabilities of known mathematical models in terms of their
suitability for use in relay protection, for example, for choosing the differential protection
response threshold, one should analyze the purpose of a model, the required transformer
modeling mode, the ease of acquiring the initial data for modeling, and results of protection
device modeling. Considering all of these points, the quite well-known mathematical
model of a three-phase transformer suggested by P. Bastard et al. [8] for analyzing the
processes occurring in the transformer is apparently the most suitable.

This model is based on ElectroMagnetic Transient Program (EMTP-RV4.1) software
with BCTRAN package. The BCTRAN package describes a transformer based on data
received in different tests. For a three-phase two-winding transformer, BCTRAN computes
two sixth-order matrices. One of them is the matrix of resistances of the transformer
windings, and another is the matrix of the self-inductances of these windings. However, the
use of EMTP hampers comprehension of the model and limits access to internal variables
(magnetic couplings) for their analysis—the more so since these couplings are complex.

Reference [15] shows that the operation of a three-phase transformer can be described
without EMTP, but with any other computing software, for example, MATLAB v6.5.

According to [16], the process of energy conversion in three-phase power transformers
is most fully described by a quite simple and easily understandable mathematical model
with phase coordinates. In this model, the operation of a three-phase two-winding trans-
former is described by only four differential equations [17]. These differential equations
are compiled by the loop current method [18,19] for phase-to-phase voltages. This mathe-
matical model can be implemented not only in a MATLAB environment, but also in Turbo
Basic [20].

However, this mathematical model does not take into account the nonlinearity of
parameters of the magnetic core of a transformer. Self-inductances and mutual inductances
are calculated in the differential equations of the mathematical model in a simplified
form, neglecting transformer core design features. All of these shortcomings reduce the
simulation accuracy and do not enable one to sufficiently and accurately determine the
response threshold of, e.g., high-sensitive turn-to-turn fault protections based on built-in
inductive measuring transducers [2,6].
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To get rid of these shortcomings, the mathematical model presented in [17] as a set
of differential equations is transformed into a mathematical model described by a set of
linear equations. When simulating steady-state load operation modes of a transformer in
this model, the duration of a mode under study is divided into time intervals within which
the transformer parameters are considered constant. The initial values of inductances and
mutual inductances in the mathematical model are determined using the main inductance
of a transformer phase and the ratios of magnetic fluxes in the core legs during the no-load
operation of the transformer. The current values of these parameters are calculated from
the currents in the windings and magnetic fluxes in the legs of the core of this transformer.

2. Mathematical Model of a Transformer

The mathematical model of a transformer [17], represented as a set of differential
equations, is transformed into a mathematical model described by a set of linear equa-
tions, taking into account the diagram of the core (Figure 1) and the electric circuit of the
transformer (Figure 2).
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Figure 2. Electrical circuit of a three-phase power transformer.

In Figure 1, uA, uB, and uC (ua, ub, and uc) are the instantaneous values of phase
voltages in the primary (secondary) windings of phases A, B, and C (a, b, and c); iA, iB,
and iC (ia, ib, and ic) are the instantaneous values of currents in the primary (secondary)
windings of phases A, B, and C (a, b, and c); wA, wB, and wC (wa, wb, and wc) are the
numbers of turns in the primary (secondary) windings of phases A, B, and C (a, b, and c),
wA = wB = wC = w1 and wa = wb = wc = w2; ϕA, ϕB, and ϕc are the magnetic fluxes in
the legs of phases A, B, and C of the core; ϕN is the magnetic leakage flux.
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For the experimental estimation of the simulation error, an experimental 6.0 kVA
TT-6-type transformer is used; its parameters are given in Table 1.

Table 1. Parameters of the experimental TT-6 transformer.

Parameter Designation Value

Phase voltage, V U1 222

No-load current, A Ixx 0.127

Number of turns in the primary/secondary winding w1/w2 252/31

Primary/secondary winding resistance, ohm R1/R2 0.9/0.06

In Figure 2, i1–i4 are the instantaneous values of currents in the 1st–4th loops; RA, RB, RC,
and Ra, Rb, Rc are the active resistances of the primary and secondary windings of the
transformer equal to R1 and R2, respectively; Rla, Rlb, and Rlc are the active resistances of
the transformer phase loads.

If the voltages are considered sinusoidal in the mathematical model [17], then the
operator of differentiation, d/dt, in its equations can be changed to the expression jω
with allowance given [15]. In this case, the set of equations of this mathematical model is
transformed into the set

uAB = i1(R A + RB)− i2RB + ux1;
uBC = (i 2 − i1)RB + i2RC + ux2;
0 = i3(R a + Rb + Rla + Rlb)− i4(R b + Rlb) + ux3;
0 = (i 4 − i3)(R b + Rlb) + i4(Rc + Rlc) + ux4,

 (1)

where uAB and uBC are the instantaneous values of the linear voltages of phases A, B, and C;
and ux1–ux4 are the voltage drops across the inductive resistances and the mutual inductive
resistances of the 1st–4th loops:

ux1 = ji1X11 + ji2X12 + ji3X13 + ji4X14;

ux2 = ji1X21 + ji2X22 + ji3X23 + ji4X24;

ux3 = ji1X31 + ji2X32 + ji3(Xla + Xlb + X33) + ji4(−Xlb + X34);

ux4 = ji1X41 + ji2X42 + ji3(−Xlb + X43) + ji4(Xlb + Xlc + X44) (2)

where Xla, Xlb, and Xlc are the inductive resistances of the transformer load; Xvw = ωLvw;
v and w take on values from 1 to 4; and Lvw represents the self-inductances and mutual
inductances of the flux linkages of the loops.

The self-inductances in the flux linkages of the loops are defined as

L11 = LA − LAB − LBA + LB; L22 = LB − LBC − LCB + LC;

L33 = La + Lla − Lab − Lba + Lb + Llb; L44 = Lb + Llb − Lbc − Lcb + Lc + Llc, (3)

And the mutual inductances are

L12 = LAB − LAC − LB + LBC; L23 = LBa − LBb − LCa + LCb;

L21 = LBA − LCA − LB + LCB; L32 = LaB − LbB − LaC + LbC;

L13 = LAa − LAb − LBa + LBb; L24 = LBb − LBc − LCb + LCc;

L31 = LaA − LbA − LaB + LbB; L42 = LbB − LcB − LbC + LcC; (4)

L14 = LAb − LAc − LBb + LBc; L34 = Lab − Lac − Lb + Lbc;

L41 = LbA − LcA − LbB + LcB; L43 = Lba − Lca − Lb + Lcb,
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where LA, LB , LC and La, Lb, Lc are the inductances of the phases of the primary and sec-
ondary windings; LAB and LBA, LBC and LCB, and LCA and LAC are the mutual inductances
between the phases of the primary winding; and Lab and Lba, Lbc and Lcb, and Lca and Lac are
the mutual inductances between the phases of the secondary winding. Moreover, LAa, LaA;
LAb, LbA ; LAc, LcA; LBa , LaB; LBb, LbB; LBc, LcB; LCa, LaC; LCb, LbC; and LCc and LcC are
the mutual inductances between the phases of the primary and secondary windings.

3. Inductances, Mutual Inductances, and Active Resistances in the Mathematical Model
of a Transformer

The calculation of the inductive resistances of the windings of a three-phase trans-
former in the general form is difficult [2,21]. However, if the transformer core is considered
non-saturated and the magnetic leakage flux of the windings is neglected, then the main
inductive resistance, X0, and inductance, L0, of a phase can be calculated as follows [21]:

Zm = U1/Ixx; Xm =
√

Z2
m − R2

1; X0 = Xm/1.5; L0 = X0/2πf (5)

The accuracy must be acceptable for relay protection. Here, Zm is the impedance of the
phase of the primary winding of the transformer, and f is the network frequency. The phase
voltage U1, the no-load current Ixx, and the active resistance R1 of the primary winding can
be easily found in an experimental way.

If the phase voltage U2 and load current Il are known, then the active and induc-
tive resistances of a symmetrical load can be quite accurately found from the following
mathematical equations:

Zl = U2/Il; Xl =
√

Z2
l − R2

l ; Ll = Xl/2πf;

Rla = Rlb = Rlc = Rl, Lla = Llb = Llc = Ll, (6)

where Rl and Xl are the active and inductive load resistances; and Zl and Ll are the load
impedance and resistance. The active resistance Rl can also be easily experimentally determined.

Following [18], the inductances of the primary and secondary windings of a trans-
former are determined by the values of the magnetic fluxes ϕA, ϕB, and ϕc in the core legs.
The inductance of a winding is proportional to the squared number of turns of the winding.

Mutual inductances, for example, between the winding of phase A and other primary
windings of the transformer, are determined by the distribution of the magnetic flux of
phase A over legs B and C of the transformer. Figure 3 shows that the magnetic flux of
phase A ϕA splits into magnetic fluxes ϕAB and ϕAC at point and then flow through the
legs of phases B and C. Just these fluxes determine the magnetic couplings between the
winding of phase A and the windings of phases B and C. These magnetic couplings can be
represented by the coefficients

KAB = ϕAB/ϕA and KAC = ϕAC/ϕA. (7)

The magnitudes of ϕAB and ϕAC depend on the design features of the core and
materials that it is made of. The accurate calculation of these fluxes is a difficult task.
However, if we suggest equal cross-sections of the legs and yokes of the transformer core
and the permeability of the steel that they are made of, then, taking into account [18,19],
the ratio of magnetic fluxes, i.e., the coefficients KAB and KAC, can be approximately
determined as follows.

According to Figure 3, the lengths of the ϕAB and ϕAC closing lines in the core are

lAB = 2(l1 + l2) and lAC = 2(l1 + 2l2). (8)
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Since the magnitudes of ϕAB and ϕAC fluxes are inversely proportional to their path
lengths in the core, the coefficients for the experimental TT-6 transformer are

KAB= lAC/(l AB+lAC) = 0.577 and KAC= lAB/(l AB+lAC) = 0.423. (9)

Figure 3 shows that the transformer core is symmetrical about the leg of phase B.
Hence, theϕAB andϕAC magnetic fluxes are equal. Therefore, the coefficients are calculated
as follows:

KBA= KBC = 0.5. (10)

The distribution of the magnetic flux of the leg of phase C over the legs of phases B
and A is a mirror image of the distribution of the magnetic flux of the leg of phase A over
the legs of phases B and C. Therefore, the coefficients KCA and KCB should be taken to be
equal to the coefficients KAC and KAB.

We should add that the KA, KB, and KC coefficients should be taken to be equal to
unity when calculating the inductances of the primary and secondary windings and closed
turns. The inductances of the primary and secondary windings are calculated as follows:

LA = KAL0, LB = KBL0, LC = KCL0,

La =

(
wa

wA

)2
KAL0. Lb =

(
wb
wB

)2
KBL0. Lc =

(
wc

wC

)2
KCL0. (11)

The mutual inductances between the high-voltage winding of phase A and other
windings of the transformer can be determined as follows:

LAB = KABL0, LAC = KACL0,

LAa =

(
wa

wA

)
KAL0, LAb =

(
wb
wA

)
KABL0, LAc =

(
wc

wA

)
KACL0. (12)

The mutual inductances between the high-voltage winding of phase B and other
windings of the transformer can be determined as follows:

LBA = KBAL0, LBC = KBCL0,

LBa =

(
wa

wB

)
KBAL0, LBb =

(
wb
wB

)
KBL0, LBc =

(
wc

wB

)
KBCL0. (13)

The mutual inductances between the high-voltage winding of phase C and other
windings of the transformer can be determined as follows:

LCA = KCAL0, LCB = KCBL0,
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LCa =

(
wa

wC

)
KCAL0, LCb =

(
wb
wC

)
KABL0, LCc =

(
wc

wC

)
KCL0. (14)

The mutual inductances between the low-voltage winding of phase A and other
windings of the transformer can be determined as follows:

LaA =

(
wa

wA

)
KAL0, LaB =

(
wa

wB

)
KABL0, LaC =

(
wa

wC

)
KACL0. (15)

The mutual inductances between the low-voltage winding of phase B and other
windings of the transformer can be determined as follows:

LbA =

(
wb
wB

)
KBAL0, LbB =

(
wb
wB

)
KBL0, LbC =

(
wb
wB

)
KBCL0,

Lba =

(
wb
wB

wa

wA

)
KBAL0, Lbc =

(
wb
wB

wc

wC

)
KBCL0. (16)

The mutual inductances between the low-voltage winding of phase C and other
windings of the transformer can be determined as follows:

LcA =

(
wc

wC

)
KCAL0, LcB =

(
wc

wC

)
KCBL0, LcC =

(
wc

wC

)
KCL0

Lca =

(
wc

wC

wa

wA

)
KCAL0, Lcb =

(
wc

wC

wb
wB

)
KCBL0. (17)

The inductances and mutual inductances of the loops in this mathematical model do
not depend on the saturation of the core. Therefore, the model enables the simulation of
currents in the windings of only a linear three-phase power transformer under arbitrary
symmetrical and asymmetrical steady-state operation modes. However, this mathematical
model can be used to simulate the operation of a nonlinear transformer in the following way.

4. Modeling a Nonlinear Transformer

Real three-phase power transformers are nonlinear. To simulate currents in their wind-
ings, mathematical model (1) of a linear transformer can be used, and the self-inductances
and mutual inductances in this mathematical model should depend on the magnitude of
magnetic fluxes in components of the transformer core and the magnetization curve of steel
the core made of. However, a simulation of the currents in the transformer windings is quite
a difficult task in this case. It can be simplified by using the method of successive intervals.

For this, the duration of a transformer operation mode is divided into time intervals,
∆t, within which the magnetic fluxes in the core legs, currents i1–i4, and inductances and
mutual inductances in loops 1–4 are constant. During simulation, these parameters at the
beginning of the (q + 1)th time interval are taken equal to their values at the end of the
previous qth interval. The magnetic fluxes in the core legs, currents i1–i4, and inductances
and mutual inductances of the loops are calculated within each time interval as follows.

As can be seen from Figure 1, the magnetic circuit of the TT-6 transformer is branched.
Therefore, according to [18,19,21], the magnetic fluxes ϕA, ϕB, and ϕC in the branches of
this circuit can be determined by the nodal-pair method (the nodes are marked by a and
b in Figure 1). It should be taken into account that, in addition to these magnetic fluxes
in the transformer core legs, there is a magnetic flux ϕN, which is closed between points
a and b through air and the steel tank of the transformer. With the known numbers of
turns in the transformer windings and the currents in them at an arbitrary time point, t, the
magnetic fluxes ϕA, ϕB, and ϕC in the phase legs of the core and the magnetic flux ϕN are
determined in the following order.

First, following [18,19], the positive direction of all of these magnetic fluxes is cho-
sen. In Figure 1, they are directed from node a to node b. After that, the dependences
ϕA = f(umA), ϕB = f(umB), ϕC = f(umC), and ϕN = f(umC) are plotted, where umA,
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umB, umC, and umN are the magnetic voltages in the branches of phases A, B, and C and
the branch N where ϕN is closed. To plot, for example, the dependence ϕA = f(umA), a
series of numerical values of the magnetic flux ϕA are specified. Then, the magnetic field
induction in the branch of phase A is found for each ϕA value as follows:

bA = ϕA/S (18)

where S is the cross-section area of the transformer core leg, S = 5.77 × 10−3 m2 for the
TT-6 transformer. When calculating the magnetic field induction in the branches, the cross-
section areas of the legs and the yokes of the transformer core can be considered equal since
they differ by no more than 10%, and this assumption does not result in significant errors.

Again, the magnetic field strength, hA, in the leg is determined from the magnetiza-
tion curve shown in Figure 4 by the calculated bA value. This magnetization curve was
experimentally derived for the TT-6 transformer.
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If the path length of the magnetic flux ϕA in the branch of phase A is considered equal
to lA, then, taking into account the data in Figure 1, the magnetic voltage in this branch is

umA = hAlA. (19)

The magnetic voltage, umA, is calculated for each ϕA value from the magnetic flux se-
ries in the same way, and the dependence, umA = f(ϕA), is plotted based on the calculation
results (curve 1 in Figure 5). The curves umB = f(ϕB) and umC = f(ϕC) are plotted in the
same way (curves 2 and 3). The curves umB = f(ϕB) and umC = f(ϕC) coincide in Figure 5
because of the same path lengths of the magnetic fluxes ϕA and ϕC.
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The calculation of the dependence umC = f(ϕN) in general form is complicated since
the sizes and configuration of the air gaps and components of the ferromagnetic tank of
the transformer should be taken into account. The calculation can be simplified if ϕN is
assumed to be closed through an additional ferromagnetic branch with the cross-section
area S and the length being lN = (3–10)lA. In this case, the length, lN, should increase with
the transformer power.

The dependence umC = f(ϕN) for the length of lN = 3lA is plotted in Figure 5 (curve 4).
This procedure does not lead to significant errors. The errors are estimated below.

The magnetic fluxes ϕA, ϕB, ϕC, and ϕN can take on negative values; therefore, the
dependences umA = f(ϕA), umB = f(ϕB), umC = f(ϕC), and UmC = f(ϕN) are shown in
Figure 5 by curves 5–8, which are resulted from rotation of curves 1–4 by 180◦ around the
origin of coordinates.

According to the nodal-pair method [18,19], the magnetic voltages umA,ab, umB,ab,
umC,ab, and umN,ab for the branches of phases A, B, and C and branch N are found from the
following equations:

umA,ab = −umA + iAw1 + iaw2;

umB,ab = −umB + iBw1 + ibw2; (20)

umC,ab = −umC + iCw1 + icw2;

umN,ab = −umN.

The way of graphical estimation of magnetic fluxes in the legs of a three-phase trans-
former is shown in Figure 6, where the curves umA = f(ϕA), umB = f(ϕB), umC = f(ϕC),
and umN = f(ϕN) are mirror-reflected about the um axis according to Equation (20), and
the curves umA = f(ϕA), umB = f(ϕB), and umC = f(ϕC) are shifted along this axis by the
values (iAw1 + iaw2), (iBw1 + ibw2), and (iCw1 + icw2), respectively. The resulted curves,
umA,ab = f(ϕA), umB,ab = f(ϕB), umC,ab = f(ϕC), and umN,ab = f(ϕN), are marked by
numbers 1–4 in Figure 6.
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To estimate the fluxes from Figure 6, line 5 is drawn parallel to the φ axis. It is moved
along the magnetic voltage axis until the condition

ϕA +ϕB +ϕC +ϕN = 0 (21)

is satisfied. In this case, the magnetic fluxes in the legs of phases A, B, and C are equal to
ϕA, ϕB, and ϕC.
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According to [18,19], the flux linkage and the inductance in an arbitrary winding
are defined as ψ = wϕ and L = ψ/i, respectively. Hence, the current values of the
self-inductances and mutual inductances of the primary and secondary windings of the
transformer in Equations (3) and (4), required for estimation of the flux linkage in the loops
by Equation (2), are calculated as

LA = w1ϕA/iA, LB = w1ϕB/iB, LC = w1ϕC/iC;

La = w2ϕA/ia, Lb = w2ϕB/ib, Lc = w2ϕC/ic. (22)

The mutual inductances between the winding phases are

LAB = LAKAB, LAC = LAKAC,

LAa = LA

(
wa

wA

)2
KA, LAb = LA

(
wb
wA

)2
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LBa = LB

(
wa

wB
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(
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The loop currents are changed to phase currents in Figure 2, following the equations.

iA = i1, iB = i2 − i1, iC = −i2, ia = i3, ib = i4 − i3, ic = −i4 (24)

Figure 5 shows that the magnetic flux is low at the length lN = 3lA as compared to
the magnetic fluxes in the transformer core legs, and it decreases as lN increases. Thus, the
choice of the length lN within the limits (3–10)lA does not lead to significant errors in the
inductances of the transformer.

5. Results and Discussion

The mathematical model developed makes it possible to simulate almost all stationary
processes in a healthy three-phase transformer accounting for its nonlinearity. Special
software has been created for the model implementation in the TurboBasic V1.1 environ-
ment [20].

The mathematical model was verified by simulating the rated load and no-load modes.
The load resistance of the experimental transformer was taken to be equal to 2.5 Ohm in
the load mode and infinity in the no-load mode.



Energies 2024, 17, 1710 11 of 15

It is difficult to visually estimate the adequacy of this mathematical model, for example,
through a comparison between the calculated and experimental dependences iA = f(t)
of a three-phase transformer. This estimation is much easier to make from a comparison
between the harmonic components of these dependencies. To distinguish them, we used
the graphical–analytical Fourier-transform method [18,19].

To measure the parameters of the experimental TT-6 transformer and the spectrum of
harmonic components in the network voltage and the current in the primary winding of
the transformer, we used an experimental setup, the electrical circuit of which is shown in
Figure 7.
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Figure 7. Circuit of the experimental setup.

As can be seen from Figure 6, the experimental setup is connected to a three-phase
380 V AC line through circuit breaker SF. The current in the phases of the high- and low-
voltage windings of the transformer is measured by ammeters PA1 and PA2. PA1 is a
class 0.5 E59 ammeter; it is connected in series with the phases of the primary windings
through a class 0.2 I54/1-type current transformer TA with the use of sockets XS1–XS3
and plugs with jumpers. This connection of ammeter PA1 makes it possible to use the
same device to measure currents in the three phases in turn. This significantly reduces the
measurement error.

The spectrum of the harmonic components of currents in the primary winding is
recorded with two-beam oscilloscope DSO1. It is based on a personal computer with
ELENA-2014 software. The entrance of this oscilloscope is connected to the terminals of
ammeter PA1. This provides galvanic isolation of the oscilloscope entrance and the supply
line. The voltage at the entrance of DSO1 is controlled with high-ohm resistor R4. The
voltage and the harmonic spectrum are controlled with UNI-T UT101 voltmeter PV1 and
RIGOL DS1054Z oscilloscope DSO2.

Ammeter PA2 is a class 0.2 D566 device. It is connected in series with the phases of the
secondary windings with the use of sockets XS4–XS6 and plugs with jumpers. Voltmeter
PV2 of YX-360TRD type is connected to the neutral of load, which is resistors R1–R3, and
one of the terminals of ammeter PA2. This enables the simultaneous control of current
and voltage. The transformer load is commutated with the use of plugs with jumpers and
sockets XS7–XS9. The experimental setup is shown in Figure 8.
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Figure 8. Experimental setup: experimental TT-6 transformer (TV); 2.5–10-ohm variable load resistors
(R1, R2, and R3); AP50 circuit breaker (SF); UNI-T UT101 and YX-360TRD voltmeter (PV1 and PV2);
I54/1 measuring current transformer (TA); E59 and D566 ammeter (PA1 and PA2); laptop-based
digital oscilloscope with ELENA-2014 software (DSO1); high-ohm resistor (R4); RIGOL DS1054Z
digital oscilloscope (DSO2); Schneider Electric socket-outlet (XS1–S9).

The results of the spectral analysis of phase A current during the transformer operation
in the no-load and load modes are given in Tables 2 and 3. The comparison between the
calculation and experimental results shows the simulation error to be no more than 14% in
these operation modes.

Table 2. Calculated and experimental harmonic components of current in the primary winding of the
transformer operating in the no-load mode.

Harmonic No.

No-Load Mode

Calculation Result,
Rel. Units

Experimental Result,
Rel. Units Relative Error, %

1 1.0000 1.0000 0
2 0.0300 0.0303 4.64
3 0.0151 0.0158 6.14
4 0.0163 0.0153 2.95
5 0.1693 0.1643 2.95
6 0.0024 0.0029 1
7 0.0433 0.0433 4.64
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Table 3. Calculated and experimental harmonic components of current in the primary winding of the
transformer operating in the load mode.

Harmonic No.

Load Mode

Calculation Result,
Rel. Units

Experimental Result,
Rel. Units Relative Error, %

1 1.0000 1.0000 0
2 0.0109 0.0122 11.93
3 0.0082 0.0093 13.42
4 0.0079 0.0073 7.60
5 0.0702 0.0719 2.42
6 0.0028 0.0031 10.71
7 0.0199 0.0210 5.53

One of the reasons for this error is the presence of higher harmonics in the voltage
of the supply line during the experiment. Another reason can be the use of numerical
methods for estimating the magnetic fluxes in legs.

Nevertheless, the suggested mathematical model of a three-phase transformer enables
simulating currents in the transformer windings under steady-state operation modes with
accuracy acceptable for the relay protection. Since the requirements for the design of
transformers do not depend on their power, there is every reason to believe that the errors
will be similar in simulation of the operation of industrial transformers of arbitrary power.

This mathematical model was developed for asymmetrical three-phase transformers
with two star-star connected windings without zero grounding. However, it can be used
to simulate processes in nonlinear two-winding three-phase transformers with any con-
nection of its windings. In each specific case, the equations of the mathematical model are
transformed several times, except for the equations which consider the nonlinearity of the
transformer; they remain unchanged.

6. Conclusions

One of the main causes of failures and shortening the service life of two-winding
asymmetrical core transformers is the turn-to-turn faults in their windings, which are up to
70–80% of all transformer failures depending on the power and operating conditions.

One of the main ways of decreasing the statistics of these failures and increasing the
service life of transformers is the improvement of differential current protections, which
is reduced to an increase in their sensitivity to turn-to-turn faults. The operation of these
protections is based on the comparison between two electrical quantities with different
spectra of currents in phases. Therefore, their sensitivity can be increased by acquiring
and taking into account information in the form of the spectrum of these harmonics when
choosing the response threshold for differential current protections.

For these purposes, the model with phase coordinates, which is easy for understanding
and implementing, can be used. Its differential equations are compiled by the loop current
method for phase-to-phase voltages. It uses fourth-order matrices to describe the operation
of a three-phase two-winding transformer. Both MATLAB and Turbo Basic environments
can be used to implement this mathematical model. However, despite all of its advantages,
this model cannot take into account the asymmetry and nonlinearity of a transformer.

In contrast to this model, the mathematical model we suggest makes it possible to con-
sider the asymmetry and nonlinearity of the core of a three-phase transformer by replacing
a set of differential equations with a set of linear equations. In the resulted mathematical
model, the initial values of its inductances and mutual inductances are determined based on
the use of no-load current taking into account the transformer core size, and current values
of these parameters are calculated from the currents in the windings and the magnetic
fluxes in transformer core legs. The latter are calculated by the nodal-pair method.
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The simulation results are presented in the form of harmonics derived from the
Fourier transform of the currents, because a visual estimation of the simulation error is
quite difficult.

The comparison between the calculation and experimental results showed the error
in the harmonic currents in transformer windings to be no higher than 14%. This enables
us to estimate the influence of the transformer nonlinearity on the simulation results
with acceptable accuracy. We believe that this error is due to the presence of high-order
harmonics in the supply voltage during the experiment and the use of numerical method
for calculation of these currents.
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