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Highlights:

What are the main findings?

• The use of machine learning algorithms in energy management services can lead to a significant
increase in the implementation rate of energy performance, power quality and renewable energy
sources projects;

• Integrating machine learning algorithms in the process of assessing the energy saving potential
can accelerate the deployment of energy performance contracting;

What is the implication of the main finding?

• Digitization of the energy services sector could support end-users in achieving their targets
regarding the transition towards environmental sustainability

• Policy makers could also use the proposed methodology to evaluate the global energy per-
formance of the relevant energy sectors, thus increasing the performance of the available
financing mechanisms.

Abstract: Current targets, which have been set at both the European and the international level, for
reducing environmental impacts and moving towards a sustainable circular economy make energy
efficiency and digitization key elements of all sectors of human activity. The authors proposed,
developed, and tested a complex methodology for real-time statistical analysis and forecasting of
the following main elements contributing to the energy and economic performance of an end user:
energy performance indicators, power quality indices, and the potential to implement actions to
improve these indicators, in an economically sustainable manner, for the end user. The proposed
methodology is based on machine learning algorithms, and it has been tested on six different energy
boundaries. It was thus proven that, by implementing an advanced energy management system
(AEMS), end users can achieve significant energy savings and thus contribute to the transition
towards environmental sustainability.

Keywords: energy efficiency; power quality; renewable energy sources; energy management systems;
machine learning

1. Introduction

The energy trilemma—energy security, energy accessibility and sustainability—has
become a critical, global optimisation problem in the current geo-political and economic
context. The authors propose a complex technical and financial model based on a logical
structure designed in such a way that most energy end users can identify, quantify, and
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support the implementation of energy performance-improvement actions (EnPIA) and
power quality indices improvement actions (PQIIA).

By implementing the advanced energy management system (AEMS) that is proposed
in this paper, end users can obtain the capability to perform real-time identification of
potential actions that can lead to increases in their overall energy performance, mitigate
potential issues with power quality indices and, ultimately, evaluate the technical and
financial potential to implement hybrid distributed-generation projects.

The capability for real-time analysis translates into an increase in the speed with
which the end user can identify and implement various no-cost or low-cost measures,
such as organizational actions, whilst medium-to-long-term analysis can lead to a better
understanding of significant investment measures and actions that increase the overall
values of energy performance indicators (EnPI), while also improving the quality of their
technical and financial performance analyses.

As such, implementing the proposed AEMS can significantly contribute to decreasing
the energy demand of the end user, thus increasing the overall profitability of their activity.

To identify the energy sectors with the highest potential to save energy via the im-
plementation of AMES, the authors firstly undertook a thorough analysis of the principal
energy efficiency legislation.

Increasing energy efficiency through investment in technology is essential to allowing
energy-intensive businesses to compete internationally [1]. However, rapid growth in
energy efficiency in industry is more difficult, as the associated investment costs are
significantly higher than those found in the tertiary energy sector.

The tertiary energy sector (residential, office, and commercial) has high and financially
attractive potential to increase energy efficiency in buildings.

Romanian energy efficiency legislation states that every enterprise with an energy use
higher than 1000 t.o.e./year must have an energy-management contract and must submit
an annual energy performance-improvement plan (EPIP) to the relevant governmental
body. The degree of implementation of the EPIP must be verified by a periodical energy-
auditing procedure.

However, it was shown that, in Romania, EPIPs are not creating the desired efficiency.
Some of the main identified issues include the lack of in-depth energy-monitoring capabili-
ties, the impossibility of correlating various energy sources with the final product/service,
inadequate communication between the energy manager and the relevant stakeholders in
the company, top management not setting high enough targets for energy performance, the
lack of state incentives for energy performance improvement, the lack of energy-efficiency-
education programmes for employees, and the lack of interest in energy efficiency by
companies for which energy costs are not relevant compared to other operational costs.

In order to encourage and support companies in achieving their energy performance
targets and, implicitly, environmental sustainability goals, the International Organization
for Standardization designed the ISO:50001 group of standards [2], which guide end users
in implementing certified energy-management systems (EMS).

Market research regarding EMS implementation in the European Union [2] showed
that there is currently no common approach to promoting the implementation of this
standard in the EU. ISO:50001 certification is not mandatory (in some countries it is only
recommended), and financial incentives are provided only for large energy users, thus
limiting the implementation of SMEs in small and medium enterprises, the dissemination
of good practices, and the development of a durable, qualified market for energy efficiency.
Only well-informed companies will implement SMEs in order to create a competitive
advantage over companies in the same field.

The global EMS market reached USD 24.73 billion in 2021 [3] and is expected to grow from
USD 27.31 billion in 2022 to more than USD 60 billion by the end of 2029, with a compound
annual growth rate (CAGR) of 12%/year, as a result of the following six determining factors:
the adoption of Industry 4.0 technologies in energy management, the digitization of power-grid
infrastructure, the evolution of energy efficiency standards in emerging economies, the increase
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in governmental policies that are favourable for the use of sustainable energy, the increase in the
implementation of smart grids, and the increase in global energy demand.

It is also expected that EMSs implemented at the industrial end-user level will make
the largest contribution to the growth of this market due to the associated high investment,
installation, and maintenance costs; the incorporation of Big Data and real-time analytics
concepts [4]; and the high degree of complexity of the industrial-sector energy boundary,
compared to the tertiary-sector energy boundary.

The European Green Deal’s [5] main objective is to achieve climate neutrality by 2050
by matching the amount of polluting emissions with the amount of emissions that are
naturally absorbed, decoupling economic growth from resource use, stimulating resource
efficiency through the transition to a circular economy, restoring biodiversity, and reducing
pollution. As a direct result of the European Green Deal, there is increasing pressure on the
entire energy sector, from production, transport, and distribution to the end user, to increase
energy efficiency and thus reduce the environmental impact of day-to-day activities.

In addition, the fourth phase of the EU-ETS (European Union’s Emissions Trading
System) mechanism for trading CO2 equivalent allowances has led to significant increases in
the EUA (European Union allowance) price, up to 98.01 EUR/certificate in August 2022 [6].
As a result, the financial burden on conventional energy producers (fossil fuels) and users
who own and operate combustion installations (thermal power stations, technological
processes using fossil fuels, etc.) with installed thermal capacities of more than 20 MWt [7]
has increased significantly.

The European Commission decided, at the end of 2019, to make energy efficiency a
priority at the EU level with the Energy Efficiency First! principle [8]. In addition, in the
second half of 2021, the package of legislative proposals entitled Fit for 55 was launched; in
that package, the European Union proposed raising the targets regarding energy efficiency
and the proportion of total energy use to consist of renewable energy sources as a means to
act against climate change [9].

The new target is to increase energy efficiency by at least 36–39% compared to the BAU
(business as usual) scenario by 2030 by making energy savings (i.e., EPIP) mandatory in
the period between the 1st of January 2021 and the 31st of December 2023, as well as by
revising regulations on the monitoring and billing of thermal energy and increasing the energy
efficiency of heating and cooling processes. In order to achieve these objectives, the European
Union proposed that moderating energy demand should be the first target of the strategy [10].

With this legislative package, the European Union also extended the applicability
of the EU-ETS trading mechanism to the maritime sector and proposed the creation of a
new CO2-trading scheme for the transport and buildings sectors by 2026, increasing the
obligatory reduction in CO2 equivalent emissions from 40% to 61% by the end of 2030, with
a reference value set for the year 2005. The free allowances for the aviation sector will also
be phased out between 2023 and 2025.

The new approach of the European Union is that “the Polluter Pays!”, a concept defined
in Directive 2004/35/EC, which was amended and updated on the 17th of June 2020: any
company causing environmental damage is directly liable for it and is obliged to take all
measures to repair or prevent it, bearing all related costs.

Therefore, the EU aims to take all required measures to reach environmental neutrality
and serve as a positive example in the worldwide fight against climate change.

One way of achieving these targets is to increase energy performance (EnP) through
the implementation of EPIAs by end users and to increase the use of electricity produced
from renewable energy sources (RES) by implementing RES-generation projects on end
users’ sites and/or contracting a 100% renewable electricity-supply service when the
implementation of RES projects is not possible due to technological or on-site limitations.

Upstream, energy efficiency targets can be met by increasing energy performance in
transmission and distribution grids, which can be achieved by replacing network elements
with a high degree of physical and other wear and tear with new, energy-efficient equipment
that is correctly sized in relation to the current maximum loads; these include both EPIAs im-
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plemented by electricity-transmission-system operators (TSO)/distribution system operators
(DSOs), which flatten the load curve, and EPIAs implemented by end users and/or DSOs,
which provide real-time optimization of the operation of a power-distribution grid (through
correct phase balancing, power factor correction, and optimal reconfiguration).

Another means of reaching the targets set by the EU is to increase the energy per-
formance of the end-user energy boundaries by quantifying and minimizing the impact
of operating internal power-distribution grids in distorted electrical regimes—the total
current harmonic distortion factor (THDI) in end-user-owned network elements can be
minimized by implementing power quality improvement actions (PQIAs) by end users
and/or DSOs (e.g., through demand-side-management (DSM) initiatives).

Although the main objective of the proposed AEMS is to increase the energy perfor-
mance and profitability of the energy boundary where it is implemented, by achieving these
objectives, the AEMS can generate a domino effect at the macroeconomic level by reducing
the demand for electricity, part of which is currently produced from conventional sources,
at the grid level. Reducing electricity demand at the end-user level also leads to reduced
power and energy losses in upstream electrical networks (distribution and transmission).
The AEMS can also be extended and implemented at the level of thermal-energy use; thus,
the energy performance-assessment methodology proposed in this paper is useful.

The proposed AEMS has been designed to support the end user in the statistical and
real-time assessment of evolution in energy performance, both at the energy-use level and
at an overall energy-boundary level.

The development of the AEMS is based on the idea that the comprehensive monitoring
of energy use is the cornerstone of any EPIP. The proposed AEMS has been implemented and
tested by several types of end users, both in the tertiary sector (i.e., office buildings) and in the
industrial sector (i.e., industrial production NACE codes), as will be presented in Section 4.

Through its energy-demand forecasting and statistical analysis, the AEMS enables
the quicker achievement of energy-efficiency targets and, thus, a faster transition towards
environmental sustainability for the end users.

The proposed methodology was executed using the Py (Python) programming lan-
guage and the Jupyter Notebook code builder. This approach allows for the utilisation of a
language that is not specific to any particular platform (such as Py, C++, Java, etc.), ensuring
compatibility with potential future software solutions and facilitating their integration into
a unified, final solution.

2. State of the Art and Strengths/Weaknesses/Opportunities/Threats Analysis

In order to establish the main functionalities and capabilities of the AEMS, the authors
conducted a state-of-the-art (SoTA) analysis regarding energy-management systems. The
research was conducted both on experimental EMSs with a technology-readiness level
(TRL) between one and six and on commercially available EMSs (TRL-9).

The most promising EMSs were analysed, and the results of the SWOT analysis are
presented in Tables 1 and 2.

Table 1. SWOT analysis of the TRL-1-to-TRL-6 energy-management systems.

System Strengths Weaknesses Opportunities Threats

Aggregation Ranking [11] Based on DPM/DSM. Does not consider PQIs.
Does not normalize EnPIs.

Does not quantify the
PQI’s impacts on the EnPI.

Cannot be applied
without fundamental
modifications of the

industrial infrastructure.

Development of an EnPI
normalization system.

Cybersecurity.
Consumer behaviour

(mainly their reaction to
participating in
such system).

BluHEMS + ANN [12]
Uses RNN for decision
making and energy use

forecasts.
Integrates existing and new

technologies.
Simplicity.

Development of an EnPI
normalization system.

Integration of a
PQI analysis

Cybersecurity.
Lack of replicability.

SHE [13]
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Table 1. Cont.

System Strengths Weaknesses Opportunities Threats

IREMS [14]

Based on categorizing loads
by critical/noncritical status.

Uses RNN for decision
making.

Optimizes RES sources
based on the load curve.

Does not consider PQIs.
Does not normalize EnPIs.

Does not quantify the
PQI’s impacts on the EnPI.

Cannot be applied
without fundamental
modifications of the

industrial infrastructure.

Development of an EnPI
normalization system.

Integration of a
PQI analysis.

System extension from
the end-user level to

the microgrid.

Cybersecurity.
Unexpected

modifications of the
energy boundary

Legislative limitations
regarding RES.

MEMS [15]

Based on DR/OPF.
Mathematically optimizes
the active power produced
by RES/used by end users.

Considers variable
external factors.

Forecasts energy demand.

MPC Strategy [16] Optimizes ESS. Integration in a more
complex EMS. Cybersecurity.

SMES [17]

Uses MLA
Defines an objective function
for optimizing the process.

Considers some
variable factors.

Integration in a more
complex EMS.

Quantification of EnPI.
Integration of a

PQI analysis.

Unexpected
modifications of the

energy boundary.
Unknown potential to

integrate EnPI into
the methodology.

DPM = dynamic price mechanism, DSM = demand side management, RNN = recurrent neural network, DR = de-
mand response, OPF = optimal power flow, ESS = energy storage system, MLA = machine learning algorithm.

Table 2. SWOT analysis of TRL-9 Energy-Management Systems (conducted based on the descriptions
provided by the suppliers from their websites, technical datasheets, and white charts, all of which are
publicly available sources).

System Strengths Weaknesses Opportunities Threats

General Electric

Uses MLA and AI.
Forecasts system inertia,

the impact of
meteorological events, and
reduces operational and

maintenance costs.

Useful only for
DSOs/TSOs.

Not applicable to
end users.

Does not quantify
EnPIs/PQIs.

Does not normalize EnPIs.

Quantification of PQIs.
Quantification of EnPIs.
Development of an EnPI

normalization system.

The transition from
TSOs/DSOs to end users
can be difficult because of

the fundamental
differences between the
objectives of these types

of clients.

TATA Consultancy
Services

Uses MLA and AI.
High modularity.
High tolerance to

structural modifications in
energy use.

Cloud computing.
Quantifies variable factors.

Usable for end users.
World-renowned

IoT platform.

Does not quantify PQIs.
Different software

solutions for different
applications (data centres,

buildings, etc.)

Quantification of PQIs.
Development of a general

software solution with
high replicability.

May be difficult to choose
the proper software

solution for a given end
user/energy boundary.

Intel

Uses a four-dimensional
approach based on

security, communications,
analysis, and ease

of operation.
Uses MLA.

High cybersecurity.

Useful only for
DSOs/TSOs.

Not applicable for
end users.

Does not quantify
EnPI/PQIs.

Different software
solutions for different

applications (data centres,
buildings, etc.)

Quantification of PQIs
and EnPIs.

Development of a general
software solution with

high replicability.
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Table 2. Cont.

System Strengths Weaknesses Opportunities Threats

CISCO

High expertise in IoT and
monitor-

ing/communications.
Intuitive web-based

platform that is easy to use.
Capability for automation

of processes.
Low hardware/software

requirements.

Dedicated for information
technology and

communications (IT&C)
systems.

Quantification of PQIs and
EnPIs.

Cannot be extended to an
entire energy boundary of

an end user.

Siemens

Developed in accordance
with ISO:50001.

High cybersecurity.
Determines the energy

baseline.
Normalizes EnPIs.

Forecasts energy use
based on variable factors.

Developed for the food
industry.

Does not quantify PQIs.
Quantification of PQIs.

The transition from the
food industry to other

industrial or tertiary end
users may be difficult.

Schneider Electric

Multiple BMS/EMS
systems implemented.

High number of
compatible

communication protocols
(BACnet, LON, Modbus,

Zigbee, etc.)
High end-to-end

cybersecurity.
Automation and

independent control
capabilities.

Different software
solutions for different

clients
(DSOs/TSOs/tertiary

sector/energy
production, etc.)

Does not quantify
PQIs/EnPIs. Quantification of PQIs and

EnPIs.

May be difficult to adapt
the software to other
industrial or tertiary

end users.
Large numbers of

metering systems can lead
to a decrease in the ability

to identify
significant EPIAs.

Honeywell

Automates HVAC systems.
Monitors energy use,

equipment performance,
and variable factors.

Dedicated to HVAC
systems for buildings, i.e.,

to BMS. Does not offer sufficient
information to

identify/quantify
EPIAs/PQIAs.

Tendril

DSM capabilities.
Large-scale monitoring

system for the residential
sector—useful for DSOs.

Dedicated to the
residential sector.

AI = artificial intelligence, IoT = Internet of Things, BMS = building-management system.

There are six main state-of-the-art approaches that are currently applied to energy-
management systems, [18,19]: classical methods, meta-heuristic approaches, stochastic
approaches, model predictive control-based approaches, artificial intelligence methods and
multi-agent systems-based methods.

The most frequently used type of framework for energy-management systems [20] are
centralized EMS, decentralized EMS, distributed EMS, and hierarchical EMS.

The SOTA and SWOT analyses identified several critical points that the AEMS needs to
address in order to maximize the energy and financial performance of the energy boundary
in which it will be implemented. Therefore, the AEMS opportunities lie in its ability to do
the following:

• Continuously monitor the PQIs at all relevant measuring points;
• Measure and calculate the energy performance and therefore the financial conse-

quences of the PQIs;
• Measure and calculate EnPIs, rather than only monitoring the absolute energy flows,

in order to establish benchmarking capabilities;
• Normalize EnPIs by taking into account crucial variable factors;
• Predict future changes in both the load curve and the corresponding EnPI in order to

optimise the user’s performance in the energy market;
• Analyse, suggest, and evaluate significant EPIAs and PQIAs from both a technical and

a financial perspective;
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• Analyse, suggest, and evaluate the feasibility of renewable-energy projects and the
integration of electricity-storage systems, considering both technical and financial aspects;

• Develop reporting and notification systems tailored to the needs of different personnel
within the organisation, such as technical, commercial, and top management staff.

The primary obstacles to the advancement of AEMS, as determined from the afore-
mentioned analyses, are as follows:

• The possibility of encountering challenges when integrating current monitoring sys-
tems with the AEMS (there is a low probability of this occurring, as the AEMS can
utilise raw data from the monitoring systems, which can be transmitted to the server
or cloud computing service where the AEMS is installed using any pre-established
communication protocol);

• The possibility of inaccurately identifying the critical variable factors for different
energy uses. The impact can be reduced by configuring the normalisation system after
the AEMS is installed, conducting a preliminary analysis of the measured data, and
installing local variable-factor monitoring systems where feasible.

• Integrating AEMS into current expert systems may pose challenges at the user’s energy
boundary. However, these issues can be reduced by the AEMS operator inputting
appropriate data during the installation/configuration of the system.

The main challenge faced by the various machine-learning-based energy-management
systems that are currently in research and development is the proper configuration of
appropriate data sets. Recent literature reviews point out that proper clustering and
data-optimization tools could enhance efficient prediction by the ML model [21].

The risks to be minimized after AEMS deployment are as follows:

• Safeguarding the cybersecurity of the AEMS (this can be accomplished by implement-
ing AEMS on site during the initial phase and utilising standardised communication
protocols that are protected by distinct cryptographic keys);

• Ensuring uninterrupted functioning of the AEMS, regardless of user status. This will
be achieved by providing backup power sources such as UPSs and by developing a
power-supply scheme that depends on the priority of energy uses;

• Selecting an optimal sampling frequency that maximises performance while minimis-
ing the use of computing power and associated energy resources;

• Ensuring proper data clustering and optimization prior to the learning-testing stage in
the development of the AEMS.

Considering the advantages and disadvantages of the various EMS approaches and
frameworks, the authors designed the proposed AEMS based on a distributed EMS frame-
work, using the artificial intelligence (AI) approach.

The advantages of combining the aforementioned framework with the AI-based
approach are as follows:

Framework:

• The capability to process large and complex datasets;
• The capability to ensure cybersecurity by having localized data storage;
• The flexibility to manage diverse computing tasks;
• The potential for scalability;
• The ability to be both centrally and locally controlled;
• A generally lower CAPEX than other types of framework;

Approach:

• The ability to independently forecast the evolution of energy demand, energy perfor-
mance indicators, energy baseline, environmental impact and the potential to improve
overall energy efficiency;

• The ability to regenerate the learning model based on updated datasets, thus enabling
almost independent operation after deployment and proper learning/testing.
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3. Proposed Methodology

The objective of the research was to conduct a comprehensive analysis of different
technical solutions for enhancing EnPIs and their influence on PQIs. Additionally, the study
examined the effects of increasing the share of distributed electricity resources (DER) on
both types of indicators. The objective was to create a comprehensive, real-time model that
would optimise the technical, energy, and financial efficiency of the energy boundaries on
which it is applied.

Multiple autonomous analysis modules were developed to address different aspects,
including assessing the potential for load-curve flattening (LCF), enhancing energy and
economic efficiency by reducing the total current harmonic distortion factor (THDI) and
employing machine learning techniques to forecast energy use and, implicitly, the pro-
gression of EnPIs and PQIs. The incorporation of the analytical modules into the AEMS
commenced based on the logical diagram of the AEMS (refer to Figure 1).
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The AEMS algorithm relies on a set of inputs, referred to as “Performance Criteria
Established by the Organisation”. The key inputs include the duration of technical, energy,
and economic analysis, as well as top managements’ hierarchy of priority targets, such as
production, specific energy use, equivalent CO2 emissions, power quality, operating costs,
and maintenance costs.

Once the first input data are established, taking into account the perspective and
objectives of the company’s top management, the measurement and verification (M&V)
protocol is designed and defined such that it functions within a logical loop. The deployed
metering/measuring devices have a predefined measurement interval of one second and an
aggregate period of fifteen minutes, as specified by the IPMVP (International Performance
Measurement and Verification Protocol) [22] and by the methodology for calculating the
maximum apparent duration power (MADP)—SM.

During the initial setup of the algorithm, the user needs to define/specify the eco-
nomic indicators (ECIs). These indicators can be obtained from an ERP (enterprise resource
planning) tool, accounting management software, or entered manually. The key indicators
include monthly/annual energy costs, procurement costs of different production equip-
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ment or electrical energy end uses, monthly/annual operating costs, and monthly/annual
maintenance costs (refer to label A in Figure 1).

The user must also define and input the technical indicators (TIs), the technical char-
acteristics of the equipment under monitoring/metering, which can be automatically
imported from the ERP or manually introduced by the system operator (TIs can include
the following: the rated power of the energy end use, the average daily load of the energy
end use, the daily duration of use for the energy end use, etc.).

As the AEMS aims at digitizing energy-services procedures (such as energy manage-
ment and energy auditing), the forecasting and normalization functionalities are essential.
The authors developed, implemented, tested, and optimized a multi-layered machine
learning algorithm that will be used to forecast multiple outputs of the system, such as the
energy demand, the normalized expected EnPIs, the opportunity costs, and the potential
for implementing LCF projects (and, implicitly, DR/DSM projects).

3.1. Measurement and Monitoring

After the monitoring loop begins (refer to label B in Figure 1), the algorithm will
collect the values recorded by all metering/monitoring systems during the “Monitoring”
step, following the principle of simultaneity. The user can choose the EnPI evaluation
technique to determine or establish the EnPI limit values. In order to encompass all
potential situations, the user will have the option to select from the following choices:

➢ Determining the limit value of EnPI as the average value (EnPIlim = EnPIaverage) for a
selected reporting period;

➢ Establishing the limit value of EnPI as an absolute value (EnPIlim = value); this method
can be used if the necessary information is available. It is suitable when there are
several energy boundaries that are similar and their maximum EnPIs are known and
recorded at the corporate level;

➢ Determining the reporting threshold of EnPI, using a specific algorithm outlined in
the current regulations and approved by the recipient.

The calculated values are subsequently compared to the reference values, which consist
of EnPIs selected by the user in the previous stage and predefined PQIs, in accordance with
the current legislation, regulations, and technical standards. A “Report” is generated if the
values are within the specified admissibility limits, and the logic loop continues with the
next batch of measured values (refer to label D in Figure 1).

If the EnPI values do not meet the predetermined acceptable limits, the EnPI is nor-
malised based on external variable factors (EVFs) or static factors (SFs). If the normalised
Energy Performance Indicator (EnPI) is still higher than the specified limit value of the
reference EnPI, a verification of conformity with the PQI will be conducted. The assessment
evaluates the impact on the analysed EnPIs when one or more PQIs exceed the defined
admissible limitations.

Every PQI that has recorded values outside the acceptable limits is quantified, and
a partial report is generated. The report provides a quantitative analysis of the economic
consequences of not meeting the specified cut-off value by the PQI and of how it affects the
EnPI values. Subsequently, all of these partial reports are integrated into a comprehensive
“Final Report,” culminating in a set of “Recommendations” specifically tailored for the user.

If the PQI values are within the set limitations and the current values (EFact), when
compared to the values recorded in the previous reporting period (EFprevious), do not show
a significant percentage difference for each of the assessed components, then the reason for
non-compliance is organisational. A weekly report is prepared to quantify and accumulate
economic losses and is then sent to the relevant decision makers.

Based on the findings of the SWOT analysis conducted in Section 2, and considering
the relevant legislative constraints, the initial phase of the research and experimental
development of the AEMS involved selecting the appropriate energy boundaries.
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Once the measured data are obtained from the existing monitoring and metering
systems, they are transmitted to the server at a frequency of one data packet per second.
These data are then utilised in a logical block to assess the accuracy of the recorded values.

The correctness of the datasets is of the utmost importance, considering the fact that
one of the strengths of the proposed methodology consists of forecasting energy demand
based on the forecasted evolution of the external variable factors.

The measured values are aggregated into subsets of either 900 (15 min) or 3600 (1 h)
values, depending on the type of data being measured. Statistical analysis is applied to
each subset of the records to eliminate any potential measurement errors. The proposed
aggregation periods are corelated with the electricity market, thus ensuring optimal in-
tegration with other energy-market-specific software tools. The end user can add more
aggregation periods if they are relevant for each analysed energy sub-boundary.

The mean value of each measured datapoint for each phase is determined. Equations (1)–(3)
present an example for voltage-value verification, as follows:

mean =
∑n−1

i = 0 Vf ,i

n
[V] (1)

where Vf ,i[V] represents the measured phase f voltage and n [−] represents the number of
measured values.

Then, the mean standard deviation is determined as follows (2):

σ =

√√√√ n−1

∑
i = 0

σ2(Vi) [V] (2)

where σ[V] denotes the mean standard deviation and σ2(Vi) denotes the measured data
variance.

The minimum and maximum measured values are also determined. Finally, the 25th,
50th, 75th, and 95th percentiles are determined using Equation (3), as follows:

p =
r

100
·n [V] (3)

where r[V] denotes the analysed percentile rank.
When measurement errors, typically caused by communication or data-conversion

errors, are recorded, the regression method suggested by [23] is automatically utilised
to enable the usage of the recorded data to train the neural network, which will serve
as the foundation for predicting energy demand. This approach involves substituting
the incorrect/corrupted data with the indicator value generated by computing the 95th
percentile.

It has been shown that the most effective way to combine the recorded data is by using
a one-hour interval. This approach ensures that the correlation with the changes in the
EVFs is maintained. When aggregation periods of less than one hour are used, the variation
in the variable factors is too small to adequately train the machine learning algorithm with
a high level of confidence. When the aggregation periods exceed one hour, the variation
of the EVFs increases significantly, which negatively impacts the accuracy of the energy
end-use forecast.

To maximise the efficiency of storage-space use, the monitoring and verification logic
block selectively retains statistical data that are important to the end user, such as the
outcomes of technical, energy, and financial studies, for a period longer than one year.
Energy data that can be measured and expressed in monetary units, like as electricity usage,
are retained indefinitely. The data are stored this way because the data are modest in size
and are recorded frequently, (15 min monitoring frequency in the PCC), which translates to
a low memory requirement.
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This data aggregation and clustering ensures the best ratio between data quality and
data metering, processing and storage costs, thus offering an alternative method to the one
suggested by [24,25].

Any variation from the allowed range, which is defined as VC ± 10%, for all voltage
values, will be recorded in the log. Here, VC represents the contracted supply voltage
that has been stated in the energy-supply contract. Typically, the rated voltage (Vr) of the
network is used, although it can be adjusted based on an agreement between the DSO and
the end user. In the given case studies, the contracted value (VC) and the rated value (Vr)
are both equal to 400 V (three-phase power supply).

Following the installation of the monitoring system in multiple energy boundaries and
the use of various three-phase class A quality analysers to showcase the interconnection
and integrability of the AEMS, the second phase, which consisted of the development,
deployment, and testing of the analysis modules, was implemented.

3.2. Power Quality Indices Assessment

To develop the algorithm for evaluating the PQIs (refer to label C in Figure 1), elec-
trical measurements were conducted using class A three-phase power quality analysers,
following the IEC 61000-4-30 standard [26]. These measurements provided a data flow of
one package of measurements per second for a duration of 12 months. The measurements
were taken at six specific low-voltage (LV) measurement points:

A. Industrial end user—one measurement point—two types of energy boundaries were assessed:

1. Large energy boundary: The point of common coupling (PCC), located on
the secondary winding of one of the existing 20/0.4 kV power transformers,
which supplies approximatively 25% of the energy demand to the end user,
was measured;

2. Small-to-medium energy boundary: The power supply of an automated pro-
duction line, in which highly effective current-waveform-disturbing devices
were identified, was measured.

B. Tertiary sector end user 1 (in an office building)—one measurement point—two types
of energy boundaries were assessed:

1. Large energy boundary: The PCC, located on the secondary winding of the
existing 20/0.4 kV power transformer, which ensures the power supply to the
entire building, was measured;

2. Significant energy use: The 0.4 kV power-supply circuit of the HVAC (heating,
ventilation and air conditioning) system was measured.

C. Tertiary sector end user 2 (in four office buildings)—four measurement points—two
types of energy boundary for each building:

1. Large energy boundary: The PCC, located on the secondary winding of the
existing 20/0.4 kV power transformer, which ensures the power supply of the
entire building, was measured;

2. Significant energy use: The 0.4 kV power-supply circuit of the HVAC system
was measured.

The analysed PQIs are briefly presented in Table 3.

Table 3. Proposed PQIs.

Power-Quality Indicator Formula Measuring Unit Observations

Voltage sag value ∆Vsag = Vc − Vi,Lj[V] [V] Vc [V]—contracted voltage.
Vi,Lj[V]—the i-th measured voltage on phase j.

Voltage sag no.
Nsagi

= 1
∣∣∆Vsag,i > ∆Vmin,adm

Nsagi
= 0

∣∣∆Vsag,i < ∆Vmin,adm
[-] ∆Vmin,adm = VC − Vmin,adm,

Vmin,adm = 0.9·VC = 207[V].
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Table 3. Cont.

Power-Quality Indicator Formula Measuring Unit Observations

Voltage sag frequency fsag =
Nsag
Tr

·100 [%] Tr [-]—total number of measurements.

Max. voltage sag ∆Vsag,max = max
(

∆Vsag,f

)
|1hour

[V] ∆Vsag,f [V]—voltage sag value on all phases.

Energy not supplied ENS = tinterrupt·Pavg,t [kWh]

tinterrupt [seconds]—duration of interruption.
Pavg,t[kW]—average absorbed power in the

previous time interval equal to the duration of
interruption.

Voltage spike frequency fspike =
Nspikes

Tr
·100 [%]

Nspikes [-]—total number of voltage spikes
with a measured value greater than

Vmax,adm = VC·1.1 = 253[V].

Voltage imbalance ksV = max(|ksV1|, |ksV2|, |ksV3|) [%] ksVi =
Vi−Vaverage

Vaverage
·100[%]—the voltage

imbalance on phase i.

Current imbalance kn = [100·max(|ILi−Imed|)]
Imed

[%] Imed = IL1+IL2+IL3
3 [A]—the average current
intensity value.

Voltage total harmonic
distortion

THD =

√
H
∑

i = 2
X2

h

X1
·100

[%]
Xh [V] or [A]—the h-rank value of the voltage

or current harmonic.
X1 [V] or [A]—the fundamental harmonic.Current total harmonic

distortion

Total power factor PFT [-] -

3.3. Energy Performance Indicators Assessment

The EnPI evaluation algorithm was systematically built by incorporating calculation
methodologies for each EnPI in a layered way. This approach allows the user to select
the appropriate EnPI based on the specific details of their activity and thus maximises
the modularity of the AEMS and ensures its capacity to be replicated in any other energy
boundary. The EnPIs that have been suggested are concisely outlined in Table 4.

Table 4. Proposed EnPIs.

Energy Performance
Indicator Formula Measuring Unit Observations

Specific electricity use,
with respect to the useful

surface
Cs

en.el.sp = Wel
Su

[
kWh
m2·t

] Wel [kWh/t]—electricity demand over period t.
Su [m2]—the useful surface of the building.

Specific electricity use,
with respect to the number

of customers
CC

en.el.sp =
Wh

el
NC

[
kWh
client

] Wh
el [kWh]—hourly electricity demand.

NC [-]—the number of clients in a given hour.

Specific electricity use,
with respect to the

productivity
Cp

en.el.sp = Wel
Pd

[
kWh

product

] Wel [kWh/t]—electricity demand over period t.
Pd [products/t]—the production over period t.

Specific electricity use,
with respect to the
generated income

Cf
en.el.sp = Wel

YGI

[
kWh

EUR·103

] Wel [kWh/t]—electricity demand over the t period.
YGI [EUR·103/t]—the generated income over

period t.

Specific equivalent CO2
emissions, with respect to
the number of customers

AC
CO2

=
Ah

CO2
NC

[
g equivalent CO2

client

] Ah
CO2

[g CO2 equivalent/h]—hourly equivalent
carbon dioxide emissions.
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Table 4. Cont.

Energy Performance
Indicator Formula Measuring Unit Observations

Specific equivalent CO2
emissions, with respect to

the generated income
AC

CO2
=

ACO2
YGI

[
g equivalent CO2

EUR·103

] ACO2 [g CO2 equivalent/t]—equivalent carbon
dioxide emissions over period t.

Energy intensity IE =
Weq,en
YGI

[
MJ

EUR·103

]
or[

t.o.e.
EUR·103

] Weq,en [MJ/year] or [t.o.e./year]—yearly
equivalent energy use.

The EnPIs were normalized with respect to five relevant variables (historical values),
namely, mean outdoor temperature, relative humidity, cloud cover, lighting, and wind
velocity. Figure 2 displays the suggested logic design of the IPE analysis module. (EnPI
Analysis Module represented in Figure 1).
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The AEMS calculates the EnPI for specific time periods (week/month/year) and
also allows for normalisation by comparing it to the changes in the relevant variables.
The user benefits greatly from the AEMS results, as they can utilise them for reporting
purposes at both the company level (establishing internal goals for energy performance and
environmental impact) and at the level of national energy-regulatory agencies (submitting
annual reports on energy performance and the energy questionnaires from the energy
manager (EM) of the user).

The EnPI normalisation approach utilised Lagrange interpolation (4), which was
found to offer a function comparable to Neville’s algorithm (7), but with a considerably
reduced computation time (over 90% faster) at the expense of a slight decrease in accuracy
(over 3.80%).

P(x) =
n

∑
j = 1

Pj(x) =
n

∑
j = 1

δjk·yk = yj (4)

where

Pj(x) = yj·
n

∏
k = 1
k ̸=j

x − xk
xj − xk

(5)
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Explicitly, Equation (4) can be written as follows:

P(x) = (x−x2)·(x−x3)·....·(x−xn)
(x1−x2)·(x1−x3)·...·(x1−xn)

·y1 +
(x−x1)·(x−x3)·....·(x−xn)

(x2−x1)·(x2−x3)·...·(x2−xn)
·y2 + . . .

+ (x−x1)·(x−x2)·....·(x−xn−1)
(xn−x2)·(xn−x3)·...·(xn−xn−1)

·yn

(6)

Pi(i+1).....(i+m) =
(x − xi+m)·Pi(i+1)....(i+m−1)

xi − xi+m
+

(xi − x)·P(i+1)(i+2)....(i+m)

xi − xi+m
(7)

Multiple linear regression (8) results in a substantial MSE (mean square error)—higher
than that from the Lagrange interpolation and Neville’s algorithm, with an average value
over 5%, as a result of the inclusion of numerous dependant variables. Consequently, it is
not advisable to utilise this method for EnPI normalisation.

Y′ = ai + b1·X1 + b2·X2 + b3·X3 + . . . ++bn·Xn (8)

The results of testing the analysed interpolation/normalization algorithms are pre-
sented in Table 5. A dataset consisting of 210,240 datapoints (energy-use data and EVFs
values collected every fifteen minutes over the course of one year) was used to compare the
computation time and the computational burden of each analysed normalisation method.

Table 5. Normalization methodologies’ testing and results.

Interpolation Algorithm Datasize [Mb]/Datapoints [No.] Computation Burden [Sec]/[W] MSE

Simple Linear Regression

44.82/210,240

00:00:05/24 13.341

Multiple Linear Regression 00:01:21/38 5.492

Lagrange Interpolation 00:03:15/40 1.421

Neville’s Algorithm 00:06:03/82 1.291

The clustering, processing and normalization of real-time, high-sampling-frequency data
by cloud-computing-based software solutions confirmed the conclusions of [27] regarding the
improved overall performance of the smart energy-metering system. This approach leads to
an increased efficiency of the proposed AEMS with regard to input-data quality.

3.4. Energy Demand Forecast

To examine the link between EVFs and EnPIs and to forecast changes in EnPIs based
on the EnPIn = f (EVFs) function, a complex machine learning framework was created by
using LSTM (long short-term memory) and recurrent neural networks (RNN).

The RNN-LSTM was originally created to predict active power demand using only
one external variable, the average external temperature. The LSTM-RNN parameterization
was built through a series of iterations with the goal of identifying the optimal values of the
hyperparameters that would result in the most accurate forecast of active power demand.
The optimal hyperparameters are as follows:

➢ The length of learning sequence: 24;
➢ The number of neurons per cell: 192;
➢ The number of epochs: 20;
➢ The number of examples from a learning step: 24;
➢ The training/learning weight: 0.15.

After the hyperparameters that resulted in the highest level of accuracy for the LSTM-
RNN were identified, the LSTM model was expanded to account for five variables: average
outside temperature, insolation level, degree of cloudiness, relative humidity, and wind speed.

This development allows for the analysis of the correctness of the developed software
model and the quality of the selected hyperparameters when new variable factors are
included. In order to use this concept in a practical situation, the prediction of electric-
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ity consumption was based on meteorological forecasts. This approach allowed for the
measurement and assessment of the uncertainties caused by inaccuracies in the meteoro-
logical predictions.

The open-source platform https://openweathermap.org/ was utilised to forecast
the EVFs. This forecasting was achieved by utilising a custom application programming
interface (API) that offered an hourly forecast for a duration of two (2) days for each request.
This API enables the transfer of up to 2000 queries per day, so a subscription can supply the
daily weather data required for the 2000 distinct locations where the AEMS is in use. The
returned results were further processed for incorporation into the database by converting
them from the JSON format supplied by the API into a format that is compatible with the
machine learning algorithm.

In order to incorporate five variable external elements into the machine learning
algorithm, we utilised historical consumption data over a four-year period. This data was
used to retrain the system’s learning model, while maintaining the same hyperparameters
that were previously established. The forecasting of fluctuating external elements was
conducted utilising the weather-data API.

Contrary to the findings in the initial phase of developing the LSTM-RNN, incorporat-
ing forecasted meteorological data led to greater uncertainty in predicting the absorbed
active power. The uncertainty increased from an initial range of 0.5–2% to a range of 1–12%,
depending on the accuracy of the meteorological data (real vs. forecasted).

When compared with state-of-the-art forecasting methodologies [28], the proposed
methodology leads to a 10% lower MSE on average.

Given the particularities of the energy boundary being studied, which is an office
building, the amount of electrical power consumed is directly influenced by the occupancy
rate of the building. This relationship is seen in Figure 3, where each point on the graph
shows the total electric power demand aggregated over a one-hour period. The results are
consistent across all data-aggregation categories.
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The forecast of active power demand is conducted through a series of three separate
and independent stages:

1. A forecast is generated for the upcoming hour, which is beneficial for participation in
the balancing market (BM). For instance, at 15:00, the amounts of power predicted to be

https://openweathermap.org/
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consumed in the next four (4) settlement periods, each lasting 15 min, are determined.
The forecast is crucial for optimising the financial efficiency of participating in the
balancing market, which offers a 15-min balance settlement available across the
European Union.

2. A forecast is made for the upcoming hour: for example, at 15:00, the anticipated
quantity of electricity to be consumed in the following 60 min, specifically until 16:00,
is forecasted. This projection is crucial for calculating the energy efficiency of the
energy subsystems associated with the examined energy boundary. The HVAC system
(including chillers, air handling units, circulation pumps, and fan coils) is the driver
of the most significant energy use (SEU) in the case study. Anticipating the electricity
consumption for the upcoming hour allows for the assessment of the energy efficiency
of the HVAC system beforehand by relying on past performance data.

3. A daily forecast is generated at 00:00 for the upcoming 24 h, predicting the amount
of electricity that will be consumed in each 60-min interval. This projection is crucial
both for participation in the day-ahead market (DAM) and for advance evaluation of
the energy performance of the assessed energy boundary.

The machine learning algorithm yields the following advantages:

1. The ability to pre-assess the energy efficiency of the energy boundary being studied
in order to identify any potential shortcomings in the operation or value settings for
electricity end users;

2. The potential to enhance energy trading in the Day-Ahead Market (DAM).
3. For significant electricity end users, the capability to optimise financial efficiency in

the balancing market by improving the accuracy of the consumption forecast.
4. Additionally, utilising forecasted energy-demand values, it is feasible to anticipate the

progression of energy performance indicators within the monitored energy subsystem
or even at the overall energy boundary.

The machine learning algorithm demonstrates excellent performance, with a 24-h
forecast error of only 1.09%. This error is primarily caused by the variability between the
forecasted and realised external factors, as well as by the absence of quantification for other
relevant variable factors in the forecast, such as the hourly occupancy rate and tenants’
behaviour, specifically in terms of the temperature settings in the rooms. The variable
factors examined in the case studies are significant and relevant to the assessed energy
boundaries, with each of them producing a measurable effect on the power demand.

To enhance the precision of the forecast, it will be imperative to quantify additional
variable factors, such as productivity. Additionally, a highly significant factor to consider is
consumer behaviour.

To normalize the Energy Performance Indicator (EnPI), it is necessary to perform the
following calculation subroutine:

➢ Check whether EnPIn = y is a function of EVFs = x by applying the vertical line
mathematical method;

➢ If so, check whether y = f (x) is a one-to-one function by applying the horizontal line
mathematical method;

➢ By applying the Lagrange interpolation, the expected values of y for any values of x
can be determined;

➢ By implementing a ML system, the previously determined form of the function y = f
(x) will be normalized based on the recorded data available from the measuring and
monitoring system.

3.5. Power Quality Indices Improvement Action Potential Assessment Module

In accordance with the prevailing technical standards governing PQI analysis, the
initial step always involves verifying the voltage total harmonic distortion factor. If the
recorded values of the THDU fall within the specified limitations, the analysis can proceed
to examine the recorded values of the THDI.
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Operation of distribution networks in distorted current regimes results in elevated
power and energy losses, as well as operational challenges. It is essential to keep the
PQIs within the acceptable range in order to maximise the energy efficiency of electricity
networks, regardless of whether they are used in residential [29], commercial [30], or
industrial [31] sectors.

The inefficient operation of power grids hampers the implementation od the previously
outlined LCF methods. Operating the power grids under highly distorted waveforms can
also result in the degradation of power transformers and electrical lines, further diminishing
the overall energy efficiency of the power distribution system.

The power with which a transformer can be loaded for a specific regime without
exceeding the maximum admissible temperature is determined by applying Equation (9),
as follows:

Sreal = kt·SnT[kVA] (9)

where kt [-] is the derating factor that considers the weight of the harmonic components
of the current through the transformer windings and, implicitly, the losses generated by
Foucault currents. The derating factor is determined using (10), as follows:

kt =

√
1 + pF

1 + K·pF
[−] (10)

where pF [−] are the power losses generated by eddy currents in the transformers’ windings,
which are divided by the rated Joule–Lenz losses occurring in the nominal operational
regime, and K is a factor used to evaluate the influence of harmonic currents over the
thermal stress on the transformer and is determined by applying relation (11), in which Ih
is the effective value of the h rank current harmonics, as follows:

K =
∑M

h = 1(h·Ih)
2

∑M
h = 1(Ih)

2 [−] (11)

In order to evaluate the power losses generated by the current harmonics in power
transformers, a hypothesis was created stating that the electrical resistance of the windings
is constant at every current harmonic rank. The power losses are determined by applying
Equation (12), as follows:

∆Ph
T,L1 = RT·

(
I2
1,L1 +

40
∑

h = 2
I2
h,L1

)
[kW]

∆Ph
T,L2 = RT·

(
I2
1,L2 +

40
∑

h = 2
I2
h,L2

)
[kW]

∆Ph
T,L3 = RT·

(
I2
1,L3 +

40
∑

h = 2
I2
h,L3

)
[kW]

∆Ph
T = ∆Ph

T,L1 + ∆Ph
T,L2 + ∆Ph

T,L3[kW]

(12)

where RT [Ω] is the internal resistance of the power transformer primary winding, which
is determined using (13), as follows:

RT = ∆Pk·
U2

line,2

S2
nT

·k2
j [Ω] (13)

where Uline,2 [kV] is the line voltage of the secondary winding of the transformer and kj [-]
is the transformation ratio.



Energies 2024, 17, 1605 18 of 34

As the electrical resistance of electrical lines cannot be considered constant, the power
losses occurring in these elements can be determined by applying Equation (14), as follows:

∆PUnderground Line =
3
2
·

40

∑
h = 1

Rh·I2
max,h·10−3[kW] (14)

where Rh [Ω] is the electrical resistance corresponding to the h rank harmonic, which can
be determined using (15):

Rh = R0·kf[Ω] (15)

The pellicular effect factor—kf—can be determined based on the radius of the conduc-
tor (r), the penetration depth δ, and the conductivity of the conductor σ.

The penetration depth can be determined by applying Equation (16), as follows:

δ =
1√

π·σ·µ· f
[m] (16)

To enhance the analysis module, an algorithm was created to assess the financial
efficiency achieved by limiting the THDI value. This evaluation is based on the end user’s
acceptable limit for the simple payback period.

Within this particular framework, the predetermined maximum value is set at 5 years,
however it is possible to substitute this with any different value using the human-machine
interface (HMI).

It is important to consider that the limit value of the SPP is dependent on the following
factors:

1. The magnitude of the investment (tens of thousands, hundreds of thousands, or
millions of EUR);

2. The company’s financial capacity, as measured by its turnover;
3. The nature of the investment, whether it involves technological, non-technological, or

organisational processes;
4. The company’s available cash flow;
5. The company’s reputation and trustworthiness as evaluated by financial institutions,

such as banks;
6. The existence and quality of business plans for each investment.

Therefore, based on the variables indicated above, the typical values for the SPP limit
are 3, 5, and 10 years, respectively.

The financial-analysis module calculates the highest level of capital expenditures
(CAPEX) that can result in the investment being fully recovered within a period of 5 years by
minimising the harmonic ranks that are found to be significantly higher than the suggested
limit of 5% of the fundamental value. Afterwards, the analysis module calculates the net
present income that can be earned throughout the 10-year study period in compliance with
the current legislation, thereby motivating the management to carry out the suggested
investment.

The logic block of the THDI minimization potential analysis module is presented in
Figure 4.

The extension of the proposed LSTM-RNN to the PQIIA module leads to more accurate
results (up to 40% more accurate) than are obtained from the VDM-LSTM analysis and
that are on par with those obtained from the VDM-LSTM-1DCNN (variational mode
decomposition long short-term memory one-dimension convolutional neural network)
residual method [32].
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3.6. Techno-Economic Analysis Methodology

The proposed AEMS has a number of analysis modules (see Figure 1), which generate
techno-economic reports, as follows:

➢ The PQI/PQIIA analysis module, which ensures the real-time monitoring of the
voltage sags, voltage spikes, voltage interrupts, load factor, peak factor, voltage and
current imbalances, voltage and current harmonic distortions, and total power factor
and quantifies the economic impact generated by low PQI values and the benefits that
can be obtained by implementing PQIIAs;

➢ The EnPI analysis module, which determines and monitors the evolution of the
selected EnPIs and, by aggregating the resulting values, normalizes them using a La-
grange interpolation technique, then forecasts the energy demand and the associated
EnPI values using a LSTM machine learning algorithm.

Integration of the technical and financial components of each module is essential to
establishing an overall financial function. This function will provide a comprehensive
assessment of the financial profitability related to energy usage and the potential for
improvement or maximisation.

This integration will also offer a comprehensive assessment of the possibility to miti-
gate environmental effects within the assessed energy boundary through the implementa-
tion of various activities recommended by the AEMS.

The analysis modules described in this chapter present the key financial outcomes pro-
duced by the AEMS in Table 6. The AEMS results have been incorporated into the Human-
Machine Interface, which was created using the Grafana open-access platform [33]. This
integration allows for the generation of comprehensive reports that provide an overview
of potential energy savings, cost savings, and the potential reduction in environmental
impact. The financial analysis equations are presented in Table 7, and the variables are
briefly presented in Table 8.



Energies 2024, 17, 1605 20 of 34

Table 6. AEMS-provided results.

Analysis Module (see Figure 1) Result Type

A
Active electricity cost—CWP Periodic cost

Reactive electricity cost—CWQ Periodic cost

B

Yearly cost of energy losses—CLCF
∆WP

Periodi cost

DER implementation cost ¯CDER Investment cost

ESS implementation cost— CESS Investment cost

Yearly reduction in energy losses— E∆WP Potential savings

C

Yearly energy losses (current harmonics)—CTHDI
∆WP

Periodic cost

Yearly reduction in energy losses—ETHDI
∆WP

Potential savings

Maximum CAPEX for active harmonic filter—CTHDI
AHF,max Investment cost

D - -

Table 7. Financial indicators’ equations and relevant variables.

Indicator Equation Measuring Unit

Cinitial
WP

Cinitial
WP

= P·t·cw = f
(

CLCF
∆WP

, CTHDI
∆WP

, P, PFT, kn, cw

)
[ EUR

time unit ]

CWQ CWQ = P·sin(acos(PF))·t·cq(PFT brackets) = f
(

P, PFT, cq(PFT brackets)

)
[ EUR

time unit ]

CLCF
∆WP

CLCF
∆WP

= ∆P0·t1·cw + ∆Pk·
(

W(t)
PM

·
W(t)
PM

+10.000

27.500− W(t)
PM

)
·
(

PM ·PFM
SnT

)2
·cw

= f (∆P0, ∆Pk, PM, PFTM, cw)

[ EUR
time unit ]

CDER CDER = Prated,PV ·csp = f
(

PMaxPV = PM(t), csp
)

[EUR]

CESS

CESS =
(

Wwithout PV
over optimal load − Wwith PV

PV over optila load

)
·cESS

=
23
∑

i = 0

[(
Pi,avg − Poptimal

)
−
(

Pi,PV − Poptimal

)]
·ti·cESS

= f
(

Pmeasured, Poptimal , cESS

) [EUR]

E∆WP

E∆WP = CLCF
∆WP

−
CLCF,with PV+ESS

∆WP
= f

(
Pmeasured, Poptimal

) [ EUR
time unit ]

CTHDI
∆WP

CTHDI
∆WP

=
(

∆Ph
T + ∆Pelectric line

)
·t·cw = f (Ih, RT , R0, s, sn, l, σ, cw) [ EUR

time unit ]

ETHDI
∆WP

ETHDI
∆WP

= CTHDI
∆WP

− CTHDI ,minimized
∆WP

= f (Ih) [ EUR
time unit ]

CTHDI
AHF,max CTHDI

AHF,max = f (Ih, SPP = 5ani) [EUR]

Etotal Etotal = C f inal
WP

< Cinitial
WP

= f (Investment Cost) [ EUR
time unit ]

Table 8. Variables used in the techno-economic analysis model.

Variable Explanation Measuring Unit

P Total active power demand (calculated based on measurements) [kW]

t Analysis time unit (hour/day/month/year) [time unit]

cw Active electricity price (input data, considered to be 160 EUR/MWh) [EUR/kWh]

PFT Total power factor (real-time measurement) [−]

cq(PF brackets)

Regulated price for reactive energy, based on the values of the PFT (PFT
< 0.65 or 0.65 < PFT < 0.90 or PFT > 0.9) [EUR/kVArh]
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Table 8. Cont.

Variable Explanation Measuring Unit

∆P0 No-load-rated losses of the power transformer [kW]

t1 No-load losses calculation duration (the time in which Umeasured ̸= 0) [time unit]

∆Pk Load-rated losses of the power transformer [kW]

PM Maximum active power demand [kW]

PFTM Total power factor corresponding to the maximum active power demand [−]

W(t) Total active energy demand over the analysis period [kWh/unitatea de timp]

Prated,PV

Rated power of the PV system (using an iterative calculation
methodology to determine the optimal scale of the system, with regard to
the optimal load of the power transformer)

[kWp]

csp PV system-specific cost (input data, considered to be 750 EUR/kWp) [EUR/kWp]

PMaxPV

Maximum active power generated by the PV system (corresponding with
PM on the time-scale) [kW]

cESS ESS-specific cost (depending on the capacity, discharge speed, and DOD) [EUR/kWh]

Pi,avg Average active power demand on the t − t+1 time interval [kW]

Poptimal Active power optimal load of the power transformer [kW]

Pi,PV Active power generated by the PV system on the t − t+1 time interval [kW]

ti Daily time interval (i ranges from 0 to 23) [−]

Ih h rank current harmonic intensity (real-time measurement) [A]

RT Internal resistance of the power transformer [Ω]

R0 Electrical-line-specific resistance (usually noted with r0) [Ω/km]

s Electrical-line cross-section (per active wire / phase) [mm2]

sn Electrical-line cross-section (per neutral wire) [mm2]

l Electrical-line length [km]

σ Electrical-line conductivity
[

1
Ω·m

]

The opportunity cost (OC) is the benefit an organisation loses when it makes a decision.
The decisions that OC quantifies consist of applying or not applying EnPIAs, PQIIAs, or

DER projects. The OC plays a crucial role in determining the capital structure of an organisation,
and, for this, it is important that the compared scenarios involve a similar level of risk.

In order to determine the values of the net present values (NPV) in the two scenarios
(without and with the project), the techno-economic calculation methodology presented
below will be followed. The input data of the actual scenario NPV and the optimized NPV
are presented in Table 9.

Table 9. Input data for the cost of opportunity assessment methodology.

Variable Explanation Measuring Unit

a Discount rate [%/year]

t Lifecycle of the project [years]

Pee,0 Active electricity price, in year t = 0 [EUR/MWh]

kee Annual escalation rate of the active electricity price [%/year]

Png,0 Price of natural gas, in year t = 0 [EUR/MWh]

kng Annual rate of increase in the price of natural gas [%/year]

FENCE Fence diagram—this remains constant throughout the analysis -
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To determine the actual NPV, the investment cost (IC) will be considered null. The
operation and maintenance cost (Ct

O&M) will be determined using Equation (17), as follows:

Ct
exp = Ct

Wee,act + Ct
Wgn,act + Ct

O&M,act

[
EUR
year

]
(17)

where Ct
Wee,act = Wee·Pt

ee

[
EUR
year

]
—is the yearly electricity cost in year t, in which Wee

[
MWh
year

]
is the yearly electricity use and Pt

ee = Pt−1
ee ·(kee + 1)

[
EUR
MWh

]
is the adjusted electricity price

in year t, and Ct
Wng,act = Wng·Pt

ng

[
EUR
year

]
is the yearly cost of natural gas in year t, in which

Wng

[
MWh
year

]
is the yearly natural gas use and Pt

ng = Pt−1
ng ·

(
kng + 1

)[ EUR
MWh

]
is the adjusted

price of natural gas, in year t.
Ct

O&M,act = Cs + Cr+ract + Cprodact

[
EUR
year

]
is the yearly operation and maintenance

(O&M) costs, in which Cs

[
EUR
year

]
is the salary costs for the O&M personnel, Cm+ract

[
EUR
year

]
is

the expenditures generated by preventive and corrective maintenance, and Cprodact

[
EUR
year

]
is

the expenditures generated by production loss due to preventive and corrective maintenance.
The yearly gross income will be calculated using Equation (18), as follows:

GIyear,B = GIact

[
EUR
year

]
(18)

where GIact is the actual income generated by the current activity of the company.
The yearly net income is thus determined by applying Equation (19), as follows:

Iyearly,N = GIyear,B − Tyear

[
EUR
an

]
(19)

where Tyear

[
EUR
year

]
is the yearly taxes applicable to the gross income.

The yearly net present value will be

NPVyear = Iyearly,N·Fd

[
EUR
year

]
(20)

where Fd = 1
(1+ a

100 )
t [−]—is the yearly discount factor.

The cumulated net present value is determined by applying Equation (21), as follows:

CNPVt = CNPVt−2 + CNPVt−1[EUR]
CNPVt = NPV[EUR]

(21)

The discounted total costs are determined using Equation (22), as follows:

DTC = ICact + Cexp,act[EUR] (22)

The internal rate of return is determined by applying Equation (23), as follows:

IRR = a0

[
%

year

]
(23)

where a0

[
%

year

]
is the discount rate for which the NPV is equal to EUR 0.

To quantify the financial results of implementing the proposed EnPIAs/PQIIAs/DER
projects, the input variables presented above are adjusted.
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The investment cost is adjusted to the following:

IC = EnPI cost + PQIIA cost + DER project cost [EUR]

The optimized (opt) operation and maintenance costs are evaluated using Equation (17),
as follows:

Ct
exp = Ct

Wee,opt + Ct
Wng,opt + Ct

O&M,opt

[
EUR
year

]
The optimized gross yearly income is determined with the adjusted form of Equation (18),

as follows:

Iyealy,gross,opt = GIact + BEN + BnEN

[
EUR
year

]
where BEN = Wee,act − Wee,opt + Wng,act − Wng,opt

[
EUR
year

]
is the energy-saving benefits

generated by implementing the proposed measures and quantified by reducing the energy-
associated costs, and BnEN = Cm+ract − Cm+ropt + Cprodact − Cprodopt

[
EUR
an

]
is the non-

energy benefits generated by implementing the proposed measures and quantified by
reducing the yearly operation and maintenance costs.

The yearly optimized net income is determined by adjusting Equation (19), as follows:

Iyearly,N,opt = GIyear,B − Tyear + BEN + BnEN

[
EUR
year

]
The yearly net present value becomes

NPVyear,opt = Iyearly,N,opt·Fd

[
EUR
year

]
The cumulated yearly net present value, the total discounted costs, and the internal

rate of rentability are determined by adjusting Equations (21)–(23), as follows:

CNPVt
opt = CNPVt−2

opt + CNPVt−1
opt [EUR]

CNPVt
opt = CNPVopt[EUR]

DTCopt = IC + Cexp,opt[EUR]

IRRopt = a0

[
%

year

]
The OC analysis is conducted when the EnPI/PQI values exceed the limits established

by the legislation or by the user. The analysis is repeated periodically, either monthly
or yearly, depending on the type of energy meter. This process continues until the user
implements the EnPIA/PQIIA/DER project, which is necessary to bring the indicator
values within the set limits.

Each OC analysis is completed with a summary report presenting the results of the
main indicators of the techno-economic analysis, IC, NPV, IRR, SPP, and CBA, in the two
scenarios (current and optimized), and the comparative graphical representations of the
evolution of the CNPV for the two scenarios, as shown in Figure 5 below.

As proved above, the use of the OC analysis compared to the more conventional Cost-
Benefit Analysis [34] or the simpler cost=saving approach [35] can lead to a significantly
higher rate of project implementation, as it shows to the top management/decision-makers
the loss of monetary gain caused by past lack of action, whilst also indicating the estimated
gains that can be obtained if the project is implemented now.
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4. Implementing, Testing, and Validating the Proposed Methodology

To test and validate the suggested methodology, the AEMS was deployed on six energy
boundaries, as outlined below:

A. The AEMS monitoring system was installed on the PCC and on the secondary
winding of a low-voltage substation in Sibiu County, Romania. This substation
delivers approximately 25% of the power demand for an industrial platform in the
automotive industry.

B. In Bucharest, Romania, the AEMS monitoring system was installed on the secondary
winding of two power transformers that ensure the power supply for two different
office buildings. Additionally, the AEMS monitoring system was installed on the
power supply of the HVAC system of each building.

C. In Bras, ov County, Romania, the AEMS monitoring system was installed on the
low-voltage side of an MV/LV power-distribution substation. A total of four circuits
were monitored: the PCC, the secondary windings of a 20/0.4 kV power transformer,
and the secondary windings of two 0.4/0.12 kV power transformers, which provide
power to a milling production sector.

The overall architecture of the proposed AEMS is presented in Figure 6. As can be
seen, the raw data measured/monitored with class A power quality analysers/smart
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meters/variable factor sensors are transmitted via MODBUS, Wi-Fi, and LoRaWan to a
data concentrator (RTU). From there, the aggregated raw data are delivered to the AEMS
Server (cloud computing) via optical fibre and/or Wi-Fi.
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After the various analysis modules are applied by the AEMS, the modelled data are
transmitted via a StatsD daemon to the first layer of the human–machine interface (HMI),
which was constructed using the Prometheus open source docker [36]. Prometheus then
feeds the second layer of the HMI, which was developed using Grafana’s open-source
platform. This second layer of the HMI is the actual AEMS interface in which the end user
can see all the results provided by the system and via which the real-time alarms, reports,
and notifications are sent to the end user. The periodic reports and the user-generated
reports are completed at the AEMS server level and are sent directly from the server to the
end user as PDF files.

4.1. Power Quality Assessment Module Validation

In order to demonstrate the significance of reducing the THDI in a power distribution
network owned by an end user, a case study was conducted on the energy boundary of an
industrial end user (refer to item A in the aforementioned list).

The end user experienced a sequence of problems that occurred mostly in two pro-
duction areas where multiple CNC (computer numerically controlled) machines were in
operation. The CNC machines are outfitted with a three-axis DC electric drive system,
consisting of 12 DC electric motors per machine.

The CNC machines have their power supplied by 0.4/0.12 kV transformers, which
have a power rating of 112.5 kVA and are connected in the Yy6 configuration. These
machines are specifically designed and manufactured in the United States. Over the past
four years, the customer has replaced over 40 transformers of this particular type due
to full failure, resulting in total additional expenses exceeding EUR 30,000.00 per year.
Additionally, there have been financial losses of more than EUR 8500.00 each year due to
temporary production stoppage.

The consequences of distorted operation are particularly pronounced due to the
continuous operation of the examined end uses, which amounts to 8600 h per year, with
the exception of occasional maintenance or repair periods, which average 160 h per year.
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The analysis conducted during the experimental investigation revealed that two
categories of CNC machines produced notable harmonic electrical-current disturbances,
as depicted in Figure 7. These disruptions were mostly caused by the power-conversion
devices (rectifiers) used to supply power to the various DC motors.
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Figure 7. Current harmonic distribution for type 1 CNC machines (a) and type 2 CNC machines (b).

Subsequently, a thermographic analysis was conducted on the power transformers
feeding the CNC machines. This analysis revealed that both the 0.4/0.12 kV power trans-
formers and the connected power lines were working under significant overload conditions.

The temperature of the power line connecting to the secondary winding of the power
transformer was 139.6 ◦C, which exceeded the rated working temperature by more than
70% (65–70 ◦C).

By installing an active harmonic filter (AHF) system, the user successfully mitigated the
rank 3 (which generates an influence on the neutral conductor), 5, 7, and 9’s current harmonics.
This reduction in harmonics had a positive impact on the neutral conductor and prevented
power-transformer failures. Consequently, the installation of the AHF system eliminated both
additional power and energy losses in the distribution network, as well as non-energy-related
financial losses such as equipment replacements and production downtime.

After a 72-h measurement campaign was conducted with a data-gathering rate of one
dataset per second and using a class A three-phase network analyser, the database to test
and validate the PQI/PQIIA analysis module was generated.

Considering the configuration of the examined substation, as depicted in Figure 8,
measurements were conducted on each output of the low-voltage distribution board to
determine the specific origin of current harmonics.

It was determined that the main source of electric current harmonics was TG 3 (Gen-
eral Distribution Panel no. 3) due to the grouping of CNC machines with the highest
contributions to current harmonic distortion at this point in the network. The single-line
diagram of TG3 is shown in Figure 9.
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Furthermore, a notable asymmetry in the electric currents was discovered, indicating
a decreased emphasis on balancing the phase load. The case study also examined the
influence of current harmonics on the energy efficiency of Underground Line no. 1—UL1.
The rated values of the 0.4/0.12 kV power transformer and UL1 are presented in Table 10.



Energies 2024, 17, 1605 28 of 34

Table 10. Rated values for the equipment influenced by the high THDI values.

Characteristic Notation Value Measuring Unit

Power Transformer—TCNC

Rated power SnT 125 [kVA]

Primary winding rated voltage U1 0.4 [kV]

Secondary winding rated voltage U2 0.12 [kV]

No-load losses ∆P0 0.23 [kW]

Load losses ∆Pk 1.99 [kW]

Connection - Yy6 [-]

Manufactured in - 2006 [-]

Underground Line—UL

Specific resistance r0 0.169 [Ω/km]

Length l 0.83 [km]

Material - Aluminium [-]

Conductivity σ 36·106 1/[Ω·m]

Live wire cross-section s 185 [mm2]

Neutral wire cross-section sn 90 [mm2]

By utilising the method outlined in Section 3, the cost-benefit analysis demonstrates
that the project has the potential to yield a net present value (NPV) of more than EUR 1.4
million over a 10-year study period. The total present cost (TOTEX) amounts to EUR 650,000.
The payback period is 3 years, which is significantly shorter than the guaranteed lifetime of
10 years provided by the AHF manufacturer [37]. Thus, it has been proven that this module
may greatly enhance the energy and financial efficiency of end user distribution networks.

The same methodology was applied to the office buildings, with the results showing a
maximal CAPEX value of 8730.00 EUR for the AHF in order to maintain financial viability,
as shown in Figure 10.
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4.2. Power Demand Forecast Module Validation

The machine learning algorithm has been developed, deployed, tested, and extended
on an energy boundary that pertains to an end user in the tertiary energy sector, namely, an
office building. An analysis revealed that the HVAC system accounts for almost 70% of
the total yearly electricity use, as it supplies heating, cooling, and domestic hot water by
electrical means.

During the initial phase of developing the machine learning and prediction system,
only the relationship between the active power input and the average outdoor temperature
was taken into account. The parameterization was conducted through iterative processes,
with the goal of discovering the ideal values of the hyperparameters that would result in
the most accurate active-power-demand projection. After completing 20 epochs, which are
sequential sweeps of the available data, the root mean square error was determined to be
15.96 kW, with an accuracy of less than 0.02%.

The generated genetic algorithm was further tested using a dataset provided by
the Department of Energy (DOE) from an office building in Richland Township, Ben-
ton County, Washington State, USA. The presented data consist of the absorbed power
and average outdoor temperature, aggregated on an hourly basis, for a period of three
years (2018/2019/2020). The outcomes derived from implementing the machine learning
algorithm are displayed in Figures 11 and 12.
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In order to incorporate five variable external elements into the ML algorithm, as
described in Section 3, historical consumption data spanning four calendar years were
used to retrain/regenerate the system’s learning model. The hyperparameters that were
previously identified were used in this process. Figure 13 displays the outcomes of a
monthly forecast period.
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demand (green).

Testing has shown that the proposed methodology leads to an average daily forecast
error of 1.1%.

After the development, implementation, testing, and enhancement stages of the advanced
energy management system proposed in this work were completed, the system’s alert and
notification features (refer to Figure 14) were successfully deployed and demonstrated.
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THDI value (b).

By implementing the AEMS and running its analysis modules over a relevant pe-
riod of time (more than 6 months) for the office buildings presented in the beginning
of Section 4, it was proven that the proposed methodology led to the identification of
various EnPIA/PQIIA, which, if implemented, could lead to energy savings of more
than 490.69 MWh/year [9.81%/year] for the analysed energy boundary, with a poten-
tial environmental-impact reduction of approximatively 162.91 tons of CO2 equivalent per
year [3.26%/year], considering a conversion factor of 0.33 tons of CO2 equivalent/MWh for
electricity and 0.202 tons of CO2 equivalent/MWh for natural gas.

As shown in Figure 15, the total potential yearly financial savings amount to 75,800.00
EUR/year, with a total CAPEX of 289,000.00 EUR, leading to a simple payback period of
less than 4 years (3.81 years).
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The main EnPIA/PQIIA/LCF measures identified by the AEMS for this particular
energy boundary were as follows:

• The installation of an AHF to mitigate the high values of the THDI in the PCC—high
values caused by numerous VSDs (Variable Speed Drives) and Rectifiers;

• The implementation of a LCF project consisting in deploying a 150 kWp/100 kWAC
PV powerplant coupled with a 50 kWh BESS;

• The rebalancing of four different low-voltage distribution boards to ensure an optimal
current imbalance (5–10%);

• The reparameterization of the existing APFC (automatic power factor correction)
system to better follow the variation in reactive power demand and ensure that the
0.9–0.99 power factor is as constant as possible.

Based on the experimental study and work conducted for this paper, numerous
potential areas for future research have been identified. These areas are of relevance in
terms of energy-efficiency goals and the ongoing battle against climate change.

While the AEMS has been built with modularity as a general goal, additional study
is required to explore its potential applicability for small energy end users, such as SMEs
(small- and medium-sized enterprises), given their substantial share of the total energy
demand (13% of the global total energy demand [38]).

It has been shown that the behaviour of energy users is an important factor that
influences the quality of the results provided by the AEMS. One effective approach to
influencing the behaviour of energy consumers and reducing the fluctuation in electric-
ity consumption across elements of the distribution network is the implementation of a
dynamic tariff mechanism (DTM) based on network zones. This mechanism incentivizes
energy consumption during periods of low demand and imposes penalties for consumption
during peak demand.

Whilst the proposed AEMS has the potential to increase the energy efficiency of the
regional power grid if it is installed on significantly large end users in that region, a potential
approach by which to further accelerate the improvement of the DSO’s energy performance
is the implementation of a demand response (DR) system, organised by grid zone and user
type. Such a system may be appealing for domestic purposes, but implementing it would
require substantial investment by the DSO to replace electrical switchboards in homes. This
replacement would enable the remote control of certain circuits, such as those operating the
refrigerator, washing machine, air conditioning, and so on. To evaluate the technological,
financial, and commercial feasibility of this activity, it may be necessary to conduct a thorough
study on public acceptance of the idea and perform a cost-benefit analysis.

Moreover, the tertiary sector, which includes shopping malls and logistics warehouses, is
highly suitable for the implementation of a demand response (DR) system because the end
users in this sector possess high volumes of high-capacity refrigeration and cooling systems.

In the energy-services sector, machine learning and artificial-intelligence techniques
can be applied to optimise monitoring systems like building-management systems (BMS)
and warehouse-management systems (WMS) and to further accelerate the implementation
rate of Energy Performance Contracts (EnPCs), by reducing the technical and financial risks
taken by the stakeholders [39].

5. Conclusions and Further Research

The paper has provided proof of the potential of the proposed AEMS methodology to
greatly increase the implementation rate of projects for energy performance improvement,
actions to improve power quality indices, and the installation of hybrid renewable energy
sources-based systems by using an advanced machine-learning based forecast algorithm that
quantifies all the aforementioned types of projects potential to generate revenue for the end user.

The AEMS can be a critical tool for transitioning towards environmental sustainability
for multiple types of end users, as it has been proven to be applicable to both industrial
and commercial end users, regardless of their size—as such, policy makers could mandate
the obtaining of attractive, advantageous financing for energy-related projects so that the
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beneficiary has the obligation to also deploy such a system alongside the main scope of
work. This approach can, in turn, lead to better and more accurate monitoring of the results
obtained by main project throughout the monitoring period.

With an average MSE of 6%, the proposed Advanced Energy-Management System can
also function as a monitoring and verification tool, which is essential for discovering and
evaluating the chances to implement and monitor energy performance contracts—EnPCs.
In this case, the Energy Service Companies can implement the AEMS for their potential
clients, and the AEMS could represent the common ground between the two entities and
the financial institution that is funding the project, thus reducing the technical and financial
risks associated with the deployment of large-scale EnPCs.

The AEMS testing results suggest the need to evaluate the legal, commercial, and
financial aspects of modifying the existing financing mechanism for RES-generation capaci-
ties. Some changes to the non-refundable financing mechanism should be done in order to
incentivize end users who want to actively participate by implementing hybrid systems
(distributed generation plus storage). By doing so, they will directly contribute to flattening
the load curve at the level of the regional power-distribution grid.

The adoption of an advanced energy-management-system solution can further accel-
erate the ISO 50001 certification of end users, which can, in turn, lead to a domino effect in
the supplier-client relationship between companies—an ISO 50001-certified company can
commercially enforce the need for certification for all of its suppliers.
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