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Abstract: This work used an electrical equivalent circuit model combined with a temperature model
and computational optimal control methods to determine minimum time charging profiles for a
lithium–ion battery. To effectively address the problem, an optimal control problem formulation and
direct solution approach were adopted. The results showed that, in most cases studied, the solution
to the battery’s fast-charging problem resembled the constant current–constant voltage (CC-CV)
charging protocol, with the advantage being that our proposed approach optimally determined the
switching time between the CC and CV phases, as well as the final time of the charging process.
Considering path constraints related to the terminal voltage and temperature gradient between
the cell core and case, the results also showed that additional rules could be incorporated into the
protocol to protect the battery against under/over voltage-related damage and high-temperature
differences between the core and its case. This work addressed several challenges and knowledge
gaps, including emulating the CC-CV protocol using a multi-phase optimal control approach and
direct collocation methods, and improving it by including efficiency and degradation terms in the
objective function and safety constraints. To the authors’ knowledge, this is the first time the CC-CV
protocol has been represented as the solution to a multi-phase optimal control problem.

Keywords: battery charging; optimal control; equivalent circuit models; lithium–ion batteries; CC-CV
protocol

1. Introduction

The criteria for fast charging mandate that a fully charged battery achieves its maximum
discharge capacity within the shortest charging time while ensuring the safety of the user
and the device [1]. A critical barrier to fast charging is the temperature at the battery’s core
since it promotes the growth of dendrites due to lithium plating [2]. The effects of different
temperature ranges when operating a typical lithium–ion battery are presented in Table 1 [3].
Keeping the temperature within the recommended operating range is crucial to prevent
damage to the battery and other severe consequences. Over the past five years, there were
507 cases of fire in electric vehicles caused by battery explosions in the U.K. alone [4].

Table 1. Effect of temperature on a lithium–ion battery.

Temperature Range Type of Damage

<0 ◦C Lithium plating due to non-uniformities
in the cell caused by manufacturing defects.

0–55 ◦C No damage to the battery.

55–160 ◦C Higher heat dissipation. SEI film starts to decompose.
Lithium reacts in the electrolyte. LiCoO2 breaks down and produces O2.

160–300 ◦C Electrolyte starts decomposing. Releases flammable gasses.
Fire and thermal runaway
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Car manufacturers consider controlling the temperature inside a battery pack very
seriously. Reports indicate [2] that the battery of a typical electric vehicle can be replenished
from fully discharged to a state of charge of 80% in just 30 min, at a ≈2C charging current,
where C is the nominal battery capacity in Ah, and at ambient temperature. However, at
lower temperatures, the process of charging the same amount of energy would take an
additional 60 min at a <C/1.5 charging current, making the total time required for charging
90 min.

Another restriction imposed on fast charging is the charging voltage. Table 2 sum-
marises the damage caused by over- or under-charging a lithium–ion battery.

Table 2. Effect of overcharging on a lithium–ion battery.

Voltage Range Type of Damage

≤2.2 V 1 In the charge phase, the Cu− precipitate is metallic Cu,
which can ultimately cause a short circuit between the electrodes.

2.2–4.2 V No damage to the battery.
≥4.2 V 2 Risk of lithium metal plating.

1 Organic electrolytes are unstable at voltages below 1 V vs. Li/Li+ . [5] 2 Overcharging the battery by only 0.1 V
can reduce its life cycle by up to 60% [6].

Generally, battery manufacturers provide a charging guide for fast charging while
keeping the battery within safe temperature limits. The constant current–constant voltage
(CC-CV) approach is commonly used and does not require a mathematical model of the
battery. This method is cost-effective and ensures voltage constraints within safety windows.
CC-CV profiles are designed to avoid battery abuse risks and are often considered reference
protocols in the literature [7,8].

Another essential consideration in the battery’s fast-charging algorithms is capacity
reduction, also known as battery degradation, measured by the state of health (Soh). Al-
though degradation cannot be avoided, it can be mitigated by limiting the factors that
create it in the first place. As electrochemical models are outside the scope of this work, the
degradation prediction model employed in this work is heuristic. A valuable examination
of the empirical degradation of lithium–ion batteries is given in [9].

The research aims of this work were twofold: first, to investigate the CC-CV charging
profile from the point of view of an optimal control problem; second, to present a multi-
phase optimal control formulation that allows computing charging profiles to achieve the
fastest charging time while considering safety constraints to protect batteries and their
users, as well as energy efficiency.

The remainder of this paper is organised as follows. Section 2 explores existing proce-
dures for fast charging and developing models for lithium–ion batteries. Section 3 discusses
the formulation of fast charging for batteries as an optimal control problem and the CC-CV
procedure. The work includes three different formulations of the optimal control problem.
Section 4 presents the results and discusses the fast charging protocol optimisation strategies.
We place particular emphasis on studying how temperature impacts the performance of the
fast-charging protocol. Section 5 concludes the study by summarising the key findings and
providing recommendations for future research.

To the authors’ knowledge, this is the first research effort to investigate the CC-
CV protocol with temperature and voltage path constraints by formulating it as a multi-
phase optimal control problem. As will be shown, the CC-CV strategy that manufacturers
recommend is not precisely optimal and can potentially cause unnecessary degradation to
the battery if the generated heat is not appropriately constrained.

2. Literature Review

Numerous publications have demonstrated that the primary challenge in achieving
fast charging lies in improving the charging protocol rather than focusing solely on battery
chemistry [10]. For example, in the popular Tesla Model 3, manufactured by Tesla, Inc.,
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Austin, TX, USA, the battery can be charged up to an 80% state of charge (SoC) in less than
30 min, but not without affecting its longevity [11].

Recent studies have reported ultra-fast charging strategies using particular cell structures.
The self-heating lithium–ion battery enabled 15 minfast charging of lithium–ion batteries
at any temperature (even at −50 ◦C) while still preserving a remarkable life cycle [2]. Also,
ref. [12] reported stable lithium deposition with a recharge time of 45 min when charging a
battery at −60 ◦C under a monolayer-regulated interface. Furthermore, the authors in [13]
proposed new carbon-based electrode materials for fast-charging lithium–ion batteries. The
reported results demonstrate the achievement of a charging time of less than 10 min to reach
80% capacity while ensuring the absence of lithium plating even after 300 cycles.

Nonetheless, the commercial battery studied in the Mat4Bat project and the results
reported by [14,15] showed that it lost approximately 75% of its capacity in 50 cycles
when 1 C was applied at 5 ◦C. The same cells passed the 4000 cycles at 25 ◦C to reach
the 75% capacity degradation. In [16], the authors cycled identical batteries at different
temperatures while targeting an 8% capacity fade in all tests. The results showed a strong
correlation between the life cycle of a battery and the temperature. The results indicated
that an increment of 20 ◦C caused a 50% reduction in battery life. A study published
in [17] showed that ‘capacity fade’ strongly depends on three main variables: the operating
temperature, the total number of complete battery cycles, and the C-rate. These primary
findings are consistent with research showing that the life cycle of lithium–ion batteries
drops considerably with temperature.

In [18], the authors analysed the capacity fade of a Sony 18650 1.8 Ah lithium–ion
cell (Sony Energy Devices Corporation, Tokyo, Japan) when charged/discharged at high
temperatures. The results showed that after 800 cycles, the cells lost 36% of their initial
capacity at 45 ◦C. The results also showed that cells cycled at 55 ◦C lost more than 70%
of their initial capacity after 600 cycles. Experimentation was conducted in a lithium–ion
battery at high temperatures and current rates in [19]. It was reported that the experimental
data obtained from charging the battery at 6C to the designated capacity showed a 240-s
charging time improvement (580 s vs. 820 s) at 55 ◦C, compared with 25 ◦C. This result
might indicate that the charging time of the battery improves when the temperature rises;
however, internal battery degradation is not reported, which is a significant omission.

2.1. Optimised Charging Methods

The straightforward constant current–constant voltage protocol is the charging strategy
that most lithium–ion battery manufacturers recommend. During the constant current phase,
a high charging current is maintained constant until a cut-off voltage is reached. This
phase is responsible for almost fully charging the battery while keeping it under the limits of
overcharging. Then, the strategy switches to the constant voltage phase. The charging current
gradually decreases in this region while the battery voltage remains constant. The excess
current is needed to reach the capacity at the top of the charge. Still, it does not consider
internal battery temperature or time optimisation. These considerations are critical factors in
ensuring low degradation rates. Typically, the battery terminal voltage, or VT, determines
the time to change from CC to CV. The conventional transition from CC to CV effectively
prevents overcharging, while the total charging time can be extended [20]. Usually, the
empirical maximum charging time is formally included as part of the specification.

In [21], the authors formulate the fast charging problem as an optimal control problem
with a temperature constraint. The study showed that the optimal charging strategy fits
the classic CC-CV approach. Charging methodologies such as pulse charging [22,23], boost
charging [24], multistage constant current [7,25], and variable current profiles [26] were
created to overcome the limitations of simple charging methods. In [27], the authors applied
the Taguchi method to a multistage constant current charging method to determine the
optimal rapid charging pattern. Similarly, each of the above-mentioned strategies has
different methods to search for the optimised current profile for a fast charging strategy.
Although all these strategies consider heat dissipation and protecting the battery from
overheating, not all consider temperature constraints.
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Some authors use artificial intelligence approaches to find the optimal way to charge
batteries. One research study [1] used particle swarm optimisation and found a charging
profile that could charge batteries to 90% capacity in just 51 min. This method also extended
the battery’s life by 22% compared to traditional charging. However, this study did not
consider the effects of temperature on the battery. The authors of [28] proposed a battery
charger with a fuzzy logic controller charging algorithm that could reduce the charging
time by 50% at 4 C. However, this method also failed to take temperature into account. A
third study by [29] used a neural network and found an optimised charging current profile
that improved the charging time by 7.85% compared to traditional charging. However, all
of these studies required many experiments to find the best settings for the algorithm, as
noted in [30–32].

2.2. Fast Charging as an Optimal Control Problem

Few studies have investigated the fast-charging battery problem formulated as an
optimal control problem. The authors of [33] employed a basic model to determine the
optimal equilibrium voltage required for a lithium–ion battery. According to the findings,
the bang–bang control trajectory is optimal for the charging profile because it “switches
from one extreme to the other within the bounds” [33]. The research also presented a robust
algorithm but did not consider the temperature to formulate the battery’s dynamics. The
authors of reference [34] formulated the problem as an optimal control problem. They used
the Legendre–Gauss–Radau pseudo-spectral method with an adaptive mesh refinement
algorithm to find numerical solutions. The authors proposed a simple degradation schema
based on an empirical model given in [35] but overlooked the need to bind the temperature
during charging.

The solution to the battery’s fast-charging optimal control problem is challenging
due to the complexity of the underlying models; thus, numerical methods have become
indispensable tools for solving them. An approach to solving such problems involves using
indirect methods based on the optimality conditions that can be found through the calculus
of variations.

Although indirect methods are common in the literature, they experience several
drawbacks [36]. Direct methods have been proposed to overcome these drawbacks. One of
the direct methods usually employed to solve an optimal control problem involves a global
approximation of the solution using a pseudo-spectral approach. Compared with local
approximations, these methods provide accurate results but at higher computational costs
due to their complexity. Another option that is also used is the local discretisation method.
These methods provide enough accuracy at a reasonable computational cost. Also, it is
possible to improve the accuracy of these methods by using mesh refinement techniques
and multi-runs with a hot start with increasingly finer solution grids. An example of such
a method is trapezoidal discretisation [37].

2.3. Battery Models

Broadly speaking, two main modelling strategies have been adopted in the research
community to study the behaviour of a rechargeable electrochemical battery cell [38]:

• Electrochemical modelling of the inner battery cell behaviour;
• Electric equivalent network or abstract modelling (also called an equivalent circuit model),

where the battery is modelled as an electric circuit of passive electronic components.

2.3.1. Electrochemical Models

An electrochemical model provides profound insight into the battery by modelling the
internal electrochemical processes using porous electrodes and the concentrated solution
theory. There are many plausible electrochemical models for lithium–ion batteries, each with
advantages and disadvantages [39]. The author of [40] argues that the electrochemical model
is the most suitable model to predict the internal states of the battery, such as ageing or
degradation. A well-known model is the porous pseudo-two-dimensional model developed
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by Doyle, Fuller, and Newman [41–43], known by the acronym DFN. The model presented
in [44] has extended DFN to include temperature at the expense of increased complexity.

Degradation in lithium–ion batteries is generally associated with a passive film forma-
tion on the negative electrode, known as the solid electrolyte interphase. High temperature
has been widely recognised as a crucial factor influencing the growth of the solid electrolyte
interphase. It is important to recognise that the relationship between the temperature and
solid electrolyte interphase growth is not linear and depends on various factors, including
battery chemistry, electrode materials, electrolyte composition, and operating conditions [45].
Thus, by limiting the temperature rise, its growth can also be restricted [46–48].

2.3.2. Equivalent Circuit Models

The second category, the equivalent circuit model, combines voltage sources, capaci-
tors, and resistors in a circuit that mimics the dynamic behaviour of the battery, as can be
measured from the battery terminals. This modelling approach provides good information
about the battery, requires low computational efforts, and needs only a few parameters.
Equivalent circuit models also offer relatively high accuracy (1–5% error) ([49,50]). Al-
though equivalent circuit models do not represent the electrochemical processes that occur
inside the battery, they can be tailored to meet specific needs using passive components.
These models are also valuable in a straightforward manner, simulating thermal and degra-
dation processes, as indicated in [51]. Moreover, they are relatively economical in terms of
computational resources when predicting battery performance under various operating
conditions, like the maximum load current, cut-off charging voltage, and state of charge
profiles. Many papers in the literature propose different configurations for equivalent
circuit models. They include linear parameter-varying observers [52], adaptive sliding
mode observers [53], and artificial neural networks [54]. The equivalent circuit model
also simplifies the application of extended [55,56], unscented [57], and adaptive Kalman
filters [58], as well as particle filters [59]. The author of [40] contends that the equivalent
circuit model is unsuitable for exploring internal battery dynamics. In contrast, the same
author acknowledges that it is the preferred modelling technique used in implementing
algorithms in battery management systems.

Given that an equivalent circuit model does not perform the prediction of detailed
electrochemical processes, degradation can only be represented empirically with these
models. One attempt to use equivalent circuit techniques to model degradation is the model
developed in [60]. The formulation uses artificial intelligence to predict the degradation
through a 2-RC model in a CC-CV charging profile. Although the experimental results
are satisfactory, the approach for formulating an optimal control problem is not feasible.
Reference [34] provides sufficient details to capture battery degradation in an elementary
dynamics equation. Furthermore, this mathematical representation of degradation is
well-suited for use in an optimal control formulation.

Consequently, and because this study does not need access to an abundance of internal
states provided by electrochemical battery models, the conventional equivalent circuit model
coupled with a degradation model is considered suitable for this study.

3. Battery’s Fast-Charging Problem Statement

The problem under investigation in this work consists of finding the optimal cur-
rent profile that will charge a lithium–ion battery in the fastest time by considering the
effects of the temperature and battery degradation during exactly one cycle at ambient
temperature (25 ◦C).

The typical charging time for a lithium–ion battery is around 180 min [61], but this varies
widely, depending on different factors. This charging time typically represents the period
from a partially empty battery, i.e., 20% of capacity, until the state of charge reaches 99% of
the total capacity. Generally, the manufacturer suggests a current profile that optimises the
charging time in the best possible way to prevent battery damage caused by temperature.
However, the manufacturer seldom describes the influence of the temperature in the battery.
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They solely rely on the charger to avoid prematurely damaging the battery. Interestingly,
the manufacturer provides a cut-off time, which does not necessarily guarantee an optimal
(or even the fastest) charging profile.

Notably, a lithium–ion battery performs better when exposed to heat [62]. Heat facili-
tates electron migration and reduces the electrode polarisation [63]. Therefore, a trade-off
should exist between the recharge current and the safety margin on the battery’s temperature
during charging to prolong its lifetime.

Several considerations typically constrain the fast charging process. There is a lower
and upper limit on the voltages across the terminals. Also, the state of charge is constrained
to a maximum value, such as 99%. Moreover, some types of lithium–ion batteries cannot
be fully discharged, so the state of charge cannot be lower than a specific minimum value,
such as 20%. Furthermore, the terminal voltage must not drop below 2.2 V in many cases
because internal Cu elements can induce elevated self-discharge currents and produce an
electrical short circuit [64].

3.1. The CC-CV Algorithm

Algorithm 1 describes the constant current–constant voltage (CC-CV) protocol, which
is a commonly used charge strategy for lithium–ion batteries. The procedure starts by
applying a constant current, Imax, until the battery reaches vmax. Then, the current starts
decreasing while the voltage is kept constant. The process stops when the current reaches
Imin or the maximum recommended time, Ttotal , expires. Note that the risk of damaging the
battery due to thermal exposure is mitigated through the use of a fixed time. This approach
offers a relatively straightforward method of implementation.

Algorithm 1 CC-CV cycle

1: procedure CC-CV(vmin, vmax, Imax, Imin, Ttotal , tswitch )
2: while (vbatt(t) < vmax and t ≤ tswitch) do
3: CC charge at Imax

end while
4: while (|I(t) | > Imin and t ≤ Ttotal) do
5: CV constant at vmax
6: Decrease I(t)

end while
end of procedure

3.2. The Battery Model

Despite the drawbacks of the equivalent circuit model, it remains extensively utilised
in practical engineering applications. This success is due to its simplicity, ease of implemen-
tation, and the computational efficiency it offers. Consequently, we decided to adopt this
modelling approach in this work. The equivalent circuit model provides enough insight
into the battery’s behaviour while limiting complexity. Also, as the equivalent circuit model
consists of passive components, it represents the battery dynamics using a relatively simple
set of differential equations, making it relatively easy to apply optimal control methods to
find the optimal charging current profile.

The research object of this work is the cylindrical lithium–iron–phosphate (LiFeSO4)
battery cell A123 ANR26650M1. Figure 1 shows a simple representation of the equivalent
circuit model that can be used to represent this battery cell. The model is based on the
Randles model, referred to in the literature as the second-order resistor–capacitor (RC)
network, and is considered a grey-box model [65]. Although this model is widely used for
the study of lead acid batteries [66], it has been successfully used for lithium–ion battery
modelling as well [34]. This simple model has demonstrated good accuracy when compared
with experimental data. The model’s accuracy relies on the design of the experiment [57],
aimed at calibrating a model’s parameter values, the quality of the acquired experimental
data, and the approach used for parameter estimation.
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Figure 1. Electric circuit model type RC2.

The temperature dependency (and the degradation process) requires that the dynamics
of the equivalent circuit model be coupled with a temperature model. A good number
of models found in the literature fit this requirement. For example, refs. [67–71] provide
different types of models of thermal coupling. However, one of the simplest and best-
documented models is found in [72]. The model includes temperature dynamics and an
extra equation to consider capacity fading. These additions provide a basic understanding
of the evolution of the battery’s capacity during charging cycles.

It is well known that low temperatures reduce battery capacity and performance.
Thus, as a general rule, a minimum electrolyte temperature of 278.15 K should be carefully
observed [73] to avoid battery damage. Likewise, high temperatures above 308.15 K should
be avoided, as they lead to a more significant reduction in the life cycle.

3.3. Mathematical Representation of the Equivalent Circuit Model

The equivalent circuit model represented by the set of differential equations presented
in (1) is coupled with a thermal model. The model used in this work corresponds to an
equivalent circuit coupled with a thermal model, which allows the problem formulation to
specify temperature and voltage path constraints to prevent battery damage. The dynamics
of the lithium–ion battery are modelled by the following set of differential equations
extracted from [34], but expressed in state space form, as follows:

ẋ1 =
u

3600C

ẋ2 = − x2

R1C1
+

u
C1

ẋ3 = − x3

R2C2
+

u
C2

ẋ4 =
x5 − x4

RcCc
+

(x2 + x3 + uR0)u
Cc

ẋ5 =
Ta − x5

RuCs
− x5 − x4

RcCs

ẋ6 = − u
2(3600)N(c, x4)

(1)

where all variables and parameters are defined in Table 3, u is the input current (referring
to the current I(t) indicated in Figure 1; we assume u(t) ≡ I(t)), c is a normalised measure
of the electric current defined in Equation (3), which is determined by dividing the current,
u, in A by the nominal capacity of the battery in Ah [34].
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Table 3. Variables and parameters associated with the battery model.

Parameter Value/Units Description

R0 Interpolated value a, Ω Internal resistance of the lithium–ion battery

R1 Interpolated value a, Ω Cell’s no-load self-discharge

R2 Interpolated value a, Ω Charge-transfer resistance

C1 Interpolated value a, F Bulk charge storage of the cell

C2 Interpolated value a, F Electrodes’ double-layer effect

Ru 3.09 KW−1 Resistance to convective cooling

Rc 1.94 KW−1 Thermal resistance

Cs 4.5 JK−1 Heat capacity of the cell container

Cc 62.7 JK−1 Heat capacity inside the battery

C 2.3 A-h Nominal capacity of A123 ANR26650M1

R 8.314 Jmol−1K−1 Universal gas constant

VOC Interpolated valuea Open circuit voltage

VT V Voltage at the battery terminals

Ta 278.15 K Ambient temperature

x1 - State of charge

x2 V Double layer capacitance & charge transfer voltage (V)

x3 V Diffusion process modelling voltage

x4 K Temperature at the core

x5 K Temperature at the surface

x6 - State of health

u A Input current
a: Values are interpolated using bilinear interpolation from tabular data as implemented by
PSOPT [74].

The function N(c, x4) is defined by the following:

N(c, x4) =
3600Atol(c, x4)

C
(2)

where
c =

u
C

(3)

Atol(c, x4) =

 20

M(c)exp− Ea(c)
Rx4

 1
2

(4)

and
Ea(c) = 31700 − 370.3c (5)

The pre-exponential factor M(c) was interpolated from the following experimental
values given in [34]: M(0.5) = 31,630, M(2) = 21,681, M(6) = 12,934, and M(10) = 15,512.

The state vector is defined as follows:

x = [x1 x2 x3 x4 x5 x6]
T

The electrical parameters, Ru, Rc, Cs, Cc, R0, R1, R2, C1, and C2 were acquired from [75].
It is worth noting that [75] cites [34], which provides the experimental data points from
which the values of R0, R1, R2, C1, and C2 are interpolated. Furthermore, the input charging
current is, by convention, always positive.

The voltage at the terminals, VT , is given by Equation (6):

VT = VOC(x1) + x2 + x3 + R0u (6)

where VOC represents the open circuit voltage. The data points for the VOC(·) curve were
extracted digitally from Figure 4 in reference [76]. The actual open circuit voltage value
was obtained by using spline interpolation.
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In this work, the state of health is defined according to [34]. The authors explain that
the model is based on empirical data captured during the experimental battery cycles at
different temperatures and charging currents. Furthermore, the model includes degradation
due to the cycle charge and calendar ageing.

4. Battery’s Fast-Charging Problem Formulation

This section presents the formulation of the typical fast-charging optimal control prob-
lem. In order to fast-charge a lithium–ion battery, it is necessary to determine a charging
policy that can charge the battery from a minimum state of charge, usually above the 0%
state of charge, to a maximum capacity, typically below 99% of the state of charge, in the
shortest possible time, without causing any harm to the battery’s health. The problem can
be stated by describing the dynamics of the battery, subject to a finite set of initial conditions,
state boundaries, and equality and inequality constraints. As part of the formulation, it is
possible to include penalty terms to consider some aspects influencing the charging process.

An optimal control problem is usually formulated as follows. Determine the optimal
state trajectory, x(·) ∈ Rn, and the control, u(·) ∈ Rm, such that the functional, J, is
optimised in the interval, t ∈ [t0, t f ], where t0 and t f ∈ R are the initial and final times,
respectively. The independent variable is t ∈ R. The objective functional, J, is given in (7):

J = Ψ(x(t0), to, x(t f ), t f ) +
∫ t f

t0

L(x(t), u(t), t)dt (7)

where Ψ : Rn ×R×Rn ×R → R is the end cost, the integral term is the running cost, and
the scalar function L : Rn ×Rm ×R → R is the integrand. The problem is subject to the
system state equations

ẋ = f(x(t), u(t), t) (8)

Moreover, a set of inequality constraints, known as events, can be used to express the
initial and terminal conditions:

eL ≤ e[x(t0), u(t0), x(t f ), u(t f ), t0, t f ] ≤ eU (9)

The problem might also have time-dependent inequality constraints or path constraints:

hL ≤ h[x(t), u(t), t] ≤ hU , t ∈ [t0, t f ] (10)

where L and U refer to lower and upper bounds, respectively. The functions f, e and h are
defined in Equation (11)

f : Rn ×Rm × [t0, t f ] −→ Rn

e : Rn ×Rm ×Rn ×Rm ×R×R −→ Rs

h : Rn ×Rm × [t0, t f ] −→ Rr

(11)

where r, s ∈ N. There are, in addition, bound constraints on the decision variables as given
by Equations (12)–(15)

uL ≤ u(t) ≤ uU , t ∈ [t0, t f ], (12)

xL ≤ x(t) ≤ xU , t ∈ [t0, t f ], (13)

t f − t0 ≥ 0 (14)

t f ≤ t̂ f (15)

where the last inequality turns into equality when the final time t f is fixed.
Some optimal control problems may be divided into phases, which means that the

time domain of the problem is divided into two or more segments, which may overlap.
Assuming that the phases are sequential (there is no overlap between the time domain
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segments), these problems may have discontinuities in the state variables at interior points,
as well as discontinuities in the state equations. Furthermore, the performance index may
also reflect the phase structure. In this work, we defined three optimal control problems
with two phases. For simplicity of presentation, the general optimal control problem defined
above involves a single phase. A general multi-phase formulation is given in [37].

Given the nature of the optimal charging time, the optimal control problem will be
formulated for three different cases, as shown in Table 4:

Table 4. Different optimal control formulations for the fast charging optimal control problem, with
each involving two phases.

Case Sub-Case Description

1 Minimum time. CC-CV emulation.
2 Minimum time and energy losses with temperature path constraint.

2.a Temperature path constraint above protection.
2.b Temperature path constraint.

3 Minimum time and energy loss with endpoint cost parameterisation.

4.1. Case 1: Two-Phase Optimal Control Problem with Configurable Switching Time

This formulation represents the emulation of the CC-CV protocol as a minimum-time
optimal control problem. The charging process is formulated as a two-phase optimal
control problem, with phase 1 defined by the time interval t ∈ [t0, ts], and phase 2 defined
by the time interval t ∈ [ts, t f ], where t0 is fixed, and ts and t f , with ts < t f , are free to be
chosen. Henceforth, we use the notation (·)(i) to indicate that the function or variable (·) is
defined in phase i. In this case, the input current, u, has a given constant value, I0, during
phase 1, while it is optimised during phase 2. The aim is to find the control trajectory in
phase 2, u(2)(t), t ∈ [ts, t f ], the state trajectories in phases 1 and 2, x(1)(t), t ∈ [t0, ts], and
x(2), t ∈ [ts, t f ], respectively, the switching time ts ∈ [t0, t f ), and the final time, t f ∈ (ts, t̂ f ],
where t̂ f is an upper bound for t f , which minimises the objective functional expressed in
Equation (16):

J = t f (16)

subject to the dynamics of the battery as shown in Equation (1), with the state variables
bounded as per Equation (17)

0.1 ≤x(1,2)
1 ≤ 0.99 0.1 ≤x(1,2)

2 ≤ 0.6 0.1 ≤x(1,2)
3 ≤ 0.6

278.15 ≤x(1,2)
4 ≤ 318.15 278.15 ≤x(1,2)

5 ≤ 318.15 0 ≤x(1,2)
6 ≤ 1.0

(17)

with the control variable bounded as per Equation (18):

u(1) = I0

0 ≤ u(2) ≤ I0
(18)

and a single algebraic path constraint, given by the following:

2.2 ≤ V(1,2)
T ≤ 3.6 (19)

with the following definition for the terminal voltage V(1,2)
T

V(1,2)
T = VOC(x(1,2)

1 ) + x(1,2)
2 + x(1,2)

3 + R0u(1,2) (20)

where VOC is the open circuit voltage. We use the notation x(1,2)
k , with k ∈ {1, 2, . . . , 6},

u(1,2), and V(1,2)
T , to indicate that the same expressions apply for phases 1 and 2.
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The initial condition, x(1)(t0), is given by Equation (21), as follows:

x(1)(t0) = [0.1, 0, 0, 278.15, 278.15, 1.0]T (21)

The target value for V(1)
T at the final time of phase 1, ts, is given by the Equation (22),

representing the voltage at the terminals of the battery at the end of phase 1, as follows:

V(1)
T (ts) = VOC(x(1)1 (ts)) + x(1)2 (ts) + x(1)3 (ts) + R0u(1)(ts) = 3.6 (22)

Additionally, the target value for x(2)1 at the final time, t f , is given by Equation (23),
representing the target state of charge at the end of the charging period, as follows:

x(2)1 (t f ) = 0.99 (23)

The linkage constraint between phases 1 and 2 is given by Equation (24), as follows:

x(2)(ts) = x(1)(ts) (24)

4.2. Case 2: Two-Phase Optimal Control Problem with Two Path Constraints

This formulation considers the minimisation of the charging time and energy losses.
The problem is formulated as a two-phase optimal control problem, with phase 1 defined
by the time interval t ∈ [t0, ts], and phase 2 defined by the time interval t ∈ [ts, t f ], where
t0 is fixed, and ts and t f , with ts < t f , are free to be chosen. The aim is to find the control
trajectory in phases 1 and 2, u(1)(t), t ∈ [t0, ts], and u(2)(t), t ∈ [ts, t f ], respectively, the
state trajectories in phases 1 and 2, x(1)(t), t ∈ [t0, ts], and x(2), t ∈ [ts, t f ], respectively, the
switching time ts ∈ [t0, t f ), and the final time t f ∈ [ts, t̂ f ], where t̂ f is an upper bound for
t f , which minimises the objective functional expressed in Equation (25).

J = t f + ρ
∫ ts

t0

[
(u(1))2R0 +

(x(1)2 )2

R1
+

(x(1)3 )2

R2

]
dt

+ρ
∫ t f

ts

[
(u(2))2R0 +

(x(2)2 )2

R1
+

(x(2)3 )2

R2

]
dt

(25)

where the integral terms represent internal heat losses, and ρ > 0 is a penalty factor.
The state variables for phase 1 are bounded as per (26)

0.1 ≤ x(1)1 ≤ 0.99 0 ≤ x(1)2 ≤ 0.6 0 ≤ x(1)3 ≤ 0.6

278.15 ≤ x(1)4 ≤ 318.15 278.15 ≤ x(1)5 ≤ 318.15 0 ≤ x(1)6 ≤ 1.0
(26)

the control is bounded as per Equation (27)

0 ≤ u(1) ≤ Imax (27)

where Imax is the maximum continuous charging current, and the initial conditions are
given by the following:

x(1)(t0) = [0.1, 0, 0, 278.15, 278.15, 1.0]T (28)

and two path constraints to safeguard the battery against damage due to under-/over-
voltage and temperature gradients are given by the following:

2.2 ≤ V(1)
T ≤ 3.6

0 ≤ (x(1)4 − x(1)5 ) ≤ τ
(29)
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τ ∈ {1.5, 5.8} is a parameter that relaxes the bound on the temperature gradient
path constraint.

Furthermore, the following equation defines the terminal voltage V(1)
T :

V(1)
T = VOC(x(1)1 ) + x(1)2 + x(1)3 + R0u(1) (30)

The target value for V(1)
T at the final time of phase 1, ts, is given by the Equation (31),

representing the voltage at the terminals of the battery at the end of phase 1, as follows:

V(1)
T (ts) = VOC(x(1)1 (ts)) + x(1)2 (ts) + x(1)3 (ts) + R0u(1)(ts) = 3.6 (31)

Similarly, the state variables for phase 2 are bounded as per Equation (32), as follows:

0.1 ≤ x(2)1 ≤ 0.99 0 ≤ x(2)2 ≤ 0.6 0 ≤ x(2)3 ≤ 0.6

278.15 ≤ x(2)4 ≤ 318.15 278.15 ≤ x(2)5 ≤ 318.15 0 ≤ x(2)6 ≤ 1.0
(32)

the control is bounded as per Equation (33), as follows:

0 ≤ u(2) ≤ Imax (33)

and two path constraints are given by the following:

2.2 ≤ V(2)
T ≤ 3.6

0 ≤ (x(2)4 − x(2)5 ) ≤ τ
(34)

where τ ∈ {1.5, 5.8}. Furthermore, the following equation defines the terminal voltage VT :

V(2)
T = VOC(x(2)1 ) + x(2)2 + x(2)3 + R0u(2) (35)

For phase 2, there is a final condition given by Equation (36), as follows:

x(2)1 (t f ) = 0.99 (36)

Finally, the linkage constraint between phases 1 and 2 is given by the following:

x(2)(ts) = x(1)(ts) (37)

4.3. Case 3: Two-Phase Optimal Control Problem with Two Path Constraints and Parameterisation
of the Endpoint Cost

In this case, the endpoint cost is parameterised to reflect a trade-off between the desire
to minimise the charging time and battery degradation. As in case 2, the objective functional
also includes a term that accounts for energy losses. The charging process is formulated as a
two-phase optimal control problem with the parameterisation of the endpoint cost. The aim
is to find the control trajectory in phases 1 and 2, u(1)(t), t ∈ [t0, ts] and u(2)(t), t ∈ [ts, t f ],
respectively, the state trajectories in phases 1 and 2, x(1) (t), t ∈ [t0, ts], and x(2), t ∈ [ts, t f ],
respectively, the switching time ts ∈ [t0, t f ), and the final time t f ∈ [ts, t̂ f ], where t̂ f is an
upper bound for t f , which minimises the objective functional expressed in Equation (38).
Path constraints similar to those in the previous case have been implemented to safeguard
the battery against damage due to under-/over-voltage and temperature gradients.

J = f (t f , x6, β) + ρ
∫ ts

t0

[
(u(1)

2 )2R0 +
(x(1)2 )2

R1
+

(x(1)3 )2

R2

]
dt

+ρ
∫ t f

ts

[
(u(2)

2 )2R0 +
(x(2)2 )2

R1
+

(x(2)3 )2

R2

]
dt

(38)
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where f (t f , x6, β) is given by the following:

f (t f , x6, β) = βt f + (1 − β)
[

x6(t0)− x6(t f )
]

(39)

The parameter β (0 ≤ β ≤ 1) determines the trade-off between the charging time and
battery degradation when considering the endpoint cost. By adjusting the value of β, it is
possible to assign different levels of importance to these factors effectively. A higher value
of β would prioritise minimising the charging time, while a lower value would emphasise
reducing battery degradation.

The state variables for phase 1 are bounded as per (40) , as follows:

0 ≤ x(1)1 ≤ 0.99 0 ≤ x(1)2 ≤ 0.9 0 ≤ x(1)3 ≤ 0.9

278.15 ≤ x(1)4 ≤ 318.15 278.15 ≤ x(1)5 ≤ 318.15 0 ≤ x(1)6 ≤ 1.0
(40)

the control is bounded as per Equation (47), as follows:

0 ≤ u(1) ≤ Imax (41)

the initial conditions are given by the following:

x(1)(t0) = [0.1, 0, 0, 278.15, 278.15, 1.0]T (42)

and two path constraints are given by the following:

2.2 ≤ V(1)
T ≤ 3.6

0 ≤ (x(1)4 − x(1)5 ) ≤ 1.5
(43)

Furthermore, the following equation defines the terminal voltage V(1)
T :

V(1)
T = VOC(x(1)1 ) + x(1)2 + x(1)3 + R0u(1) (44)

The target value for V(1)
T at the final time of phase 1, ts, is given by Equation (45),

representing the voltage at the terminals of the battery at the end of phase 1, as follows:

V(1)
T (ts) = VOC(x(1)1 (ts)) + x(1)2 (ts) + x(1)3 (ts) + R0u(1)(ts) = 3.6 (45)

Similarly, the state variables for phase 2 are bounded as per Equation (46), as follows:

0.1 ≤ x(2)1 ≤ 0.99 0 ≤ x(2)2 ≤ 0.6 0 ≤ x(2)3 ≤ 0.6

278.15 ≤ x(2)4 ≤ 318.15 278.15 ≤ x(2)5 ≤ 318.15 0 ≤ x(2)6 ≤ 1.0
(46)

the control is bounded as per Equation (47), as follows:

0 ≤ u(2) ≤ Imax (47)

and two path constraints are given by the following:

2.2 ≤ V(2)
T ≤ 3.6

0 ≤ (x(2)4 − x(2)5 ) ≤ 1.5
(48)

Furthermore, the expressions for the terminal voltage V(2)
T , the terminal constraint,

and the linkage constraints are similar to the previous case and are given by Equations (35),
(36) and (37), respectively.
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5. Results and Discussion

Generally, optimal control problems are challenging to solve analytically; thus, nu-
merical methods are commonly used for their solution [37,77–80]. This work uses the
trapezoidal discretisation method because it results in good accuracy and a relatively fast
computational time. Without loss of generality, it is assumed that the initial time is t0 = 0.

All computations were performed using PSOPT version 5.0 to numerically implement
and solve optimal control problems. PSOPT [74] is an open-source, optimal control solver
written in C++, which uses IPOPT Release 13.12 as the nonlinear programming (NLP) solver.

Henceforth, degradation is defined as the difference in the state of health between the
initial time and the final time, x6(t0)− x6(t f ).

5.1. Characteristics of the Battery Cell

The specifications of the battery cell being modelled in this work [81] are shown in
Table 5:

Table 5. Lithium–ion battery model ANR26650M1B charging specification.

Battery Parameter Value Variable

Nominal capacity @25 ◦C 2.3 Ah C
Recommended charge current 3 A I
Max continuous charge current 10 A Imax
Recommended charge voltage 3.6 V vmax

Cut-off current Taper to 125 mA Imin
Temperature range 0 ◦C to 55 ◦C Tc, Ts

1

Life cycle at 1C/1C, 100% DOD >4000 cycles
1 Tc is the temperature at the battery core and Ts is the temperature at the battery shell.

The nominal battery capacity in amp-hours (Ah), represents the quantity of the electric
charge, which can be accumulated during the charge phase, stored in an open circuit, and
released during the discharge.

5.2. Case 1: Two-Phase Minimum Time Charging

This case follows the problem formulation described in Section 4.1. The optimal
control problem formulation consisted of two phases, where the optimal control solver
calculated the switching time between phases, ts, as well as the final time, t f . This case is
the emulation of the CC-CV protocol using an optimal control approach. The calculations
were performed with different initial constant charging currents during phase 1, u(1)(t),
where u(1)(t) = I0 = {4C, 5C, 6C}, and t ∈ [t0, ts]. The results of the numerical simulation
are presented in Table 6. The table reveals the dependency of this switching time on the
initial current values, I0. Additionally, it shows that the battery degradation rate is 16%
lower at 4C (2.68 × 10−5) compared to 6C (3.22 × 10−5).

Table 6. Case 1: Summary of the optimal costs, final state of charge, minimum times, and degradation
levels for different maximum input currents.

I0 (A) Final State of Charge
(%) Optimal Cost ts (s) t f (s) Degradation

4C 99 1,361.80 325.72 1361.80 2.68 × 10−5

5C 99 1,328.00 160.78 1328.00 2.96 × 10−5

6C 99 1,316.36 81.31 1316.36 3.22 × 10−5

Figure 2 illustrates the control trajectories for all simulated cases, and Figure 3 shows
the voltages at the terminals (VT). These results show that the proposed emulation results
in trajectories that resemble the application of the CC-CV protocol.
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(a) (b)

(c)

Figure 2. Optimal input current trajectories obtained for different initial charging current profiles.
(a) Maximum charging current: 4C. (b) Maximum charging current: 5C. (c) Maximum charging
current: 6C. The switching time is shown in Table 6.

(a) (b)

(c)

Figure 3. Voltages across the terminals during charging for different maximum input charging currents.
(a) Maximum charging current: 4C. (b) Maximum charging current: 5C. (c) Maximum charging
current: 6C.

Figure 4 displays the temperatures at the core and cell surfaces for the different
simulation cases. As shown in the figure, similar behaviours in the temperature at the core
and at the surface are observed for different initial currents. In phase 1, the temperature
increases linearly because the applied current is constant. During phase 2, the temperature
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increases at the start of the phase but decreases as the current approaches zero. Moreover,
it is observed that the temperature difference between the core and the surface remains at
around 4 K. This difference can be controlled using a temperature path constraint, which
will be studied in the next section.

(a) (b)

(c)

Figure 4. Temperatures in the cell when charging at different initial input charging currents. (a) Maximum
charging current: 4C. (b) Maximum charging current: 5C. (c) Maximum charging current: 6C.

Figure 5 compares the temperature at the core and the surface against degradation.
As observed, an increase in the initial current triggers an increase in the temperature at
the core and the surface. Thus, the degradation increased as a result of the increase in
the temperature.

Figure 5. Comparison of battery degradation for different maximum charging currents, along with
the maximum core and surface temperatures. The degradation is for a single charge cycle.

5.3. Case 2: Fast Charging as a Two-Phase Optimal Control Problem with Temperature and
Terminal Voltage Path Constraints

In this case, the formulation of the optimal control problem is according to Section 4.2,
A second path constraint is included to manage the temperature gradient between the
battery’s core and surface. This constraint is intended to safeguard the battery against
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temperature-related harm that might result from a rise in the core temperature. The penalty
factor for energy losses was chosen as ρ = 1.

5.4. Case 2a: Fast Charging without Temperature Path Constraint

In this case, the temperature gradient between the core and surface was not con-
strained, which is equivalent to setting τ = 5.8 K. The simulation was conducted with three
values for the maximum charging current.

The solution for the optimal control problem is summarised in Table 7. The results
were obtained for the maximum charging current values of 4C, 5C, and 6C. Moreover, the
parameter, τ, in Equation (29) is defined as τ = 5.8 K, as suggested by Figure 4c. By setting
this upper limit, the temperature path constraint remains inactive throughout the simulation.

Table 7. Case 2a: Summary of the final optimal cost, minimum time, and degradation for different
maximum charging currents with τ = 5.8 K.

Imax (A) Optimal Cost Endpoint Cost Running Cost ts (s) t f (s) 1 Degradation

4C 2777.67 1564.60 1213.68 1153.40 1564.60 2.44 × 10−5

5C 2777.08 1563.80 1213.27 934.90 1563.80 2.44 × 10−5

6C 2777.68 1677.50 1214.78 814.18 1562.89 2.44 × 10−5

1 Final state of charge 99%

The optimal cost remains consistent despite different maximum charging currents.
In this scenario, the switching time is 814 s for a 6C maximum input current, down from
1153 for 4C. However, the final time, t f , remains similar at around 1564 s.

Figures 6 and 7 show the optimal input current trajectories, u, and voltages at the
terminals, VT , respectively. Upon analysing these figures, it becomes evident that there is
a sudden current surge when the control switches from phase 1 to phase 2. This spike is
primarily due to the endpoint constraint at the end of phase 1 (VT = 3.6 V) that must be met.
Consequently, the current increases to raise the voltage and satisfy the endpoint constraint.

(a) (b)

(c)

Figure 6. Optimal input current trajectory for different maximum charging currents. (a) Maximum
charging current: 4C. (b) Maximum charging current: 5C. (c) Maximum charging current: 6C.
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(a) (b)

(c)

Figure 7. Terminal voltage during charging for different maximum charging currents. (a) Maximum
charging current: 4C. (b) Maximum charging current: 5C. (c) Maximum charging current: 6C.

A comparison of the temperature in the core and the surface is shown in Figure 8.

(a) (b)

(c)

Figure 8. Temperature in the cell during charging for different maximum charging currents. (a) Maximum
charging current: 4C. (b) Maximum charging current: 5C. (c) Maximum charging current: 6C.

The CC-CV protocol emulation results of case 1 show that the temperature difference
between the core and the surface of the cell can be as high as 4.5 K. This apparently small
temperature difference can cause permanent damage to the battery. Therefore, in the next
section, we adjusted the temperature constraint to reduce the temperature gradient to 1.5 K.
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This modification offers a practical solution to the optimal control problem and ensures
that the battery is protected from high-temperature gradients.

5.4.1. Case 2b: Fast Charging with the Temperature Path Constraint

For this experiment, the temperature path constraint was set to protect the battery
against a high-temperature difference between its core and the surface. The simulation was
conducted with different maximum charging currents, namely 4C, 5C, and 6C.

Results and Discussion

A summary of the numerical results can be found in Table 8. The temperature gradient
path constraint limit was set to 1.5 K, resulting in the battery taking more time to reach its
final target of a 99% state of charge, compared with the previous case. Specifically, it took
around 1660 s to reach this target. Similarly, the switching time increased because the battery
needed more charge to reach the endpoint constraint in phase 1, V(1)

T , which was set at 3.6 V.

Table 8. Case 2b: Summary of the final optimal costs, minimum times, and degradation levels for
different maximum input currents with τ = 1.5 K.

Imax (A) Optimal Cost Endpoint Cost Running Cost ts (s) t f (s) 1 Degradation

4C 2791.11 1656.94 1134.17 1294.12 1656.94 2.45 × 10−5

5C 2797.56 1677.53 1120.03 818.80 1677.53 2.46 × 10−5

6C 2797.55 1677.50 1120.05 818.79 1677.50 2.46 × 10−5

1 Final state of charge 99%.

The optimal trajectory for the charging current is shown in Figure 9, and the terminal
voltage is shown in Figure 10. As can be observed, there is a spike in the current to
enforce the terminal constraint in phase 1. Furthermore, the terminal voltage increased to
3.6 V—as expected at the end of phase 1—but returned to a lower value in phase 2, before
increasing again.

(a) (b)

(c)

Figure 9. Optimal input current trajectory for different maximum charging currents. (a) Maximum
charging current: 4C. (b) Maximum charging current: 5C. (c) Maximum charging current: 6C.
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(a) (b)

(c)

Figure 10. Terminal voltage during charging with different maximum charging currents (a) Maximum
charging current: 4C (b) Maximum charging current: 5C (c) Maximum charging current: 6C.

Figure 11 shows the core and surface temperatures. As observed, the temperature path
constraint successfully limited the temperature gradient to 1.5 K, protecting the battery. It is
possible to further reduce the temperature difference between the core and the surface of the
battery to increase its safety. Although different values of τ were tested in the experiment,
only the results for τ = 1.5 K are presented due to limited space.

(a) (b)

(c)

Figure 11. Temperature at the core and the surface with different maximum charging currents.
(a) Maximum charging current: 4C. (b) Maximum charging current: 5C. (c) Maximum charging
current: 6C.
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5.4.2. Case 3: Fast Charging Considering Degradation in the Endpoint Cost

In this case, the control problem is formulated according to Section 4.3. The experiment
aimed to determine how degradation affects the endpoint cost and how incorporating
degradation in the endpoint cost affects the charging profile. The experiment focused on a
single case where the maximum input current was 5C and τ = 1.5 K. The penalty factor for
energy losses was chosen as ρ = 1.

Table 9 shows that setting β = 0.75 results in values that are similar to those obtained
for case 2a. Also, the results show that reducing the values of β increased the switching
time and the final time. There is clearly a trade-off between the total charging time and the
desire to reduce battery degradation.

Table 9. Case 3 results for different values of β.

β Endpoint Cost Running Cost t f (s) ts (s) Degradation

0.25 626.41 753.63 2505.66 1344.23 2.62 × 10−5

0.50 960.51 963.21 1921.02 1075.91 2.51 × 10−5

0.75 1297.63 1076.82 1730.18 951.02 2.46 × 10−5

Figure 12 shows the optimal input current trajectories for different values of parame-
ter β.

(a) (b)

(c)

Figure 12. Optimal input current trajectories for different values of parameter β with the maximum
input charging current set to Imax = 5C. The temperature path constraint parameter, τ, was set to
1.5 K. (a) β = 0.75 (b) β = 0.50 (c) β = 0.25.

Figure 13 shows the battery degradation over time for different values of the parameter
β. The graph shows that battery degradation is less for smaller values of β than the values
of β closer to one. However, it should be noted that the charging time increased by 30%
when comparing the case of β = 0.25 with the case of β = 1. Consequently, increasing
the importance of the degradation in the endpoint cost results in an increase in the total
charging time, which is an expected result
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Figure 13. Battery degradation for different values of β for a single charge cycle. Maximum input
charging current 5C (11.5 A) and temperature gradient path constraint set to 1.5 K.

6. Conclusions

This research analysed the optimal charging of lithium–ion batteries at low and
medium current rates through optimal control methods. We conducted detailed simulation
experiments using the electric equivalent circuit battery model. The charging current
included 4C, 5C, and 6C. The first experiment consisted of achieving the minimum battery
charging time, where we emulated the CC-CV charging profile. Further experiments
considered the temperature and the cost of degradation in the formulation. From the
numerical simulation results, we obtained profiles that resemble the well-known CC-CV
charging protocol. Therefore, as a first conclusion, the constant current–constant voltage
charging protocol approximates an optimal charging profile at lower and medium charging
rates. This work proposed improvements to the existing charging protocols, mainly in the
constant current phase. The numerical simulation showed that the internal temperature
gradient can be maintained within a range of 1.5 ◦C using our proposed optimal control
approach. The results presented in the study specifically target an ANR26650M1B battery
cell. However, the methods can potentially be used for any battery model of any chemistry.

To the authors’ knowledge, this work is the first to study the CC-CV protocol with
temperature and voltage path constraints as a multi-phase optimal control problem using
direct collocation methods. Thermal runaway was not analysed and could occur if the
battery pack is not adequately protected.

The proposed approach has some limitations that need to be considered. The degrada-
tion analysis only covers a single cycle and does not consider the potential differences in
capacity degradation across multiple cycles. This view does not explain how the battery’s
performance may degrade over time and under different operating conditions. Further-
more, the battery model does not consider the complex chemistry of the battery. As a result,
the thermal model employed may not accurately capture the thermal behaviour of the
battery, which is essential for predicting its lifespan. Moreover, more advanced models
are necessary to perform a more accurate analysis of pulse charging. Such models should
consider electrochemical factors such as dendrite growth, solid electrolyte interphase for-
mation, and polarisation effects in the electrodes and electrolytes. Therefore, depending on
the application’s requirements, the presented methodology may not provide a sufficiently
accurate estimate of battery degradation and thermal dynamics, indicating the need for
further research.
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