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Abstract: Reservoir permeability is an important parameter for reservoir characterization and the es-
timation of current and future production from hydrocarbon reservoirs. Logging data is an important
means of evaluating the continuous permeability curve of the whole well section. Nuclear magnetic
resonance logging measurement results are less affected by lithology and have obvious advantages in
interpreting permeability. The Coates model, SDR model, and other complex mathematical equations
used in NMR logging may achieve a precise approximation of the permeability values. However, the
empirical parameters in those models often need to be determined according to the nuclear magnetic
resonance experiment, which is time-consuming and expensive. Machine learning, as an efficient
data mining method, has been increasingly applied to logging interpretation. XGBoost algorithm
is applied to the permeability interpretation of carbonate reservoirs. Based on the actual logging
interpretation data, with the proportion of different pore components and the logarithmic mean value
of T2 in the NMR logging interpretation results as the input variables, a regression prediction model
is established through XGBoost algorithm to predict the permeability curve, and the optimization
of various parameters in XGBoost algorithm is discussed. The determination coefficient is utilized
to check the overall fitting between measured permeability versus predicted ones. It is found that
XGBoost algorithm achieved overall better performance than the traditional models.

Keywords: machine learning; permeability prediction; carbonate reservoir; NMR logging; XGBoost
method

1. Introduction

A significant proportion of the world’s oil reserves are found in carbonate reservoirs.
Carbonate reservoirs have huge potential for exploration and development and play an
indispensable role in the world’s oil and gas distribution. However, carbonate reservoirs
have complex properties, which have the characteristics of large burial depth, complex
and diverse pore space, and strong heterogeneity [1–3]. The existing mature evaluation
techniques for conventional sandstone reservoirs cannot be effectively used in carbonate
reservoirs. In the process of oil and gas field exploration and development, the main
methods for evaluating reservoir parameters include two categories: direct measurement
and indirect interpretation. The direct measurement method is accurate, but it needs to
invest more manpower and material resources, and the rock samples obtained are generally
small in number and affected by various factors, which is not conducive to the accurate
estimation of reservoir parameters. Well logging data is generally easier to obtain and can
be used to calculate reservoir parameters for the entire well section. Reservoir permeability
is one of the most important pieces of information for reservoir evaluation, production
prediction, field development parameter design, and reservoir numerical simulation [4–6].
Compared to conventional logging, nuclear magnetic resonance (NMR) logging is not
affected by the rock skeleton and can provide information about pore space, permeability,
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and fluid properties. The permeability interpreted by NMR logging takes into account the
influence of the pore structure of the rock. It overcomes the shortcomings of conventional
methods that only consider porosity but ignore the influence of pores with different pore
sizes on permeability and fail to calculate the permeability accurately. Based on NMR
technology, Kenyon et al. proposed the SDR model and Coates proposed the Coates model,
which are two classic and well-known formulas for calculating permeability [7,8]. For
the conventional reservoirs with simple pore structure, the permeability calculated by
these two models is in good agreement with the core experiments [9–11], but for reservoirs
with multi-scale pore characteristics and wide pore throat distribution, the result is not
satisfactory [12].

Due to the strong heterogeneity of carbonate reservoirs, it is difficult to find a clear
mapping relationship between permeability and logging data [12]. Moreover, the relation-
ship between permeability and logging data is generally nonlinear, which further leads
to the difficulty of reservoir permeability evaluation. Machine learning algorithms have a
strong advantage in mining the data nonlinear relationships and can automatically extract
the hidden features in the data and the complex relationships between the data [13,14].
They can avoid building the complex physical model and directly establish the nonlinear
relationship between input and output data. The establishment of a nonlinear intelligent
prediction model between permeability and logging data has become an effective way to
solve this problem. Many researchers have predicted the reservoir permeability based
on machine learning technology and have achieved satisfactory results [15–23]. Huang
et al. constructed a permeability prediction model based on a back-propagation artificial
neural network (BP-ANN) using logging data and indicated the efficacy of BP-ANNs as a
means of obtaining multivariate, nonlinear models for difficult problems [24]. Huang et al.
proposed a new prediction model based on the Gaussian process regression method to de-
termine the porosity and permeability without iterative adjustment of user-defined model
parameters [25]. Zhu et al. proposed a permeability prediction method integrating deep
belief network (DBN) and Kernel extreme learning machine (KELM) algorithm to improve
the accuracy of permeability prediction in low-porosity and low-permeability reservoirs
based on NMR data [26]. Zhang et al. constructed permeability prediction models using
different machine learning algorithms, and then compared and analyzed the accuracy of
those prediction models to obtain the best model with highest accuracy [27]. Huang et al.
constructed a permeability prediction model that combined the median radius and NMR
data based on a neural network algorithm [28]. Mahdaviara et al. attempted to estimate
the permeability of carbonate reservoirs using the Gaussian process regression method
with few input parameters to meet the requirements of high accuracy and simplicity at the
same time [20]. The previous studies played an important role in improving the accuracy of
reservoir rock permeability calculation, but they did not fully utilize the information from
NMR logging and did not analyze the sensitivity between NMR data and permeability
in detail.

In this paper, based on previous research, the permeability of carbonate reservoirs was
predicted based on machine learning technology using conventional logging and NMR
logging data. Firstly, the limitations of the traditional NMR logging permeability model are
analyzed. Secondly, the correlation between conventional logging, NMR logging data, and
permeability is analyzed in detail, and the permeability sensitive logging curve is finally
selected as the input data of the machine learning algorithm. Finally, the XGBoost machine
learning algorithm is used to predict the permeability, and the parameter adjustment
method and prediction results were analyzed in detail.

2. Theory and Methods
2.1. NMR Logging

NMR logging is a technique used in petrophysics and petroleum exploration to assess
the properties of rocks and fluids in underground formations. It utilizes the principles
of nuclear magnetic resonance to measure the relaxation times and diffusion coefficients
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of hydrogen atoms in these materials [29]. Compared with other conventional logging
techniques, NMR logging provides several advantages when it comes to permeability
prediction in reservoir characterization. It can directly measure the diffusion coefficient of
fluids within the formation, and this parameter is directly related to the permeability of the
rock. By analyzing the NMR measurements, it is possible to obtain permeability estimates
without relying on correlations or assumptions based on other properties. Permeability
is strongly influenced by the size and connectivity of the pores in the reservoir rock.
NMR measurements can reveal information about the range and distribution of pore sizes,
enabling the assessment of permeability variations at different scales. NMR logging can
determine both total porosity and effective porosity, which refers to the interconnected pore
space available for fluid flow. Effective porosity is a key factor controlling permeability.
NMR measurements can identify regions of high effective porosity, indicating regions of
potential permeability enhancement.

2.2. Data Preprocessing
2.2.1. Feature Scaling

Generally, the well log curves that are used in reservoir parameter prediction are
different in units, and these data have significant differences in scale or range. If these
logging data are used directly without processing, the prediction results obtained will
have problems such as low accuracy and slow convergence speed. Normalized data can
prevent the model’s prediction results from being affected by outliers or extreme values.
Normalization is an important process in machine learning, which can improve the training
efficiency and prediction accuracy of models. For different types of log curve data, it
is necessary to use appropriate methods for normalization [30]. Curves with a narrow
distribution range, such as gamma ray (GR), and formation density (DEN) are directly
normalized according to Equation (1).

Nx =
x − xmin

xmax − xmin
(1)

where x is the arbitrary logging data to be normalized, xmin is the minimum value of the
corresponding logging data, xmax is the maximum value of the corresponding logging data,
and Nx is the normalized logging data.

For the resistivity logging curves with a wide range of data distribution, the resistivity
data is first logarithmic and then normalized (Equation (2)).

NRT =
lg(RT)− lg(RTmin)

lg(RTmax)− lg(RTmin)
(2)

where NRT is the normalized resistivity logging data, RT is the resistivity logging data,
RTmin is the minimum value of resistivity logging data, and RTmax is the maximum value
of resistivity logging data.

2.2.2. Principal Component Analysis

The statistical method of regrouping multiple original variables into a new set of
mutually unrelated composite variables that reflect the main information of the original
variables is called principal component analysis (PCA). Principal component analysis
can simplify the complexity of data and models, improve the generalization ability and
computational efficiency of models, and help us understand the relationships and structures
of data. The main steps for PCA are as follows [31,32].
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(1) Generate the sample matrix: Assume the number of samples is n and each sample
has p features, then sample i can be expressed as Xi = (x1, x2, · · · , xp), (i = 1, 2, · · · , n)
and the whole sample matrix can be written as:

X = [X1, X2, · · · , Xn]
T =


x11 x12 · · · x1p
x21 x22 · · · x2p

...
...

...
xn1 xn2 · · · xnp

 (3)

(2) Standardize the data: If the variables are measured in different units, it is essential
to standardize the data (subtract the mean and divide by the standard deviation for each
variable) to ensure that each variable contributes equally to the analysis.

zij =
xij − xj

sj
, i = 1, 2, · · ·, n and j = 1, 2, · · ·, p (4)

where xj is the mean of feature j, sj is the standard deviation of feature j.
The standardized sample matrix can be written as:

Z =


z11 z12 · · · z1p
z21 z22 · · · z2p

...
...

...
zn1 zn2 · · · znp

 (5)

(3) Calculate the covariance matrix: Compute the covariance matrix R of the standard-
ized data. The covariance matrix summarizes the relationships between variables. It shows
how much two variables vary together.

R =
1

n − 1
(ZTZ) (6)

(4) Calculate the eigenvalues and eigenvectors of the covariance matrix: The eigen-
values represent the amount of variance explained by each principal component, and the
eigenvectors form the principal components.

The eigenvalues λ and the eigenvector α can be obtained by solving the characteristic
equation (Equation (7)) using the Jacobi method [33].∣∣R − λIp

∣∣ = 0 (7)

Sort λ by the data value, i.e., λ1 ≥ λ2 ≥ . . . ≥ λp, α is the eigenvector corresponding
to λ.

(5) Calculate contribution ratio: The contribution ratio (also known as the proportion
of explained variance) in PCA is a measure of how much each principal component
contributes to the total variance of the data. It can be calculated using the eigenvalues of
the covariance matrix.

Ri =
λi

∑
p
k=1 λk

, i = 1, 2, · · · , p (8)

The cumulative contribution ratio can be used to get the optimal number of principal
components.

2.3. XGBoost Principle

XGBoost (eXtreme Gradient Boosting, version 2.0.1) is a powerful machine learning
algorithm that has gained significant popularity and achieved remarkable success in var-
ious data science competitions and real-world applications. It is an implementation of
the gradient boosting framework, which is an ensemble learning method that combines
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multiple weak predictive models to create a stronger and more accurate final model. When
using the XGBoost algorithm to build a logging interpretation model, the first objective
function is defined based on the categorical regression tree (CART) as the base classifier,
which contains the loss function and the regular term.

obj = ∑n
i=1l(yi, Ŷi) + ∑K

k=1Ω( fk) (9)

Ω( fk) = αT +
1
2

λ∑T
j=1ω2

j (10)

where l(yi, Ŷi) is the training error of sample xi. Ŷi, yi denote the predicted and actual
classification labels or specific values of sample xi, respectively. Ω( fk) is the regular term of
the kth classification regression tree. T denotes the number of leaf nodes of the classification
regression tree. ωj denotes the weight of the corresponding leaf node. α, λ are constants,
denoting the penalty coefficient.

After that, the input logging data are accumulated for training and for the tth iteration.
The model objective function can be expressed as Equation (11).

obj(t) = ∑n
i=1l[yi, Ŷi

(t−1)
+ ft(xi)] + ∑k

k=1Ω( fk) + C (11)

where ft(xi) denotes the tth added categorical regression tree. The constant C denotes the
complexity of the first t − 1 trees.

The objective function is approximated by Taylor’s formula, and Equation (11) is
expanded by the second-order Taylor’s formula.

obj(t) ≃ ∑n
i=1[l(yi, Ỹ

(t−1)
) + gi fi(xi) +

1
2

hi f 2
t (xi) + ∑K

k=1Ω( fk) + C (12)

where gi denotes the first-order derivative of l(yi, Ŷ(t−1)
i ) with respect to Ŷ(t−1)

i . hi denotes

the second-order derivative of l(yi, Ŷ(t−1)
i ) with respect to Ŷ(t−1)

i . The final objective
function can be obtained after simplification.

obj(t) ≃ ∑T
j=1[(∑i∈Ij

gi)ωj +
1
2
(∑i∈Ij

hi + λ)ω2
j ] + αT (13)

The objective function obj(t) takes the partial derivative of ωj and sets it equal to 0.
Then, the optimal weight can be obtained.

ω∗
j = −

∑i∈Ij
gi

∑i∈Ij
hi + λ

(14)

Substituting Equation (14) into Equation (13), the optimal value of the objective
function is obtained.

obj(t) = −1
2

(∑i∈Ii
gi)

2

∑i∈Ij
hi + λ

+ αT (15)

The XGBoost algorithm borrows the idea of the random forest in the training process,
and instead of using all the sample features in the iterative process, it adopts the random
subspace method [34–36]. If the input feature variable consists of i different logging param-
eters Li, each node randomly selects some features from them and compares the optimal
split among them for node splitting, which can effectively improve the generalization
ability of the model. To this end, when selecting the subtree splitting points, the gain is
defined as:

Gain =
1
2
[
(∑i∈IL

gi)
2

∑i∈IL
hi + λ

+
(∑i∈IR

gi)
2

∑i∈IR
hi + λ

−
(∑i∈Ij

gi)
2

∑i∈Ij
hi + λ

]− α (16)
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where ∑i∈IL
gi, ∑i∈IL

hi are the gradient values of the left subtree at the split point. IL is the
total set of split points of the left subtree. ∑i∈IR

gi, ∑i∈IR
hi are the gradient values of the

right subtree at the split point. IR is the total set of split points of the right subtree.
The input logging parameter features are arranged to traverse each split point of

each one-dimensional feature using Equation (16), and the best-split point is identified by
maximizing the value of the gain.

3. Results and Discussion
3.1. Data Information

The logging data used in this paper are taken from the carbonate reservoirs of four
wells and contain both conventional and NMR logging data. The conventional logging
curves are mainly nature gamma-ray (GR), Caliper (CAL), deep resistivity (RD), medium
resistivity (RS), wave sonic (DT), formation density (RHOB), and neutron logs (NPHI). The
NMR logging data mainly includes T2 spectra and other parameters after processing, such
as logarithmic mean of T2 (T2LM), bound water volume (BFV), free fluid volume (FFV),
interval porosity of different bins (MBP1, MBP2, . . ., MBP8), and so on. At the same time,
relevant experimental tests were carried out in the study area, as shown in Table 1.

Table 1. Basic information about the experimental tests.

Experimental Items
Petrophysical

Properties of Core
Plugs

Petrophysical
Properties of Whole

Diameter Cores

NMR Experiment of
Core Plugs

Number of Samples 2978 613 50

In order to compare and analyze the pore and permeability experimental data from
different sources, the same scale intervals were used to draw the pore and permeability
distribution histograms (Figure 1). Figure 1a,b show the distribution of He porosity of
core plugs and whole diameter cores, respectively. Figure 1c shows the distribution of
NMR porosity of core plugs. Figure 1d,e show the corresponding Klingenberg permeabil-
ity distribution of core plugs and full diameter cores, respectively. Figure 1f shows the
Klingenberg permeability distribution of core plug samples for NMR experiments. The
histograms of porosity and permeability distribution show that there are differences in the
pore and permeability results obtained from different experimental methods. Considering
the heterogeneity of carbonate rocks, the permeability measured from full-diameter cores
was chosen as the training data for machine learning during the study.

3.2. Permeability Prediction Based on NMR Empirical Equation

The classical permeability models for NMR logging are categorized into the SDR
model and the Coates model, where the SDR model uses the geometric mean of the T2
distribution, which is only applicable to fully water-saturated formations, and the Coates
model uses the ratio of movable to bound fluid, which is unaffected by pore fluids.

In 1987, Kenyon et al. proposed the SDR model for permeability calculation based on
the geometric mean of T2 with the following equation [7].

K = α

(
ΦT
100

)m
· Tn

2GM (17)

In the formula, K is the calculated permeability of the SDR model. ΦT is the total
porosity calculated by NMR. T2GM is the geometric mean of T2. α, m, and n are empirical
coefficients for the region.

The SDR model is based on a large amount of experimental data, and the key is to
calculate the geometric mean of T2 in the formation.
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Figure 1. Histogram of porosity and permeability distribution obtained from different experimental
measurements (a) porosity distribution from core plug experimental data, (b) porosity distribution
from full diameter core experimental data, (c) porosity distribution from NMR experiment, (d) perme-
ability distribution from core plug experimental data, (e) permeability distribution from full diameter
core experimental data, (f) permeability distribution of plug rock samples for NMR experiments.

In 1991, George R. Coates proposed the commonly used Coates permeability model
with the following equation [8].

K = α

(
ΦT
10

)m
·
(

FFI
BVI

)n
(18)

In the formula, K is the permeability calculated by the Coates model. ΦT is the total
porosity calculated by NMR. FFI is the saturation of free fluid. BVI is the saturation of
bound fluid. α, m, and n are the empirical coefficients of the area.

The Coates model and the SDR model are commonly used models for calculating
the permeability of NMR logs. For conventional reservoirs with simple pore structure,
the results of the two methods on the calculation of permeability are more satisfactory.
However, for reservoirs with cross-scale pores and wide pore throat distribution, such as
carbonate reservoirs, due to the continuous distribution of pore throats of different sizes
and the large difference in their contribution to permeability, it is necessary to modify and
improve the model in a targeted manner.

The key to calculating the permeability of the Coates model is to accurately calculate
the bound fluid saturation, that is, to determine the T2 cutoff value. For carbonate reservoirs,
the empirical value of the T2 cutoff value can be taken as 92 to 100 ms. The coefficients α, m,
and n in the Coates and SDR models can be obtained using multiple regression, as shown in
Table 2. The Coates model and the SDR model were used to calculate the permeability and
compare it with the experimental results (Figure 2). As can be seen from Figure 2, the data
points of the calculated permeability and the experimental permeability are distributed
near the 45-degree line, and when the permeability is low, the error between the model
calculated results and the experimental results is large.
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Table 2. Permeability models obtained based on NMR experimental data.

Model Name Equation

The Coates model k = 0.28
(

ϕ
10

)2.64( FFV
BVI

)0.5

The SDR model k = 8.25
(

ϕ
100

)2.68(
T2gm

)0.67
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Figure 2. Comparison of calculated permeability and experimental permeability.

Applying the Coates and SDR models to Well X3 (Figure 3), it can be found that
the permeability calculated by the Coates and SDR models is poorly matched with the
permeability of the core analysis, and the correlation coefficients are 0.401 and 0.238 for
the Coates model and SDR model, respectively. This is mainly because the cores used in
nuclear magnetic resonance experiments are generally plug samples, which are difficult
to reflect the heterogeneity characteristics of carbonate reservoirs. At the same time, due
to the cost of NMR experiments, the NMR test data of rock is less, and the depth of the
covered formation is short. Therefore, the traditional Coates and SDR models obtained by
nuclear magnetic resonance (NMR) experiments are not suitable for carbonate reservoirs in
some cases.

3.3. Permeability Prediction Based on XGboost
3.3.1. Feature Selection

Blindly introducing too many inputs will make the prediction effect worse, so the
correlation is analyzed first, and only the correlated features will be selected. Most of the
data feature correlations are characterized by the coefficient method, which mainly includes
the Pearson coefficient method, Kendall coefficient method, Spearman coefficient method,
etc. [37,38]. Among them, the Pearson coefficient method is often used to measure the
degree of linear correlation, and the Kendall coefficient method and Spearman coefficient
method are often used to measure the degree of nonlinear correlation. Considering the
characteristics of logging data and the potential correlation between logging curves and per-
meability parameters, this paper adopts a combination of Pearson coefficient and Spearman
coefficient to select the permeability-sensitive logging curves. Specifically, the correlation
criteria described in Table 3 are used to determine the strength of the correlation [39].
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Table 3. Criteria for the strength of correlation based on correlation coefficient.

Correlation Strength Criteria

strong correlation |r| ≥ 0.5

moderate correlation 0.3 ≤ |r| < 0.5

weak correlation 0.1 ≤ |r| < 0.3

no correlation 0 ≤ |r| < 0.1

On the basis of core depth correction, the correlation between logging curves and
experimental permeability is analyzed by the Pearson coefficient and Spearman coefficient
(Figure 4). According to the criteria described in Table 3, it can be seen that the Pearson
correlation coefficients are generally less than 0.5 (except for DT, NPHI, and FFV), which
indicates that the linear correlation between predictors and permeability is weak. In
the nonlinear relationship obtained by the Spearman coefficient method, the correlation
between each logging curve and permeability is shown in Table 4. Among them, PERM is
strongly correlated with DT, NPHI, RHOB, BFV, FFV, MBP5, MBP6, and MRP, and those
logging curves that strongly correlated with the permeability are selected to predict the
permeability during the study. However, the correlated logging curves are differences
between different regions or different lithologies [40], and the correlation analysis shown
in Figure 4 needs to be re-conducted.
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Table 4. Correlation between logging curves and permeability.

Correlation Strength Logging Curve

strong correlation DT, NPHI, RHOB, BFV, FFV, MBP5, MBP6, MRP

moderate correlation RD, RS, T2LM

weak correlation MBP7, MBP8

no correlation GR, MBP1, MBP2, MBP3, MBP4
DT: wave sonic; NPHI: neutron logs; RHOB: formation density; BFV: bound water volume; FFV: free fluid volume;
RD: deep resistivity; RS: medium resistivity; T2LM: logarithmic mean of T2; GR: nature gamma-ray; MRP: total
NMR porosity; MBP1: NMR bin porosity 1; MBP2: NMR bin porosity 2; MBP3: NMR bin porosity 3; MBP4: NMR
bin porosity 4; MBP5: NMR bin porosity 5; MBP6: NMR bin porosity 6; MBP7: NMR bin porosity 7; MBP8: NMR
bin porosity 8.

For the selected logging curves with strong correlation with permeability, the logging
data were processed using the normalization method to regularize the distribution interval
of the original data to [0, 1]. Subsequently, the normalized data were downscaled using
principal component analysis. The downscaled data simplified the computation and
visualization to a certain extent, and the noise and redundant information in the original
data could be removed [41,42]. A line graph of the cumulative variance and the number
of principal components was plotted (Figure 5), and the number of principal components
corresponding to the cumulative contribution rate of 0.95 was used as the optimal number
of principal components. The number of principal components can be determined as 3 from
Figure 5, and the variation of the determined principal component curve with depth of
Well X2 is shown in Figure 6.
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3.3.2. Model Parameter Configuration and Analysis of Prediction Results

The dataset after principal component analysis is divided into the training set and
test set according to the ratio of 8:2, and the data are trained and predicted by the XG-
Boost machine learning method. The training process of the model is to find the optimal
combination of hyper-parameters for the model, so that the model has good robustness
while ensuring sufficient accuracy. The XGBoost parameter optimization methods mainly
include manual parameter tuning method, grid search method, random search method,
and Bayesian search method [35,43,44]. Among them, the grid search method is simple and
intuitive, which can systematically explore the parameter combination space, and it is an
exhaustive search method, which finds the optimal parameter combination by defining the
range of possible values of parameters and iterating through these parameter combinations.
The grid search method is used to determine the main parameters of the model in the
research process, and considering the correlation between the optimal parameters, we
carried out the optimal search for six key parameters at the same time.

The prediction error is the key point to evaluate the accuracy of the model. After the
prediction model is established, it is necessary to select appropriate model evaluation indi-
cators to analyze the accuracy of the model. The permeability prediction model established
in this paper belongs to the regression model, so it is necessary to select the evaluation
function applicable to the regression model. R2 score, also known as the coefficient of
determination or R-squared, is a statistical measure used to evaluate the performance of a
regression model. It represents the proportion of the variance in the dependent variable
that can be explained by the independent variables in the model. It can be expressed as
Equation (19).

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (19)



Energies 2024, 17, 1458 12 of 15

where yi represents the true value, yi represents the average of the true values, and ŷi
represents the predicted value. The closer the R2 value is to 1, the higher the accuracy of
the model prediction.

The final optimization parameters of the model are shown in Table 5, and the influence
of each parameter on the accuracy is shown in Figure 7. Using the optimization parameters
shown in Table 5, the R2 score is 0.736.

Table 5. The optimal parameters of XGBRegressor.

Model Parameters Value

XGBRegressor

n_estimators 60

Learning rate 0.15

max_depth 2

subsample 0.9

colsample_bytr 0.7

gamma 0
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Figure 7. The effects of parameters on the prediction accuracy. (a) Number of gradient boosted
trees, (b) boosting learning rate, (c) maximum tree depth for base learners, (d) subsample ratio of the
training instance, (e) subsample ratio of columns when constructing each tree, and (f) minimum loss
reduction required to make a further partition on a leaf node of the tree.

4. Conclusions

The relationship between permeability and logging curve is generally nonlinear, and it
is difficult to find a clear mapping relationship between permeability and logging parame-
ters. Machine learning algorithms are a good technical entry point to solve this conundrum
as they can automatically extract the hidden features in the data and the relationship
between the data. The paper predicted the permeability of carbonate reservoirs by the
regression model established by the XGBoost method. The correlation between the logging
curve and the experimental permeability was analyzed by using the Pearson coefficient
and the Spearman coefficient, and the results showed that the linear correlation between
predictors and permeability was weak. In the nonlinear relationship obtained by the
Spearman coefficient, permeability is strongly correlated with DT, NPHI, RHOB, BFV, FFV,
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MBP5, MBP6, and MRP in this region. The dimension of the model can be greatly reduced
by principal component analysis technology, and the noise and redundant information
in the original data can be removed, thus improving the computational efficiency and
accuracy of the model. The optimization parameters of the XGBoost model are correlated
with each other, so the grid search technique is used to optimize the main parameters.
The optimized model parameters can improve the prediction accuracy of the model. By
comparing the permeability with the full-diameter core analysis, it can be seen that the
permeability prediction accuracy of the carbonate reservoir based on the XGBoost method
is significantly improved compared with the traditional Coates and SDR models, which
is different from most of the siliciclastic rocks. Due to the heterogeneity of carbonate
rocks, carbonate reservoirs have poor pore connectivity and large isolated holes. This part
of the isolated pores does not contribute to the permeability. However, the correlation
analysis between logging curves and permeability needs to be re-conducted, and there are
differences between different regions or different lithologies.
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