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Abstract: This study focuses on the investigation and comparison of combustion characteristic param-
eters and combustion performance indices between fast-growing trees and agricultural residues as
biomass sources. The investigation is conducted through direct combustion in an air environment us-
ing a thermogravimetric analyzer (TGA). Additionally, partial least squares regression (PLSR)-based
models were developed to assess combustion performance indices via near-infrared spectroscopy
(NIRS), serving as a non-destructive alternative method. The results obtained through the TGA
reveal that, specifically, fast-growing trees display higher average ignition temperature (227 ◦C) and
burnout temperature (521 ◦C) in comparison to agricultural residues, which exhibit the values of
218 ◦C and 515 ◦C, respectively. Therefore, fast-growing trees are comparatively difficult to ignite,
but sustain combustion over extended periods, yielding higher temperatures. However, despite
fast-growing trees having a high ignition index (Di) and burnout index (Df), the comprehensive
combustion performance (Si) and flammability index (Ci) of agricultural residue are higher, indicating
the latter possess enhanced thermal and combustion reactivity, coupled with improved combustion
stability. Five distinct PLSR-based models were developed using 115 biomass samples for both chip
and ground forms, spanning the wavenumber range of 3595–12,489 cm−1. The optimal model was
selected by evaluating the coefficients of determination in the prediction set (R2

P), root mean square
error of prediction (RMSEP), and RPD values. The results suggest that the proposed model for Df,
obtained through GA-PLSR using the first derivative (D1), and Si, achieved through full-PLSR with
MSC, both in ground biomass, is usable for most applications, including research. The model yielded,
respectively, an R2

P, RMSEP, and RPD, which are 0.8426, 0.4968 wt.% min−4, and 2.5; and 0.8808,
0.1566 wt.%2 min−2 ◦C−3, and 3.1. The remaining models (Di in chip and ground, Df, and Si in chip,
and Ci in chip and ground biomass) are primarily applicable only for rough screening purposes.
However, including more representative samples and exploring a more suitable machine learning
algorithm are essential for updating the model to achieve a better nondestructive assessment of
biomass combustion behavior.
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1. Introduction

Global energy demand continues to escalate, prompting the exploration of diverse
energy sources to meet this growing need, while mitigating the negative impacts on both
energy availability and the environment. The predominant reliance on non-renewable fossil
fuels not only contributes to environmental degradation but also raises concerns about
future energy security due to the finite reserves. According to the International Energy
Agency, as of 2020, 80% of global primary energy consumption was attributed to fossil
fuels, resulting in a substantial carbon footprint [1]. The financial burdens associated with
fossil fuels, exacerbated by fluctuating prices and geopolitical uncertainties, have triggered
an urgent quest for alternative energy options.

A balanced and sustainable energy portfolio necessitates the promotion of renewable
energy sources, primarily including hydro, wind, solar, biomass, and geothermal. Among
these, biomass energy stands out as a promising solution, which accounts for 15% of the
total energy consumption [2], and is derived from continuously renewable organic materi-
als, such as wood, agricultural residues, and organic waste. Biomass energy conversion
occurs predominantly through direct combustion [3], thermochemical processes (specif-
ically pyrolysis and gasification) to produce solid (charcoal) and gaseous (syngas) fuels,
as well as biological methods involving fermentation to produce ethanol and anaerobic
digestion to yield methane-rich biogas. The utilization of biomass for energy purposes
not only reduces reliance on non-renewable sources but also aids in waste management,
contributing to rural development.

The fulfillment of global primary energy relies on the direct combustion of biomass
and the co-combustion of two or more different fuels within the same combustion system,
such as biomass and biochar [4], textile dyeing sludge and waste rubber [5], phytoremedia-
tion biomass and textile dyeing sludge [6], calcium-rich oil shale with biomass [7]. Despite
biomass being deemed a carbon-neutral fuel [8], it exhibits varied combustion behaviors [9].
Therefore, careful management of the combustion process is vital to minimize emissions
of additional pollutants, including particulate matter, sulfur oxides (SOx), nitrogen oxides
(NOx), and volatile organic compounds [10]. A thorough comprehension of the combustion
properties across different types of biomass is imperative to appropriately choose suitable
biomass and design efficient combustion systems. Hence, combustion characteristic param-
eters, such as biomass ignition time (ti) and ignition temperature (Ti), burnout time (tf) and
burnout temperature (Tf), maximum and average combustion rate, etc., are essential for
evaluating combustion performance indices such as the Di, Df, Si, and Ci [11]. Accurate
assessment of these indices can enhance the overall efficiency of the biomass combustion
system, reduce environmental impacts, and bring us closer to achieving a sustainable
energy future driven by renewable sources.

TGA is typically employed to determine combustion characteristic parameters for
evaluating different combustion performance indices [12]. Biomass combustion in TGA
mainly consists of three stages: (i) water evaporation, (ii) volatile release and its combustion,
and (iii) char combustion [13–15]. TGA logs the mass loss of biomass as a function of
time and temperature. As a result, the thermogravimetric (TG) curve obtained through
TGA provides information about the mass loss of the biomass sample as it undergoes
thermal decomposition and combustion. The DTG curve is derived as the D1 from the TG
curves, providing additional information about the rate of mass loss at various times and
temperatures [15]. Based on the TG and DTG curves, various combustion characteristic
parameters can be identified. These parameters are used to evaluate the Di, Df, Si, and
Ci. TGA has been employed in a various range of studies, covering diverse aspects of
combustion and thermal behavior. It has been used to assess the self-ignition potential of
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woody biomass and wheat straw [2], investigate the thermal behavior of Malaysian oil
palm biomass, low-rank coal, and their respective blends under oxidative atmosphere [16],
and identify thermo-chemical characteristics data for date palm biomass [17]. TGA has also
been instrumental in studying the ignition behavior of straw pellets [18] and investigating
ignition and burnout in bamboo and sugarcane bagasse [19]. Furthermore, TGA has been
utilized to analyze the combustion characteristics of various biomass pellet types, including
rubberwood sawdust pellets, teak sawdust pellets, eucalyptus bark pellets, cassava rhizome
pellets [20], as well as agricultural solid waste torrefied pellets [21] and briquettes [15].
These studies collectively provide valuable insights into the reactivity, flammability, and
thermal properties of these biomass materials, exhibiting their potential as fuels and their
role in sustainable energy solutions.

The Ti is the lowest temperature at which solid fuel initiates ignition in air without
requiring an external ignition source [2]. Ignition of biomass is a pivotal stage that initiates
combustion. A lower Di indicates that the biomass can be easily ignited and combusted
at lower temperatures, while a higher Di indicates that the biomass requires higher tem-
perature to ignite and combust [22], making it more challenging to start the combustion
process. Biomass with a higher volatile matter poses a lower Ti and lower Di, exhibiting
ease of combustion [23]. It is important for biomass to ignite neither too quickly nor too
slowly. Therefore, calculating the Di is essential for understanding biomass ignition prop-
erties. The Tf indicates the temperature at which the combustion process of the biomass
is completed [19]. A high Df signifies complete combustion, leaving minimal unburned
fuel or ash content [19,22]. A higher Di and Df indicate greater reactivity of the biomass,
making it more suitable and flammable as a fuel [21]. The peak temperature is the point
on the TGA curve at which the rate of weight loss of biomass due to combustion is at its
maximum. This value typically varies around 280–300 ◦C [8]. For a thorough assessment
of combustion behavior, it is essential to consider the Si, which integrates three main prop-
erties of biomass combustion: ignition, burnout, and combustion characteristics [12]. A
higher value of the Si indicates efficient combustion, characterized by early ignition and
thorough burnout [12,24,25]. Similarly, Ci is a crucial factor in assessing the fire risk and
combustion behavior of biomass fuels. A higher Ci will have better combustion stability.
It indicates that biomass can ignite easily at lower temperatures, releasing excess heat
during combustion and supporting strong flames [26]. All of these indices provide valuable
insights into the combustion characteristics of various biomass samples, enabling informed
decisions when selecting suitable biomass and optimizing combustion system designs for
efficient energy production and the effective use of the biomass as a fuel source, all while
carefully considering safety aspects.

NIRS is one of the non-destructive, rapid, and low operation cost methods that do not
require the employment of chemicals and chemical expertise. A mathematical correlation
is established between the spectral and reference data of samples, containing either full
wavelength ranges or a few significant wavelengths. This correlation is used to create the
calibration equation for the prediction and evaluation of properties of biomass [27], such
as elemental compositions (C, H, N, and S), determined by ultimate analysis [28,29], as
well as moisture, volatile matter, fixed carbon, and ash content, assessed by proximate
analysis [29,30]. The approach demonstrates acceptable performance and serves as an
alternative to reference analysis, i.e., ultimate analysis and proximate analysis, which are
characterized by their destructive nature, complexity, time-consuming process, and high
operational costs, requiring chemicals and chemical expertise. The proximate constituents
affect combustion performance [31], as well as the elemental composition, e.g., ignition
temperature, which is determined by the H/C ratio and some other parameters [32],
indicating the possibility of using NIRS to determine the combustion performance of
biomass or fuel.

To the best of our knowledge, no study has been conducted to non-destructively
evaluate combustion performance indices, such as the Di, Df, Ci, and Si in chipped and
ground biomass using FT-NIRS. Therefore, this research is structured into two main sections.
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The first section involves determining the combustion parameters, including ti and Ti, tf and
Tf, the maximum combustion rate

(
dw
dt max

)
, and the average combustion rate

(
dw
dt mean

)
,

using TGA to calculate the Di, Df, Si, and Ci of biomass from fast-growing trees and
agricultural residues. The second section focuses on developing calibration models using
Full-PLSR, GA-PLSR, SPA-PLSR, the MP 5 range-PLSR, and the MP 3 range-PLSR for the
non-destructive assessment of the Di, Df, Si, and Ci in both chipped and ground biomass.
Then, the best-performing PLSR-based model for each index is selected, establishing it as a
rapid, reliable, non-destructive alternative method for assessing combustion performance
indexes in both chipped and ground biomass.

The research outcomes will assist industries in selecting the most suitable biomass for
cost-effective energy production and resource optimization. Additionally, the developed
non-destructive evaluation methods will serve as an alternative method to other destructive
thermal analysis methods. Furthermore, they will provide a foundation for designing safe,
economical, and environmentally balanced biomass combustion systems.

2. Materials and Methods

Figure 1 illustrates the comprehensive research methodology employed to ascertain com-
bustion performance indices and develop their predictive model utilizing TGA and NIRS.
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2.1. Sample Preparation

A total of ten different varieties of biomass samples were collected from the terai and
mid-hill regions of Nepal, ranging from 86 to 1940 m above sea level, as representative sam-
ples. These biomass varieties are locally available and are commonly used in households
and the industrial sector to fulfill their energy requirements. The biomass samples include
fast-growing trees, i.e., Alnus nepalensis (11), Pinux roxiburghii (14), Bombusa vulagris (13),
Bombax ceiba (11), and Eucalyptus camaldulensis (12), as well as agricultural residues, i.e., Zea
mays (cob) (13), Zea mays (shell) (11), Zea mays (stover) (11), Oryza sativa (10), and Saccharum
officinarun (9). A total of 115 samples were collected for this experiment. The samples
were manually chopped, sun-dried until the weight of the samples reached equilibrium,
and then approximately 350 gm of each sample were sealed in airtight aluminum bags
to prevent air and moisture exchange [33]. They were transported to the Near-Infrared
Spectroscopy Research Center for Agricultural Products and Food at the Department of
Agricultural Engineering, School of Engineering, King Mongkut’s Institute of Technology,
Ladkrabang, Thailand, for FT-NIRS sample scanning and TGA experiments.

Initially, all the biomass samples were scanned in chip form using FT-NIRS. Afterward,
the samples were ground using a multi-functional high-speed disintegrator (EF-04, Thai
grinder, Thailand) and sealed in plastic zip-lock bags to allow the samples to have equilib-
rium moisture content with the laboratory surroundings and to prevent any contamination.
In this study, three ground biomass samples were randomly selected and their particle
size distribution was analyzed at Chulalongkorn University’s Scientific and Technological
Research Equipment Center in Bangkok, Thailand. This assessment was conducted using
the Mastersizer 3000 instrument (MAL1099267, Hydro MV, Malvern, UK). The average
particle size distribution of the ground biomass ranges between 0.01 and 3080 µm. All the
ground samples were subsequently scanned again using the same FT-NIRS instrument to
record the absorbance value at each wavenumber. The ground samples, which were sealed
in plastic bags, were opened only during the TGA experiments.

2.2. FT-NIRS Scanning

All the biomass samples were scanned non-destructively using FT-NIRS (MPA, Bruker,
Ettlingen, Germany) within the wavenumber range of 3594.87 to 12,489.48 cm−1. Biomass
chips were scanned using diffuse reflectance and sphere macro sample rotating mode,
whereas ground biomass was scanned in the transflectance mode, both at a resolution of
16 cm−1. Background and sample scans were set at 32 scans (average), with absorbance
data logged as log(1/R), where R stands for reflectance. Both the chipped and ground
biomass were scanned twice in a controlled, air-conditioned laboratory environment, with
the temperature maintained at 25 ± 2 ◦C, without altering their positions. To obtain
accurate and informative results without interference from background spectral data in the
biomass samples, a gold plate scan was performed for every new sample, and aluminum
plates and handles were used to prevent the leakage of near-infrared radiation.

2.3. Thermogravimetric Analysis Experiment

TGA is a destructive yet an effective method for studying the thermal behavior of
biomass and for evaluating the combustion performance indices [3]. The TGA investigation
is based on the mass loss of biomass samples during the entire experimental duration [21].
The combustion setting in TGA (TG 209 F3 Tarsus, Netzsch, Germany), with a microbalance
sensitivity of 0.1 µg resolution, is programmed to simulate biomass direct combustion in
air, i.e., with oxygen (99.7%) and nitrogen (99.99%) in a 1:4 ratio. The TGA experiment
utilized ground biomass samples collected from the bottom of the glass vial that were used
during NIRS scanning. These samples had an approximate average mass ranging from
6 to 29 mg, or one-third of the crucible volume, and were used for direct combustion. The
biomass samples were combusted in a 6.8 mm diameter aluminum oxide (Al2O3) crucible
within a temperature range of 35 ◦C to 700 ◦C, with a heat flow rate of 10 ◦C/min. Initially,
the samples were isothermally held at 35 ◦C for 10 min. Nitrogen (99.99%) was utilized as a
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protective layer in TGA to create a stable and inert environment, shielding the sample and
preventing unwanted reactions with the surrounding air during thermal analysis, ensuring
accurate analysis [34]. The thermal behavior of the biomass samples was analyzed by TG
and DTG curves. Al2O3 crucibles were cleaned thoroughly using distilled water, followed
by oven drying for 24 h to remove moisture content. The TGA instrument was calibrated
regularly with an empty, clean Al2O3 crucible.

2.4. Reference Data Calculation

The TG and DTG profiles were analyzed using Proteus 6.0.0 (NETZSCH software, Ger-
many) to determine the key combustion parameters, including the maximum combustion
rate

(
dw
dt max

)
, its corresponding time

(
tp
)
, and temperature (Tmax) at which the maximum

combustion rate occurs. The analysis also involved calculating the average combustion rate(
dw
dt mean

)
, ti, Ti, tf, Tf, and ∆t1/2, representing the time range at which the combustion

rate is half of the
(

dw
dt max

)
value, measured in minutes. These parameters were used to

compute combustion performance indices, such as Di, Df, Si, and Ci, considering only one
maximum mass loss peak, which collectively characterize the properties and performance
of biomass combustion. The above-mentioned combustion performance indexes were
calculated as follows [11]:

Di =
dw
dt max
tpti

(1)

Df =
dw
dt max

∆t1/2tptf
(2)

Si =
dw
dt max ×

dw
dt mean

T2
i Tf

(3)

Ci =
dw
dt max

T2
i

(4)

2.5. Outlier Identification

Identification and removal of outliers from the total dataset is a critical step before
developing any calibration model. In this study, outliers for reference data are identified
using the following equation [35]: (

Xi − X
)

SD
≥ | ± 3| (5)

where Xi is the measured value of sample i, and X and SD denote the average and standard
deviation of the measured values across all samples. If the outlier equation is satisfied, the
sample is considered an outlier and is subsequently removed from the total data set.

In addition, if performance of the model was not satisfactory, outliers were further
identified using the reference and NIR absorbance data. To achieve this, a comprehensive
full cross-validation was conducted to obtain the prediction values for each biomass sample.
A scatter plot was then created, comparing the measured and predicted values of the
calibration set. The rigorous outliers were carefully identified and subsequently removed if
their patterns notably diverged from the majority of data points to improve model accuracy.

2.6. Partial Least Squares Regression Modeling

After the NIRS scanning (optical data) and the calculation of combustion performance
indices (reference data) based on TG and DTG curves obtained through TGA, PLSR-based
regression models were developed. Five different types of PLSR-based models were
employed, namely Full-PLSR, multi-preprocessing PLSR-5 range, multi-preprocessing
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PLSR-3 range, GA-PLSR, and SPA-PLSR (refer to Figure 1). In this study, after running the
data in ascending order, the total data set was manually divided into an 80% calibration set
and a 20% validation set, where the first 8 samples were assigned to the calibration set and
the following 2 were assigned to the validation set. The process was repeated until every
sample was assigned. Both maximum and minimum reference data must be included in
the calibration set, ensuring coverage across a wide range [33,35].

Full-PLSR includes the traditional approach of employing various spectral preprocess-
ing techniques to develop a PLSR model. These techniques include raw spectra, constant
offset, SNV, MSC, D1, D2, vector normalization, min-max normalization, mean centering,
D1 + vector normalization, and D1 + MSC. In the multi-preprocessing 5-range method
and the multi-preprocessing 3-range method, the entire available wavenumber range is
divided into five and three distinct sections, respectively. Entire divided sections undergo
pre-treatment using a series of the most effective combinations of various preprocessing
techniques within the range of 3595 to 12,489 cm−1. Under the multi-preprocessing tech-
niques, seven different types of preprocessing techniques have been employed and labeled
as follows: (0) Zero, indicating a zero absorbance value for all the wavenumbers in the
particular section, (1) raw spectra, (2) SNV, (3) MSC, (4) D1, (5) D2, and (6) constant offset.
All possible preprocessing combination sets are created, and a full cross-validation is per-
formed using PLSR on the total data set to identify the best preprocessing combination set.
PLSR models are then developed based on this optimal combination set [33]. GA-PLSR
and SPA-PLSR are optimization techniques that select the most influential wavenumbers
for the development of a PLSR model [36]. The NIRS total dataset in this study contains
1154 dependent variables, which can potentially lead to issues of multicollinearity and
overfitting during modeling. By efficiently identifying the most relevant wavenumbers,
these optimization techniques address these challenges, resulting in a more accurate and
efficient predictive model. After the models were optimized, they were externally validated
using a validation set comprising 20% of the total samples collected. The validation was
done by subjecting the validation sample spectra to the models and comparing the true
(measured) values of the samples to the predicted values.

The performance of the models was compared based on the following statistical
parameters: R2

C and R2
P, RMSEC and RMSEP, RPD and bias.

In this study, the interpretation of the coefficient of determination was performed
based on Williams et al.’s (2019) guidelines [37], and the RPD value was assessed using
the guideline proposed by Zornoza et al. (2008) [38]. The selection of the best model was
based on higher values for R2

C, R2
P, and RPD, as well as lower RMSEC and RMSEP values.

However, in the case of similar performance, the model with a lower number of LVs was
selected as the best-performing model. For the overall modeling, a built-in code from
MATLAB-R2020b (MathWorks, Natick, MA, USA) was utilized.

3. Results and Discussion
3.1. NIR Spectra of Fast-Growing Trees and Agricultural Residues

Figure 2 shows the average raw spectra of fast-growing trees and agricultural residues
from (a) chip biomass obtained through the diffuse reflectance mode of FT-NIRS scanning
and (b) ground biomass obtained through the transflectance mode of FT-NIRS scanning,
covering the full wavenumber range from 3595 to 12,489 cm−1, under a controlled air-
conditioned laboratory environment. The temperature was maintained at 25 ± 2 ◦C and
the moisture content inside the spectrometer was absorbed by molecular sieve pellets. A
significant variation is notable in the raw spectra between the chip and ground biomass
samples. The ground biomass exhibited lower signal intensities, sharper and better-defined
absorption peaks, as well as a reduced presence of baseline variability. These distinct
observations are attributed to the small particle size and homogeneous nature of the
biomass sample.
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Figure 2. Average raw spectra of fast-growing trees and agricultural residue for (a) chip biomass
obtained through diffuse reflectance mode and (b) ground biomass obtained through transflectance
mode of FT-NIRS scanning.

3.2. Combustion Characteristic Parameters and Combustion Performance Indices from TGA

Figure 3 shows the typical TG and DTG curves of ten distinct biomass samples
obtained via TGA, which has been utilized to calculate combustion performance indices
and for PLSR modeling.

The selection of an appropriate biomass fuel is a crucial decision, heavily reliant on
various essential parameters, such as energy production potential, the efficiency of the com-
bustion process, required burning duration, compatibility with the system’s specifications,
environmental considerations, and availability [39,40]. Therefore, it is of utmost importance
to understand the biomass combustion characteristic parameters at different times and
temperatures, as well as the overall combustion performance indices, before designing and
developing a combustion system to fulfill energy needs and demands. TG and DTG curves
obtained via TGA are instrumental in investigating combustion characteristics parameters
and their indices. The TG curve represents mass loss as a function of time or temperature,
whereas the DTG curve represents the time derivative of the sample mass loss [20]. With a
combined analysis of TG and DTG curves, a comprehensive evaluation of the combustion
characteristic parameters and combustion performance indices can be achieved. Ti on the
DTG curve is the point where the mass loss rate reaches 1%/min after the initial weight
loss caused by the moisture. Tf marks the point at which the burning rate reaches 1%/min
at the end of the DTG curve [41,42]. Tmax, also known as peak temperature, is represented
on the DTG curve where the biomass mass loss rate is the highest. Correspondingly, ti, tf,
and tp denote the recorded times for Ti, Tf, and Tmax. ∆t1/2 is the time range at which the

combustion rate is half of the
(

dw
dt max

)
value, and dw

dt mean is the average conversion rate
between Ti and Tf [41].

The normal distribution of all the combustion performance reference data, including
Di, Df, Si, and Ci was analyzed using a one-sample Kolmogorov–Smirnov test in SPSS 16.0.
The corresponding p-values for Di, Df, Si, and Ci were calculated as 0.893, 0.033, 0.000, and
0.608, respectively.

Considering the significance level of 0.05, it is observed that the p-values for Di and
Ci are greater than 0.05. As a result, the reference data for Di and Ci, utilized in the PLSR
modeling study, are considered to exhibit a uniform distribution. In contrast, the obtained
p-values for Df and Si are less than 0.05, indicating a departure from a uniform distribution
for these variables. Therefore, as explained in Section 2.5, the identification and removal
of outliers from the total dataset of Df and Si become imperative. This step is crucial for
enhancing the validity and reliability of the model developed in this research, as outliers
can significantly impact the accuracy and robustness of the findings.
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Figure 3. TG and DTG curves obtained via TGA within the temperature range of 35 to 700 ◦C for
(a) Alnus nepalensis, (b) Pinus roxiburghii, (c) Bombusa vulagris, (d) Eucalyptus camaldulensis,
(e) Bombax ceiba, (f) Zea mays (cob), (g) Zea mays (shell), (h) Zea mays (stover), (i) Oryza sativa, and
(j) Saccharum officinarum.

Table 1 summarizes the average combustion characteristic parameters (tp, Tmax, ti,
Ti, tf, Tf, dw

dt max, dw
dt mean, ∆t1/2) and combustion performance indices (Di, Df, Si, Ci) of the

fast-growing trees and agricultural residues obtained through the combined analysis of
TG and TGA curves (refer to Figure 3). During direct combustion, the first stage involves
the removal of moisture from the biomass, a process represented by the gradual thermal



Energies 2024, 17, 1338 10 of 27

degradation of the biomass. This typically takes place within a temperature range of
35–140 ◦C. The second stage involves devolatilization and its combustion, which occurs at
temperatures around 150–405 ◦C and is characterized by a rapid loss of mass. The third
stage involves the char combustion, during which the rate of mass loss decreases and
gradually slows down until the sample eventually turns into ash [21].

From Table 1, it is evident that fast-growing trees and agricultural residues are slightly
different in both active combustion temperature ranges and time ranges. For fast-growing
trees, the average active combustion temperature range was 227.51–521.18 ◦C, with a
corresponding average time range of 20.22–34.80 min. For agricultural residues, the
average active combustion temperature range was 218.45–515.51 ◦C, and the average
time range was 19.8–34.49 min. The average maximum combustion rates recorded were
20.21 wt.% min−1 at 320.94 ◦C for fast-growing trees and 19.04 wt.% min−1 at 305.02 ◦C for
agricultural residues.

The values of Ti and Tf for fast-growing trees ranged from 224.64 to 231.42 ◦C and
from 504.92 to 531.82 ◦C, respectively. Similarly, for agricultural residues, the values ranged
from 195.33 to 240.60 ◦C and from 500.89 to 552.40 ◦C. The higher values of Ti and Tf in fast-
growing trees signify that fast-growing trees are more difficult to ignite, but they combust
for a longer period and turn into ash more slowly than agricultural residues. The presence
of high lignin content and low volatile matter in fast-growing trees may contributes to the
elevated Ti and Tf [42,43]. The Di of both fast-growing trees and agricultural residue is
similar, while the Df of fast-growing trees is comparatively higher than that of agricultural
residues. The Si, which assesses both the ignition and burnout characteristics of the fuel,
indicating the efficiency of combustion conversion, is high for agricultural residues. This
demonstrates that agricultural residues are easier to burn, indicating their higher thermal
and combustion reactivity as a fuel source. Additionally, the higher Ci of agricultural
residues indicates its better combustion stability.

3.3. Modeling for Combustion Performance Indices

Table 2 presents statistical data on the combustion performance indices: Di, Df, Si,
and Ci. These indices were employed in the development of the PLSR-based model for
both chipped and ground biomass. Prior to model development, outliers were identified
and were subsequently removed from the total dataset (refer to Section 2.5). The entire
dataset was then partitioned, with 80% of the data being allocated to the calibration set
containing the highest and lowest combustion performance index values, and 20% to the
prediction set for both chipped and ground biomass. As elaborated in Section 2.6, five
distinct PLSR-based regression models were formulated for each index: the full-PLSR
model, the multi-preprocessing PLSR-5 range model, the multi-preprocessing PLSR-3
range model, the GA-PLSR model, and the SPA-PLSR model. These models incorporated
various preprocessing techniques. The performance of each model was compared, and the
best model for each technique is listed. Tables 3 and 4 display the overall performance of
the PLSR-based model for each index in chipped and ground biomass, respectively. The
model with the best performance is indicated in bold. Figure 4 shows the average spectrum
preprocessing for each combustion performance indices obtained for chip and ground
biomass from the best performance model.

3.3.1. Ignition Index (Di)

From the data in Tables 3 and 4, by R2
P determination, the performance of Di using the

multi-preprocessing PLSR-5 range method for ground biomass has improved by 4.5645%
compared to that of the traditional approach, i.e., the full-PLSR method.

Figure 5a,e show the scatter plots of the measured and predicted Di values from
the calibration and prediction sets for chip and ground biomass, respectively, using the
full-PLSR and the multi-preprocessing PLSR-5 range methods.



Energies 2024, 17, 1338 11 of 27

Table 1. Combustion parameters and performance indices for fast-growing trees and agricultural residue subjected to direct combustion using TGA.

Combustion Parameters Combustion Performance Indices

Category Biomass Sample
(dw/dt)max (dw/dt)mean Ti Tf Tmax ti tf tp ∆t1/2 Di (10−2) Df (10−3) Si (10−6) Ci (10−4)

(wt.% min−1) (wt.% min−1) (◦C) (◦C) (◦C) (min) (min) (min) (min) wt.%.min−3 wt.%.min−4 wt.%2.min−2.C−3 wt.%min−1.◦C−2

Fast-growing trees Alnus nepalensis 21.08 2.83 229.64 531.82 330.88 20.32 35.34 24.95 5.19 4.15 4.79 2.54 3.99
Pinus roxiburghii 18.81 2.85 224.64 530.29 335.24 20.07 35.25 25.16 5.04 3.71 4.43 2.71 3.71
Bombusa vulagris 18.06 2.67 225.38 530.69 308.58 20.12 35.28 23.93 5.68 3.76 4.60 2.41 3.60
Eucalyptus camaldulensis 21.22 2.77 231.42 504.92 326.28 20.43 33.97 24.77 4.60 4.20 5.09 2.54 3.96
Bombax ceiba 21.90 2.65 226.45 508.18 303.74 20.15 34.15 23.65 5.25 4.61 6.05 2.41 4.30

Agricultural residues Zea mays (cob) 21.16 2.80 225.85 511.08 291.40 20.15 34.27 23.15 5.56 4.54 6.18 2.49 4.15
Zea mays (shell) 21.92 2.78 227.18 506.18 289.13 20.19 34.03 23.05 28.54 4.71 1.25 2.46 4.25
Zea mays (stover) 17.22 2.48 203.27 507.00 299.44 19.10 34.06 23.53 5.27 3.84 4.26 2.87 4.30
Oryza sativa 15.34 2.49 240.60 552.40 316.75 20.84 36.37 24.25 6.06 3.04 3.88 1.89 2.65
Saccharum officinarum 19.56 2.82 195.33 500.89 328.38 18.77 33.72 24.93 4.39 4.18 4.31 3.75 5.20

Table 2. Statistical data of combustion performance parameters for ground and chipped biomass of fast-growing trees and agricultural residue used in model
development (after outliers were removed from the total of 115 samples).

Biomass Parameter (Ground) Units NT
Calibration Set Validation Set

Nc Max Min Mean SD Np Max Min Mean SD

Ground

Ignition index Di (10−2) wt.%.min−3 103 82 5.3496 2.4171 4.0699 0.6510 21 5.0998 2.8155 3.8740 0.7008
Burnout index Df (10−3) wt.%.min−4 87 70 6.7591 1.0380 4.2231 1.3066 17 6.5259 1.2071 4.2180 1.2905
Comprehensive combustion
index Si (10−6) wt.%2.min−2.◦C−3 107 86 4.0363 1.6140 2.5704 0.4551 21 4.0296 1.7917 2.5502 0.4649

Flammability index Ci (10−4) wt.%.min−1.◦C−2 114 91 6.5187 2.3349 3.9879 0.8590 23 5.3362 2.4757 3.8578 0.6980

Chip

Ignition index Di (10−2) wt.%.min−3 102 82 5.3500 2.7000 4.0532 0.6295 20 5.1000 2.8200 3.8975 0.7098
Burnout index Df (10−3) wt.%.min−4 94 75 7.1715 1.0380 4.4178 1.3070 19 6.9777 1.1030 4.5240 1.4880
Comprehensive combustion
index Si (10−6) wt.%2.min−2.◦C−3 102 82 4.0363 1.7584 2.5577 0.4478 20 4.0296 1.7917 2.5325 0.4697

Flammability index Ci (10−4) wt.%.min−1.◦C−2 112 90 6.2216 2.3349 3.9384 0.7779 22 5.3362 2.4757 3.8255 0.6966
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Table 3. Results of the PLSR-based model for the combustion performance indices of chip biomass, with the model showing the best performance highlighted
in bold.

Parameter
(Chip) Units Algorithm Preprocessing LVs

Calibration Set Validation Set

R2
C RMSEC R2

P RMSEP RPD Bias

Di wt.%.min−3

Full-PLSR Second derivative 6 0.6491 0.3706 0.6100 0.4321 1.6 −0.0996
SPA-PLSR Vector normalization (SW: 130) 9 0.6101 0.3907 0.5994 0.4379 1.6 −0.0770
GA-PLSR Vector normalization (SW: 518) 8 0.6479 0.3713 0.6073 0.4335 1.6 −0.1094
MP-PLSR: 5-Range Combination set: 2,4,0,5,5 4 0.5962 0.3976 0.5929 0.4414 1.6 −0.1071
MP-PLSR: 3-Range Combination set: 2,5,4 4 0.6015 0.3950 0.6008 0.4371 1.6 −0.0764

Df wt.%.min−4

Full-PLSR Constant offset 9 0.7470 0.6531 0.6920 0.8045 1.9 0.2043
SPA-PLSR Constant offset (SW: 717) 8 0.7335 0.6704 0.6738 0.8279 1.8 0.2549
GA-PLSR Min-max normalization (SW: 64) 10 0.7141 0.6943 0.7019 0.7914 1.9 0.1245
MP-PLSR: 5-Range Combination set: 6,6,4,6,0 9 0.7420 0.6596 0.6361 0.8744 1.7 0.1619
MP-PLSR: 3-Range Combination set: 1,6,6 10 0.7533 0.6450 0.6550 0.8515 1.8 0.2290

Si wt.%2.min−2.◦C−3

Full-PLSR Raw spectra 9 0.7700 0.2136 0.7699 0.2196 2.1 0.0372
SPA-PLSR First derivative+MSC (SW: 346) 12 0.8153 0.1914 0.7484 0.2296 2.0 −0.0122
GA-PLSR First derivative (SW: 18) 11 0.8006 0.1989 0.7812 0.2141 2.2 0.0535
MP-PLSR: 5-Range Combination set: 3,5,3,6,0 9 0.8068 0.1958 0.7721 0.2185 2.2 0.0533
MP-PLSR: 3-Range Combination set: 6,2,4 3 0.6047 0.2800 0.5126 0.3196 1.4 −0.0414

Ci wt.%min−1.◦C−2

Full-PLSR SNV 14 0.8215 0.3267 0.6119 0.4240 1.6 0.0523
SPA-PLSR Second derivative (SW: 213) 11 0.6797 0.4377 0.6439 0.4061 1.7 −0.0297
GA-PLSR Mean centering (SW: 16) 13 0.5744 0.5045 0.5666 0.4481 1.5 0.0823
MP-PLSR: 5-Range Combination set: 2,2,1,6,5 9 0.6469 0.4595 0.6853 0.3818 1.8 −0.0652
MP-PLSR: 3-Range Combination set: 2,5,0 14 0.6903 0.4304 0.6766 0.3871 1.8 −0.0343

Refer to the unit column for the RMSEC, RMSEP, and bias units for Di, Df, Si, and Ci.
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Table 4. Results of the PLSR-based model for the combustion performance indices of ground biomass, with the model showing the best performance highlighted
in bold.

Parameter
(Ground) Units Algorithm Preprocessing LVs

Calibration Set Validation Set

R2
C RMSEC R2

P RMSEP RPD Bias

Di wt.%.min−3 Full-PLSR Raw spectra 8 0.6533 0.3810 0.6466 0.4064 1.7 −0.0898
SPA-PLSR Raw (SW: 1132) 8 0.6542 0.3805 0.6472 0.4062 1.7 −0.0898
GA-PLSR Mean centering (SW:523) 9 0.6442 0.3859 0.6071 0.4286 1.6 −0.0743
MP-PLSR: 5-Range Combination set: 3,5,3,1,0 9 0.7039 0.3521 0.6782 0.3879 1.8 −0.0016
MP-PLSR: 3-Range Combination set: 1,4,6 13 0.7773 0.3053 0.5634 0.4518 1.5 −0.0511

Df wt.%.min−4 Full-PLSR First derivative (g = 5, s = 5) 11 0.8449 0.5111 0.8217 0.5286 2.4 0.0678
SPA-PLSR Second derivative(SW: 954) 10 0.8139 0.5598 0.8001 0.5598 2.2 0.0206
GA-PLSR First derivative (SW:921) 11 0.8417 0.5163 0.8426 0.4968 2.5 0.0631
MP-PLSR: 5-Range Combination set: 1,5,4,3,6 12 0.8151 0.5580 0.8018 0.5574 2.3 0.1177
MP-PLSR: 3-Range Combination set: 2,2,1 14 0.8240 0.5443 0.8137 0.5405 2.6 0.2432

Si wt.%2.min−2.◦C−3 Full-PLSR MSC 14 0.9028 0.1411 0.8808 0.1566 3.1 0.0532
SPA-PLSR MSC (SW: 626) 13 0.8849 0.1536 0.8045 0.2005 3.0 0.1298
GA-PLSR MSC (SW: 60) 10 0.8567 0.1713 0.8566 0.1717 2.8 −0.0632
MP-PLSR: 5-Range Combination set: 4,4,5,6,4 12 0.9449 0.1062 0.8136 0.1958 2.3 0.0102
MP-PLSR: 3-Range Combination set: 4,2,1 13 0.9071 0.1380 0.8316 0.1861 2.5 −0.0257

Ci wt.%min−1.◦C−2 Full-PLSR MSC 15 0.7881 0.3932 0.6914 0.3792 1.9 −0.1361
SPA-PLSR Raw (SW: 13) 15 0.7234 0.4492 0.6524 0.4025 1.8 −0.1162
GA-PLSR Raw (SW: 333) 9 0.5822 0.5520 0.5476 0.4592 1.5 −0.0477
MP-PLSR: 5-Range Combination set: 3,2,1,1,4 12 0.7576 0.4205 0.7204 0.3610 2.0 −0.1310
MP-PLSR: 3-Range Combination set: 1,2,4 15 0.7860 0.3951 0.6919 0.3790 1.9 −0.0884

Refer to the unit column for the RMSEC, RMSEP, and bias units for Di, Df, Si, and Ci.
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Figure 4. The average spectrum for (a) Di in chip biomass is obtained by using the D2 (5,5). (b) Di in
ground biomass is obtained by using the multi-preprocessing PLSR-5 range with a combination set of
3,5,3,1,0. (c) Df in chip biomass is achieved by using min-max normalization. (d) Df in ground biomass
is obtained by using D1 (5,5). (e) Si in chip biomass is acquired by using D1 (5,5). (f) Si in ground
biomass is acquired by MSC. (g) Ci in chip biomass is calculated by using the multi-preprocessing
PLSR-3 range method with a combination set of 2,5,0. (h) Ci in ground biomass is determined by the
multi-preprocessing PLSR-5 range method with a combination set of 3,2,1,1,4.
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Figure 5. Measured versus predicted value in calibration set and validation set for chip biomass: (a) ignition index, (b) burnout index, (c) combustion performance
index, and (d) flammability index; and for ground biomass: (e) ignition index, (f) burnout index, (g) combustion performance index, and (h) flammability index.
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The regression coefficient plot from the full-PLSR D2 analysis for chip biomass is
presented in Figure 6. The most important peaks are observed in the regression coefficient
plot, specifically at wavenumbers 3722, 4405, 5200, 5787, 12,048, and 12,300 cm−1. These
peaks might have a significant influence on enhancing the performance of the model in
evaluating the Di in chip biomass.
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Figure 6. The regression coefficient for the Di of chip biomass using the full-PLSR approach with
spectral preprocessing of D2.

Similarly, Figure 7 displays the regression coefficient plot for the Di of ground biomass,
obtained using the multi-preprocessing PLSR-5 range method. The important peaks are
noticed at wavenumbers 3650, 4608, 5495, and 8754 cm−1, which might significantly
influence the model’s performance. Here, regression coefficient values within the range of
10,723–12,489 cm−1 are observed to be zero. This observation suggests that the variable
in this section, which is assigned a zero absorbance using empty preprocessing, may not
possess sufficient variation in the dataset to yield meaningful predictive power.

Energies 2024, 17, x FOR PEER REVIEW 18 of 28 
 

 

The regression coefficient plot from the full-PLSR D2 analysis for chip biomass is 
presented in Figure 6. The most important peaks are observed in the regression coefficient 
plot, specifically at wavenumbers 3722, 4405, 5200, 5787, 12,048, and 12,300 cm−1. These 
peaks might have a significant influence on enhancing the performance of the model in 
evaluating the Di in chip biomass.  

 

Figure 6. The regression coefficient for the Di of chip biomass using the full-PLSR ap-
proach with spectral preprocessing of D2. 

Similarly, Figure 7 displays the regression coefficient plot for the Di of ground bio-
mass, obtained using the multi-preprocessing PLSR-5 range method. The important peaks 
are noticed at wavenumbers 3650, 4608, 5495, and 8754 cm−1, which might significantly 
influence the model’s performance. Here, regression coefficient values within the range of 
10,723–12,489 cm−1 are observed to be zero. This observation suggests that the variable in 
this section, which is assigned a zero absorbance using empty preprocessing, may not 
possess sufficient variation in the dataset to yield meaningful predictive power. 

 
Figure 7. The regression coefficient for the Di of ground biomass using the multi-preprocessing 
PLSR-5 range method with a spectral preprocessing combination set of 3, 5, 3, 1, 0. 

Table 5 displays the functional groups, spectra-structure, and material types corre-
sponding to the specific peak wavenumbers observed in the regression coefficient plots 
through NIRS analysis of chip and ground biomass for Di [44]. 

-4
-3
-2
-1
0
1
2
3
4
5

3500 4500 5500 6500 7500 8500 9500 10500 11500 12500

R
eg

re
ss

io
n 

co
ef

fic
ie

nt
 (b

)

Wavenumber (cm−1)

4405

5200

5787

12,048

12,300

3722

3500      4500     5500     6500     7500     8500     9500    10,500   11,500  12,500 

-8

-6

-4

-2

0

2

4

6

8

3500 4500 5500 6500 7500 8500 9500 10500 11500 12500

R
eg

re
ss

io
n 

co
ef

fc
ie

nt
 (b

) 

Wavenumber (cm−1)

3650
5495

4608 8754

3500      4500     5500     6500     7500     8500     9500    10,500   11,500  12,500 

Figure 7. The regression coefficient for the Di of ground biomass using the multi-preprocessing
PLSR-5 range method with a spectral preprocessing combination set of 3, 5, 3, 1, 0.

Table 5 displays the functional groups, spectra-structure, and material types corre-
sponding to the specific peak wavenumbers observed in the regression coefficient plots
through NIRS analysis of chip and ground biomass for Di [44].
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Table 5. The dominant peaks on the regression coefficient plot and average absorbance plot obtained
via the best-performing PLSR-based model [44].

Combustion
Performance

Index
Biomass

Type
Peak

Wavenumber
(cm−1)

Functional Group Spectra-Structure Material Type

Di

Chip

3722 C−H aromatic C−H aryl
4405 O−H stretching and C−O stretching cellulose

5200 O−H stretching and HOH
deformation combination O−H molecular water

5787 C−H methylene (.CH2) (asymmetric) Hydrocarbons, aliphatic
12,048 C−H methylene C−H Hydrocarbons, aliphatic
12,300 C−H combination Hydrocarbons, aliphatic

Ground

3650 O−H from primary alcohols as (-CH-OH) O−H (ν) Primary alcohols

4608 C−H stretching and C−H
deformation combination Alkenes

5495 O−H/C−H combination O−H stretching and C−O stretching
(3νs) combination Cellulose

8754 C−H aromatic (ArCH) C−H (3ν), aromatic C−H Hydrocarbons, aromatic

Df

Chip
4019 C−H stretching and C−C stretching

combination Cellulose

5181 O−H stretching and HOH bending
combination Polysaccharides

6319 O−H stretching band, alkyl alcohols or
water Alcohols or water O−H

9960 O−H from secondary alcohols as
(−CH−OH) O−H (3ν)(−CH−OH) Secondary alcohols

Ground

3650 O−H from primary alcohols as
(−CH−OH) O−H (ν) Primary alcohols

4019 C−H stretching and C−C stretching
combination Cellulose

5200 O−H stretching and HOH
deformation combination O−H molecular water

6897 O−H (2ν) Starch/polymeric alcohol

Si

Chip
4019 C−H stretching and C−C stretching

combination Cellulose

4292 C−H stretching and CH2
deformation combination Polysaccharides

7092 O−H alcohol (RO−H) O−H (2ν) Hydrocarbons, aliphatic

Ground

4525 N−H ammonia in water N−H (3ν) for NH3 in water Ammonia in water

4762 O−H bending and C−O stretching
combination Polysaccharides

5376 C−Cl (7ν) Chlorinated hydrocarbons

5869 C−H (2ν), methyl C−H
(symmetric) Hydrocarbons, aliphatic

7092 O−H alcohol (RO−H) O−H (2ν) Hydrocarbons, aliphatic
12,300 C−H combination Hydrocarbons, aliphatic

Ci

Chip
4202 C−H stretching and C−C stretching

combination Lipids

4307 C−H stretching and CH2
deformation combination Polysaccharides

5241 P−OH phosphate (.P-OH) O−H (2ν) Phosphate

5495 O−H/C−H combination O−H stretching and C−O stretching
(3νs) combination Cellulose

Ground

5495 O−H/C−H combination O−H stretching and C−O stretching
(3νs) combination Cellulose

5900 C−H methyl (.CH3) C−H (2ν), .CH3 Hydrocarbons, methyl
6666 N−H combination band from urea

(NH2−C=O−NH2) N−H from urea

6736 N−H band from urea (NH2−C=O−NH2) N-H (2ν) symmetric stretching from
urea Urea

ν: Fundamental stretching vibration absorption band, 2ν: first overtone of fundamental stretching band,
3ν: second overtone of fundamental stretching band, 7ν: six overtone of fundamental stretching band.

3.3.2. Burnout Index (Df)

As shown in Tables 3 and 4, the best-performing PLSR-based models for both chip
and ground biomass were obtained using GA-PLSR. For chip biomass, GA selected 64 out
of 1154 influential wavenumbers with spectral preprocessing using min-max normalization
(refer to Figure 5c). For ground biomass, GA selected 921 out of 1154 wavenumbers with
spectral preprocessing using the D1 (segment = 5, gap = 5) (refer to Figure 5d). Figure 5b,f
show the scatter plots for measured versus predicted Df for chip and ground biomass.

By R2
P determination, the GA-PLSR model performance of Df in chip biomass has

improved by 1.6332% compared to the full-PLSR method.
Figure 8 shows the average absorbance spectrum pretreated with min-max normal-

ization, using red marks to emphasize important wavenumbers identified through GA.
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The selected significant wavenumbers, located at 4019, 5181, 6319, and 9960 cm−1, could
potentially exert a notable influence on the model’s performance in evaluating the Df in the
chip biomass samples. Similarly, Table 5 presents the associated functional groups, spectra-
structure, and the material type corresponding to specific peak wavenumbers observed in
Df chip biomass samples [44].
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Figure 8. The average absorbance value of Df in chip biomass using min-max normalization with
selection of important wavenumbers obtained through GA.

For ground biomass, notably, as determined by R2
P, the model performance of Df in

ground biomass has improved by 6.0322% compared to the full-PLSR approach.
Figure 9 displays the average absorbance values of Df in ground biomass, obtained

after preprocessing with D1. The figure highlights the 921 selected wavenumbers (marked
in red) obtained via GA, encompassing the full spectral range of 3594.87−12,489.5 cm−1.
The important peaks selected at 3650, 4019, 5200, and 6897 cm−1 could significantly influ-
ence the model performance in evaluating the Df in ground biomass. Table 5 presents the
associated functional groups, spectra-structure, and their material types corresponding to
specific peak wavenumbers observed in Df ground biomass samples [44].
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Figure 9. The average absorbance value of Df in ground biomass using D1 with selection of important
wavenumbers obtained via GA.
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3.3.3. Comprehensive Combustion Index (Si)

As shown in Table 3, the best-performing model for chip biomass was obtained
through GA-PLSR with spectral preprocessing using D1, with a gap of 5 and a segment
of 5 (refer to Figure 5e). By R2 determination, the model-explained variance for Si in chip
biomass improved by 2.4712% compared to the full-PLSR method. Figure 5c shows the
scatter plot of measured versus predicted Si using GA-PLSR.

Figure 10 shows the average absorbance values of the Si in chip biomass, obtained after
preprocessing with D1. The figure highlights the 18 selected wavenumbers (marked in red)
obtained through GA, covering the entire spectral range of 3595 to 12,489 cm−1. Notably,
important peaks were observed at wavenumbers 4019, 4292, and 7092 cm−1, respectively,
suggesting a potentially pivotal influence on the model’s enhanced performance. Refer to
Table 5, which presents the associate functional groups, spectra-structure, and the material
type corresponding to specific peak wavenumbers observed in Si chip biomass samples [44].
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Figure 10. The average absorbance value of Si in chip biomass using D1 with selection of important
wavenumbers obtained through GA.

For ground biomass (refer to Table 4), the model performance using full-PLSR with
MSC (refer to Figure 5f) as preprocessing and 14 LVs provides the best assessment for the
Si in terms of R2

C, RMSEC, R2
P, RMSEP, RPD, and bias. Figure 6g shows the scatter plot of

measured versus predicted Si using full-PLSR with spectrum preprocessing using MSC.
Figure 11 displays the regression coefficient for the Si in ground biomass using

full-PLSR with spectral preprocessing of MSC within the wavenumber range of 3595 to
12,489 cm−1. The important peaks are noticed at 4525, 4762, 5376, 5869, 7092, and 12,300 cm−1,
which may significantly influence the enhanced performance of the model. Refer to Table 5,
which presents the associate functional groups, spectra-structure, and the material type
corresponding to specific peak wavenumbers observed in Si ground biomass samples [44].

3.3.4. Flammability Index (Ci)

For the chip biomass model, the multi-preprocessing-PLSR with the 3-range method,
employing 14 LVs and utilizing the multi-preprocessing combination set of 2, 5, 0 (i.e.,
SNV within the wavenumber range 3595–5493 cm−1, D2 (segment = 5, gap = 5) within
7498–5500 cm−1, and empty, i.e., absorbance value equals to zero, within 7506–12,489 cm−1)
(refer to Figure 4g), provides the best performance for assessing Ci. Figure 5d show the
scatter plot of measured versus predicted Ci using the multi-preprocessing PLSR-3 range
method. In addition, the model performance is improved by 8.7151% compared to the
full-PLSR approach.
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Figure 11. The regression coefficient for the Si of ground biomass using the full-PLSR model with
spectral preprocessing of MSC.

Figure 12 displays the regression coefficient for the Ci of chip biomass, utilizing the
multi-preprocessing PLSR-3 range method. Notably, important peaks that might signifi-
cantly influence the enhancement of the model performance are observed at wavenumbers
4202, 4307, 5241, and 5495 cm−1. Within the wavenumber range of 7500–12,500 cm−1,
an observed regression coefficient value of zero suggests that variations in this specific
variable are not associated with any changes in the predicted outcome. Table 5 presents
the associated functional groups, spectra-structure, and the material type corresponding to
specific peak wavenumbers observed in Ci chip biomass samples [44].
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Figure 12. The regression coefficient for the Ci of chip biomass using the multi-preprocessing PLSR-3
range method with a spectral preprocessing combination set of 2, 5, 0.

From Tables 3 and 4, the overall performance of the Ci model for ground biomass
is comparatively better than that for chip biomass. The best model was achieved using
the multi-preprocessing PLSR-5 range method with a preprocessing combination set of
3, 2, 1, 1, 4. This combination includes the MSC from 3626 to 5392 cm−1, the SNV from
5400 to 7167 cm−1, raw from 7174 to 8941 cm−1, raw from 8949 to 10,715 cm−1, and the
D1 from 10,723 to 12,489 cm−1 (refer to Figure 4h). Figure 5h shows the scatter plot of
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measured versus predicted Ci for ground biomass using the multi-preprocessing PLSR-5
range method.

Additionally, with the multi-preprocessing PLSR-5 range method, the model perfor-
mance for Ci in ground biomass improved by 4.8051% compared to the full-PLSR approach.

Figure 13 shows the regression coefficient graph for the Ci of ground biomass. This
analysis utilizes the multi-preprocessing PLSR-5 range method with a spectral prepro-
cessing combination set of 5, 0, 4, 2, and 5. Notably, significant peaks are identified at
wavenumbers 5495, 5900, 6666, and 6736 cm−1, which are likely to contribute significantly
to enhancing the model performance in evaluating Ci within ground biomass. Table 5
presents the associated functional groups, spectra-structure, and the material type corre-
sponding to specific peak wavenumbers observed in Ci ground biomass samples [44].
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Figure 13. The regression coefficient for the Ci of ground biomass using the multi-preprocessing
PLSR-5 range method with a spectral preprocessing combination set of 5, 0, 4, 2, 5.

3.4. Comparison with Previous Work

A few studies have assessed the combustion characteristic parameters and perfor-
mance indices of biomass through TGA. Guohai Jia [13] previously investigated the
combustion characteristics of five biomass pellet fuels using TGA at a heating rate of
20 ◦C min−1. They calculated Si for masson pine (1.24 × 10−8 min−2 K−3), Chinese fir
(2.28 × 10−8 min−2 K−3), willow (7.34 × 10−9 min−2 K−3), slash pine (5.94 × 10−9 min−2 K−3),
and poplar (1.83 × 10−8 min−2 K−3). Shrestha et al. [45] explored the combustion char-
acteristics of leucaena leucocephala pellets using TGA at a heating rate of 10 ◦C min−1,
calculating Di, Df, and Si as 6.10 × 10−4 wt.% min−3, 8.20 × 10−3 wt.% min−4, and
2.19 × 10−7 wt.% min−2 ◦C−3, respectively. Similarly, Shrestha et al. [46] evaluated the com-
bustion performance indices for bamboo chips using TGA at a heating rate of 10 ◦C min−1,
deriving Di, Df, and Si values of 88.33 × 10−3 wt.%.min−3, 0.16 × 10−3 wt.% min−4, and
3.59 × 10−7 wt.%2 min−2 ◦C−3, respectively. The results for combustion characteristic pa-
rameters and performance indices vary across different biomass varieties due to distinct
heating rates. Consequently, comparisons with previous similar biomass research may lack
significance. Furthermore, to date, there have been no reports or publications on the rapid
prediction of biomass combustion performance indices using NIRS for comparison.

Following William’s guideline [37], if the R2
P value falls between 0.83–0.90, the model

is usable with caution for most applications, including research. For R2
P values ranging

from 0.66 to 0.81, the model can be used for rough screening and other suitable calibration
purposes. For R2

P values ranging from 0.50 to 0.64, the model is only suitable for rough to
very rough screening. Following Zornoza et al. [38], any model with an RPD value below
2 is deemed insufficient for any application. If 2.0 < RPD < 2.5, it permits approximate
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prediction. For 2.5 < RPD < 3, the model is considered to provide good prediction, and a
value higher than 3 represents an excellent model.

According to the recommendation provided by Williams et al. [37], and based on
the obtained R2

P values, along with the consideration of RPD values, as suggested by
Zornoza et al. [38], from Tables 3 and 4, we can conclude that the best models were obtained
as follows: for the Di and Ci of chip biomass, the models were suitable for rough screening,
but, when considering the RPD values, they were considered insufficient for any practical
applications. For the Di and Ci of ground biomass, as well as the Df and Si of chip biomass,
the models were considered acceptable for rough screening and certain other approximate
calibrations, based on the obtained R2

P values. However, when evaluating the RPD values,
the models were inadequate for practical applications in the case of the Di and the Df
models, providing approximate quantitative predictions for the Ci and the Si models. The
best ground biomass models for Df and Si can be used with caution for various applications,
including research.

3.5. Benefit of Combined Agricultural Residue with Fast-Growing Trees in Model Development

Table 1 displays the range of combustion performance indices calculated for both
fast-growing trees and agricultural residues, which were utilized in the development of a
PLSR-based model. The analysis of Table 1 and Figure 6 reveals that agricultural residue
samples exhibit a broader range in the Di, Df, Si, and Ci. It is evident that the range of
each combustion performance index, whether in chip or ground form, expands when
agricultural residue samples are incorporated alongside samples from fast-growing trees.
This broadening of the range of combustion performance indices is intended to enhance
the robustness of the PLSR model for predicting combustion performance indices.

For chip biomass, apart from Di (Figure 5a), the reference value range of Df, Si, and
Ci (depicted in Figure 5b,c,d) in fast-growing trees was narrower compared to that of agri-
cultural residue samples. Integrating agricultural residue samples with fast-growing trees
widens their range, resulting in a comparatively enhanced model performance compared
to that observed in Di.

Similarly, concerning ground biomass, Figure 5e shows that the range of Di for fast-
growing trees is narrower than that of the agricultural residue sample. The inclusion of
agricultural residue samples expanded the range, leading to better model performance
compared to chip biomass. In Figure 5f, the range of Df for fast-growing trees was higher
and narrower compared to that of the agricultural residue samples. However, the inclusion
of agricultural residues samples expanded the range, mostly towards the lower values,
contributing to an improved model performance compared to other parameters. Likewise,
Figure 5g,h illustrate that the range of fast-growing trees is narrower compared to that of the
agricultural residue samples. Consequently, the inclusion of agricultural residue samples
contributes to expanding the range towards both higher and lower values, ultimately
enhancing the model performance.

4. Conclusions

The combustion characteristics parameters and combustion performance indices of
fast-growing trees and agricultural residues were analyzed through a combined study of
TG and DTG curves obtained via TGA. Ti and Tf for fast-growing trees were observed to
be higher than those of agricultural residues. This suggests that fast-growing trees were
harder to ignite; however, they burnt for a longer duration and produced ash more slowly
compared to agricultural residues. While the calculated Di and Df were high for fast-
growing trees, the Si and Ci were higher for agricultural residues. This indicates that, even
though agricultural residues were easier to ignite and burned more quickly and intensely
(exhibiting higher thermal and combustion reactivity), their combustion processes were
more controlled and less likely to experience unexpected fluctuations (better combustion
stability) during thermal energy generation.
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Similarly, five distinct PLSR-based models were developed and compared using NIRS
to assess the Di, Df, Si, and Ci under direct combustion conditions in both chip and ground
biomass samples. The models with optimal performance were selected based on higher
R2

C, R2
P, and RPD values and lower RMSEC, RMSEP, and bias values. The results conclude

that the models for Df and Si in ground biomass were found to be usable with caution
for most applications, including research. All other combustion performance indices,
both in chip and ground biomass, were suitable solely for the rough screening purpose.
Therefore, a more suitable machine learning algorithm needs to be explored to improve the
model performance.

The quality of reference data and spectral data, the inclusion of both agricultural
residue samples and fast-growing tree samples to broaden the reference data range, proper
identification of outliers, careful selection of the calibration set, and the development and
evaluation of models, including spectral pre-treatment and regression methods, all play
a pivotal role in establishing a reliable NIR application. Regularly updating calibration
and validation procedures, including more representative samples and validating with un-
known samples is crucial. Minimizing analytical errors is equally imperative for optimizing
the model performance.

This research significantly contributes to the sustainable energy sector and advances
our broader understanding of biomass combustion, bridging the gap between research
and practical application. With its environmentally friendly behavior, the non-destructive
evaluation method by NIR spectroscopy proposed in this study offers an essential and
valuable alternative to traditional thermal destructive techniques, potentially revolution-
izing biomass analysis. As NIR models are inherently dynamic, continual improvements
and refinements in both experimental methodologies and modeling approach are essential,
leading the way for future advancements to be implemented in biomass industries for both
production and usage purposes.
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Abbreviations

Ci flammability index
D1 first derivative
D2 second derivative
Di ignition index
Df burnout index
DTG derivative thermogravimetric
FT Fourier transform
GA genetic algorithm
LVs number of latent variables
Max maximum
Min minimum
Mean average
MSC multiplicative scatter correction
MP multi-preprocessing
NIRS near-infrared spectroscopy
PLSR partial least squares regression
R2 coefficient of determination
R2

C coefficient of determination of calibration set
R2

P coefficient of determination of prediction set
RPD ratio of prediction to deviation
RMSEC root mean square error of calibration set
RMSEP root mean square error of prediction set
Si comprehensive combustion performance
SD standard deviation
SEC standard error of calibration set
SEP standard error of prediction set
SNV standard normal variate
SPA successive projection algorithm
TG thermogravimetric
TGA thermogravimetric analysis
Ti ignition temperature
Tf burnout temperature
ti ignition time
tf burnout time
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