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Abstract: The installed solar capacity in the European Union has expanded rapidly in recent years.
The production of these plants is stochastic and highly dependent on the weather. However, many
factors should be considered together to estimate the expected output according to the weather
forecast so that these new PV plants can operate at maximum capacity. Plants must be operated in
coordination with maintenance operations and considering actual energy market prices. Various
methods have recently been developed in the literature, ranging from the most impactful artificial-
intelligence-based generation estimation methods to various diagnostic and maintenance methods.
Moreover, the optimal operational and maintenance strategy usually depends on market regulation,
and there are many concerns related to the distribution system operator. This review article aims to
summarize and illustrate the challenges of operating and maintaining solar power plants and the
economic and technical importance of these problems.
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1. Introduction

The Paris Agreement aims to keep the global temperature increase below 2 ◦C above
the preindustrial level. Decarbonizing electricity generation based on renewable energy
sources is one of the pillars of this aim. Applying renewable energies to the European
Union’s (EU) energy mix has been crucial in recent years. A significant, more than
25% annual growth of the built-in renewable energy is needed to reach zero emissions by
2050 [1–3]. Photovoltaic (PV) energy is one of the most successful renewable energies in
EU countries because this technology is relatively cheaper and more mature than other
renewable sources [4]. Before the introduction of the first European Renewable Energy
Directive (2009), the installed PV capacity was only about 11.3 GW in the whole European
Union, while this amount exceeded 175 GW at the end of 2021, which means a more than
15-times increment in fewer than 15 years [5–7]. The difference in the increment rate of
some selected countries is plotted in Figure 1, where 100% represents the built-in capacities
status at the end of 2021.

However, there are differences between the different EU member states regarding
their climate, ecological, social, economic, and political factors, and not every country
is equally capable of implementing this kind of technology [8–13] (Table 1). The short
selection of countries based on the authors’ origin may confirm various factors. Spain is one
of the EU’s pioneers in implementing PV systems, thanks to its good climate, hot and dry
summers, and many hours of sunshine [14]. Despite its great potential, installed capacity
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growth until 2019 remained below the EU average due to areas for improvement in the PV
market’s Spanish regulatory and support system. After all, at that time, the German and
French markets were more profitable [15–17]. Despite poorer weather and geographical
conditions, Estonia and the Nordic countries have grown significantly recently. According
to [18–21], Hungary and Poland produced the most significant growth in the built-in
PV capacity in the last years. In 2020, Hungary’s Innovation and Technology Ministry
published the new National Energy Strategy that outlines priorities until 2030. According
to this strategy, the decarbonization of electricity generation is based on the radical increase
in built-in PV capacity, it should exceed 6500 MW built-in capacity, which is essential for
the long-term energy-independence goals of the country [22,23]. At the end of 2023, the
built-in PV capacity reached 5500 MW in Hungary [24]. This is a relatively high number,
nearly equal to the average electrical energy demand of the country if we are calculating
this number from the maximal electric energy demand, which was not more than 125 GWh
in January of 2024 [25].

Table 1. Built-in PV capacities [MW] in the European Union, Hungary, Spain, and Estonia.

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Hungary 13 31 73 148 205 327 741 1441 2161 2949
Spain 4561 4639 4646 4656 4669 4688 4707 8711 11,669 15,286
Estonia 0.2 2 3 7 10 15 32 121 208 395
European Union 68,640 80,330 86,850 95,020 101,110 106,690 114,810 131,020 149,640 175,700

Figure 1. Built-in relative increase in the PV capacity in the EU, Hungary, Spain, and Estonia. The
reference of the calculation is the 2021 data, which represent 100% in the image.

It can be seen in the previous part of the introduction that the PV industry has
significantly increased in all of the EU member states since the last decade [3]. The high
growth rate means that more than half of the solar power plants are relatively new, younger
than three to five years old, and usually built with a “set it and forget it” philosophy.
Although the PV power plants have a relatively low maintenance need [26–29], it does not
mean modern and novel predictive maintenance methods can not increase the profitability
of these PV panels. Iftikhar et al. [3] have shown in a case study that simple operation and
maintenance practices, intended mainly for the tracker system, can increase the energy
output by 4%, which meant 170,000 EUR/year at the investigated, 18 MW power plant.
Bosman et al. [30] have shown that it is necessary to coordinate and maintain the different
technologies and operation methods to gain the maximal benefit from a solar power plant.
They expressed the need to develop modern predictive maintenance methods for the
different subsystems. The reason is simple: these PV power plants are relatively large
constructions far from the cities and the populated zones. Identifying the reason for the
failure and fixing the problem usually requires many working hours while a significant part
of the PV park is not operating. Due to the increasing size of the PV parks, many researchers
proposed advanced techniques for monitoring the status of the panels because finding a
problem and tracking down issues in a huge system can be even more difficult [31–34].
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The current study is focused on PV panels. However, we understand that there are
many issues that might be related to the entire PV system, including solar trackers and
inverters. The main issues for solar trackers might be related to undulating terrain, the
large format of the modules, layouts, etc., while inverters may have issues related to power
electronics, insulation, overheating, control, and communication failures, etc.

This study aims to provide an overview of the current challenges in operating and
maintaining PV power plants. In Section 2, the need for predictive maintenance strategies
is discussed. The typical maintenance problems and current solutions for detecting under-
performing PV panels (or other devices in a solar power plant) are reviewed, as well as
some specific maintenance areas that require more attention than currently, such as the
aging and maintenance of power cables in a solar PV environment. Section 3 highlights
the challenges of PV integration from the perspective of the distribution system operator
(DSO). Section 4 reviews the commercial and performance optimization methods based on
artificial intelligence, which are of great importance in maximizing energy production and
financial profit. Lastly, in Section 5, the main conclusions are outlined.

2. Predictive Maintenance of PV Systems

The inevitability of wear and maintenance needs for production machines, equipment,
and devices persists despite the industry’s progression. Hence, the evolution of mainte-
nance techniques aligns with the advancement of industry. Industry 4.0 is a term used to
describe the ongoing digital transformation of the manufacturing industry. One important
aspect of Industry 4.0 is predictive maintenance, which uses data analytics to identify and
prevent potential equipment failures before they occur.

There are several approaches to industry maintenance within PV systems, each with
benefits and drawbacks. Some of the most common approaches include the following:

• Reactive maintenance: This approach involves repairing equipment only when it
breaks down or malfunctions. While it may seem cost-effective in the short term,
reactive maintenance can lead to increased downtime and more significant repair costs
in the long run [35].

• Preventative maintenance: In contrast to reactive maintenance, preventative main-
tenance involves regularly scheduled maintenance activities to prevent equipment
breakdowns and extend the lifespan of the system. This approach can be more cost-
effective over the long term, but it requires a significant investment of time and
resources upfront [36].

• Predictive maintenance: This approach uses data analytics and monitoring tools to
predict when maintenance will be necessary, allowing for repairs before significant
breakdowns occur. Predictive maintenance can be highly effective in reducing down-
time and maintenance costs, but it requires a significant investment in data collection
and analysis tools [37].

• Condition-based maintenance: This approach involves monitoring equipment per-
formance and condition in real time and scheduling maintenance activities based on
that data. Like predictive maintenance, condition-based maintenance can be highly
effective in reducing downtime and maintenance costs, but it requires a significant
investment in monitoring tools and sensors.

From the above mentioned, predictive maintenance, referred to as PdM 4.0 in modern
times, represents the highest form of maintenance within the context of the Fourth Industrial
Revolution, an ongoing phenomenon. The approach involves converging big data analytics
and artificial intelligence techniques to prevent asset failure. Through the analysis of
production data, the technique aims to detect patterns and predict impending issues
before they occur. A study by L. Koschikowski et al. (2020) [38] found that predictive
maintenance can reduce downtime and maintenance costs by up to 25% and increase
energy production by up to 3%. Another study by S. K. Sahoo et al. (2019) [39] showed that
predictive maintenance can improve the reliability of PV systems and reduce the risk of
equipment failure.
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In the case of PV systems, predictive maintenance can help improve system efficiency
and reliability, reducing downtime and maintenance costs. PV systems are becoming
increasingly important in transitioning to renewable energy sources, and their efficiency is
critical to meeting energy demand.

• From the perspective of a single PV plant, predictive maintenance can help identify
and prevent equipment failures, reducing downtime and maintenance costs. This
approach can help minimize downtime, reduce maintenance costs, and increase the
lifetime of the PV system [39].

• From the perspective of a virtual power plant, the main goal is to minimize the
difference between the scheduled and the current production. This can be achieved
by aggregating several small-scale PV systems and using predictive maintenance
algorithms to optimize their output. By monitoring the performance of individual PV
systems and predicting potential failures, virtual power plants can optimize energy
production and reduce costs [39].

2.1. Typical Maintenance Issues

Faults in PV power plants reduce their efficiency, durability, and reliability. Solar panel
failures can be categorized as optical degradation, electrical inadequacy, and unclassified
faults [40,41]. Many recent papers on reliability analysis have found that a solar farm’s
reliability is proportional to its size, i.e., smaller solar farms are more reliable. However,
after ten years, even these smaller solar parks have reliability approaching zero, i.e., at
least one of its main components (e.g., inverter, transformer, solar panels, wiring systems)
needs to be replaced at this time [42,43]. Figure 2 illustrates typical PV panel failures and
maintenance problems in the different power plants. It can be seen from these images that
the typical problem of a dedicated PV power plant depends on the climate of the installation
area. The first Figure 2a image shows that grass cutting is a general maintenance issue; in
extreme cases, some plants, high grass shrubs, or trees can grow in the abandoned plants.
These plants can shade the panels or degrade the cable systems and inverters, leading
to decreased power output. This maintenance job is usually outsourced to a third-party
company. Some of them have ideas to use the PV park area for some connecting agricultural
activity, like sheep grazing [44].

Figure 2. Some typical maintenance issues are illustrated in this image: (a) grass cutting, (b) PV panel
cracks, (c) hailstorms, (d) pollution, (e) bird droppings, (f) snow.

The impact of PV power plants on wildlife is significantly smaller, often by several
hundred percent, compared with fossil-fuel-based power plants. However, the core mecha-
nisms regarding how solar facilities impact wildlife still need to be fully understood [45].
Many researchers have shown that these facilities are key in the increased bat and bird
fatality rate. Walston et al. published a paper stating that approximately 140,000 bird
fatalities were caused by solar plants in 2016 [46]. Smallwood has shown that in 2020,
approximately 250,000 bird and 11,000 bat fatalities occurred due to solar projects in Cal-
ifornia [47]. The scale of these numbers can be considered similar if the growth rate in
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the built-in PV capacity during the period between the two studies is considered. The
lake effect hypothesis is one of the most probable reasons for these mortalities; this theory
drives back to the maintenance problems that birds can cause in the PV panels. The lake
effect hypothesis is one of the most probable reasons for these mortalities. The birds can
mix up the PV plants with lakes from high altitudes and collide with the panels from
high altitudes. The collisions can cause cracks in the solar panels, as shown in Figure 2.
At the same time, bird droppings (Figure 2e) can also create significant shading on the
panels [48], which can significantly decrease the generated power. Some chemical and
IoT-related technologies have been developed to keep birds far away from PV panels. The
most advanced technologies can use artificial intelligence with radar technology to monitor
and keep the birds flying away from the PV panels. The chemical solution is a gel, which
looks normal for humans, but in the UV spectrum, the birds can see it as a firing object and
will maintain a distance from the panel [49,50].

The performance of a PV panel is usually measured under standardized test conditions
in laboratories, where the temperature is set to 25 °C, and the solar irradiance is 1000 W/m2,
which passes through a 1.5-thickness atmosphere [51]. However, the performance of the
panels can vary depending on the pollution, wind, rainfall, humidity, and many other
environmental factors during outdoor operations (Figure 2d). Wind and rainfall usually
promote the removal of the dust; it was shown that quite heavy rain (more than 38 mm/h) is
necessary to remove the dust from the panels [52]. Many researchers examined the effect of
cleanliness on the panels [53]. Salimi et al. [54] performed a 135-day-long experiment where
some selected PV panels were cleaned every day, while others with different schedules,
e.g., every third day, while some of them were never cleaned during the experiment. It was
shown that the appropriate cleaning of the solar panels can increase the outcome by 8–12%.
Other studies in different climates have also shown that energy losses can be reduced by
25% by applying proper cleaning methods [55].

Besides the cracks, there is another type of failure, which is called snail trails or snail
tracks (Figure 3). This problem usually occurs on panels installed outside after 3–5 months
of the installation [56]. This problem means a discoloration of the silver paste used for the
gridlines on the cells, which can be easily seen after the visual inspection of the panel [57,58].
This problem can decrease the panel’s performance by 20% [59]. Similar failure problems are
the delamination of the panels and the discolorization. The delamination of the panel means
that the adhesive bonds in the encapsulant or the substrate of the PV cell modules allow
some moisture from the environment, and this causes detachments inside the panel [58,60].
The reason for the discolorization is the bad quality of the applied polymers in the PV
panel, which creates browned, discolored areas, which reduce the quantity of the entrancing
sunlight [56,58].

Hail has significant damage on PV panels (Figure 2c), which can cause a 30% perfor-
mance loss on the panels. The damage is typically 3 cm on the panels, and larger hailstones,
which can be larger than 4 cm, can cause greater damage. In 2016, a hail storm damaged
almost one-third of the solar panels at OCI Solar Power’s Alamo 2 [61]. Experiments
with the protective glasses have shown that applying 4 mm or more of glass can protect
the panels without significantly impacting the performance [61]. However, connecting is
sometimes not visible after the hail, but the monitoring system shows some panels are un-
derperforming. Nondestructive techniques use UV–fluorescence images or thermocameras
to locate the impacted PV panels in a facility [62,63].

Northern countries have the highest energy requirements for heating during the
winter; however, in these times, snow can cover the PV panels (Figure 2f), which can reduce
their annual energy generation by 35% [64], and some PV parks can reduce their production
by 90–100% daily. Understanding the climatic conditions and finding possible solutions to
increase performance during these times is important. Simple solutions include setting an
appropriate tilting angle, using thermal absorbers, and using electrostatic forces to remove
the snow from the PV panels [65,66].
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Figure 3. Snail trail in a PV cell [57,58].

The previous use cases explained only the failures or performance losses related to
the PV panels. However, most PV plant outages are related to inverter and combiner box
failures [3,67]. Many papers deal with the investigation of the different inverter failure
modes and topologies, and simple and advanced mathematical statics-based models are
applied to examine which string topology can improve PV power plant reliability [68–70].
Markov-formulation-based approximations can suggest that some central inverter string
configurations have the highest return-on-investment (ROI) values [43,68]. Besides in-
verters, PV parks contain a power transformer connecting to the grid. The size of this
transformer depends on the capacity of the PV park and their regulation, as well as the
general power transformer types in different countries [71–74].

Condition monitoring and prediction of the lifetime of high-voltage power systems
have a crucial role in the case of nuclear or fossil power plants [75,76]. Not only because
these cables are relatively expensive assets but also because their functions lead to power
plant outages during maintenance.

The last component of the PV parks is the cables, which account for 1–2% of the
overall cost of the PV system and also have excessive stress during the operation [77].
Condition monitoring and prediction of the lifetime of high-voltage power systems have
a crucial role in the case of nuclear or fossil power plants [75,76], not only because these
cables are relatively expensive assets but also because their functions lead to power plant
outages during maintenance. This problem needs to be examined in the case of PV farms.
One reason is that the nominal capacity of these parks is much smaller than a fossil or a
nuclear power plant. Secondly, these PV plants are relatively young, and these problems
will arise in older power plants. The maintenance and outage time is not independent of
the previous factors. Mainly, the improper installation procedure of the PV systems can
significantly extend maintenance times [30,78]. Ref. [78] stated that a significant part of the
PV park installations can be underrated, which will lead to operational and maintenance
issues. Due to the insulation capability of these plastic-coated (XLPO [79,80]) DC cables
depending mainly on environmental temperature, humidity, and load, there is a high risk
that these shortcuts and maintenance issues will appear mainly in summertime, where the
temperature is hot and the cables are working with maximal utility. Parise [81] suggested a
special “brush-distribution” layout for connecting the strings to reduce the maintenance
need of PV parks due to cable problems. Then, he proposed a life loss tool for the optimal
management of cables [82]. Tamus et al. [79,80,83] proposed a nondestructive measurement
methodology using the voltage response methodology (Figure 4). This measurement is
based on a simple test device, which firstly applies a long-duration DC current on the cables
and then measures the slopes of the different decay voltages (Sd) after given times. These
slopes correlate with the internal polarization processes of the examined materials, making
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it possible to estimate the condition of the cables. The thermal and mechanical stresses can
be considered, which are subjected to the cable during the assembly process [77,84]. Due
to the spread of the agrivoltaics, the proper sizing of the wires and DC cables can be more
important to reduce the potential damage to PV plants and grazing animals [85,86].

Figure 4. The image shows the voltage response method-based nondestructive testing of the polymer
cables. Where (a) shows the realized electrical circuit, while (b) is the time function of the voltage
response [83]. Where SW1 and SW2 represent the switches in the circuit, Vch is the applied DC current
for charging the cable for tch time, Sd represents the decay, while Sr is the slope of the measured
voltage response after the different tdch charging times.

Additionally to the above-mentioned problems, Potential-Induced Degradation (PID),
Light-Induced Degradation (LID), and general degradation are indeed crucial concerns in
the realm of PV technology, especially with the advent of modern advancements like the
half-cut Passivated Emitter Rear Cell (PERC) [87,88] or Top Contact (TopCon cells) [89,90].
It may take a long time to detect the PID through traditional data analysis methods,
resulting in an undetected energy loss [91]. LID, on the other hand, involves a temporary
decrease in efficiency upon initial exposure to light, which stabilizes over time but can still
impact long-term performance [92]. Both phenomena require careful consideration and
mitigation strategies to ensure optimal module performance and longevity. However, with
the emergence of half-cut PERC and TopCon cells, which offer improved efficiency and
performance characteristics, it becomes even more critical to address potential degradation
factors to maximize the benefits of these advanced technologies.

2.2. Tools and Devices for Predictive Maintenance

There are many techniques developed to help identify the different malfunctions of
PV panels (Figure 5).

Figure 5. Different photovoltaic panel crack inspection methods: (a) photoluminescence, (b) electro-
luminescence, (c) thermal imaging [93].
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Garcia et al. [4] presented a low-cost DSP-based application that performs a voltage–current
(V-I) test to check the solar panel parameters continuously. This device should be connected
to a dedicated PV panel to measure different operation points. It is a simple, cost-effective
way to identify shading, soiling, or module degradation issues. Moreover, its usage does
not need an industrial PLC; it is only this simple device. This device costs about EUR 40,
which is very cheap; however, it should be applied to every panel, which can result in a
significant cost for a large PV power plant.

A more advanced predictive maintenance method is PV string-level monitoring [94].
Usually, such methods include current and voltage ratio comparison with thresholds and
parameter ratio comparison for the whole string. This reduces the number of sensors used
in maintenance but reduces the fault localization. However, the main disadvantage of
that type of tool is the fact that they need regular maintenance to ensure the accuracy and
reliability of the monitoring equipment. Moreover, they produce a significant amount of
data, which need to be managed and analyzed.

While V-I tests are commonly used to characterize PV system performance, these types
of tests are also used in efficiency evaluation, performance monitoring, and optimization.
The disadvantages of such methods are that they depend on environmental conditions, mea-
surements are time-consuming, and high-precision measurement equipment is expensive.

Several decades ago, spectral imaging was introduced for remote sensing applications,
mainly satellites. Since its inception, it has gained a wide range of scientific and industrial
uses. Hyperspectral Imaging (HSI) is a branch of spectral imaging that deals with hundreds
of image bands on a single-image datacube. An HSI provides much greater spectroscopic
information than a traditional RGB (red–green–blue) image, allowing many uses. PV
condition monitoring involves assessing panels’ performance, health, and potential issues.
According to Lombez et al. [95], HSI can provide valuable insights into the condition and
performance of PV systems. By leveraging its detailed spectral information, HSI enables
fault detection, performance analysis, cell characterization, assessment of environmental
factors, predictive maintenance, and quality control during PV manufacturing.

HSI can include infrared wavelengths within its spectrum. However, infrared thermog-
raphy (IT) can be a specific technique or subset focused on capturing thermal information
within the infrared range. It plays a crucial role in the preventive maintenance of PV
systems by using infrared cameras to capture and analyze thermal images of PV modules
and associated components. Such techniques might be useful for detecting transportation-
induced failures [96] and provide information on the health state of the PV module [97].
Usually, nonintrusive diagnostic techniques are implemented using unmanned aerial vehi-
cles (UAVs) [59,96]. That increases the price of already expensive imagining equipment.

HSI has advantages over V-I methods: they are noninvasive techniques, and it is
possible to identify materials to provide valuable data for understanding the spectral
response and efficiency of emerging materials and designs. On the other hand, they are
more expensive and complex, require significant storage and computational resources, and
cannot be used in all environmental conditions.

Recent advancements in predictive maintenance strategies have paved the way for
maximizing the efficiency and reliability of PV systems. Several studies that explored
innovative approaches to predictive maintenance for PV systems, ranging from model
predictive control (MPC) for PV modules to AI-driven algorithms, might be highlighted.
The integration of predictive maintenance strategies holds immense potential for enhancing
the performance and reliability of PV systems. Operators can proactively manage main-
tenance activities and optimize system operation by leveraging methodologies, such as
model predictive control, AI-driven algorithms, and machine learning techniques. Through
continuous monitoring, analysis, and intervention, the longevity and efficiency of PV
systems can be maximized, contributing to the widespread adoption of renewable energy
sources and the transition towards a sustainable future.
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One significant contribution to the field is the development of a novel Maximum
Power Point Tracking (MPPT) method based on model predictive control (MPC) for PV
modules [98]. This method offers superior tracking performance and dynamic response
compared with conventional MPPT techniques. By considering factors such as spectral
wavelength and module temperature, the proposed approach aims to optimize power
generation, thereby enhancing the overall efficiency of grid-connected PV systems. Further-
more, integrating finite control set model predictive current control (FCS-MPCC) algorithms
for inverters [99] ensures precise control over the power output, contributing to improved
system stability and performance.

While not directly focused on PV systems, AI-based predictive maintenance strategies
have shown promising results in enhancing the efficiency and reliability of electrical
equipment and power networks [100]. By leveraging predictive analysis techniques, such
as machine learning algorithms, insights can be gained into the health status of critical
components within PV systems. This proactive approach enables the early detection of
potential faults or degradation, facilitating timely intervention and preventive maintenance
activities. Consequently, the operational lifespan of PV systems can be prolonged, ensuring
sustained energy generation over time.

Specifically targeting PV systems, researchers have developed predictive maintenance
algorithms utilizing synthetic datasets [101]. These algorithms can predict maintenance
requirements and optimize system performance by simulating various operating con-
ditions and failure scenarios. Through continuous monitoring and analysis of system
parameters, potential issues can be identified in advance, allowing for timely maintenance
interventions. Moreover, the utilization of synthetic datasets enables extensive testing and
validation of the algorithms under diverse conditions, ensuring robustness and reliability
in real-world applications.

A comprehensive review of maintenance strategies for PV systems acknowledges
the significance of ground fault detection interrupters (GFDI) and overcurrent protection
devices (OCPD) [102]. These devices play a pivotal role in predictive maintenance by de-
tecting potential faults or abnormalities in the system. By implementing advanced sensing
technologies and intelligent algorithms, GFDIs and OCPDs can preemptively identify devi-
ations from normal operating conditions, mitigating equipment failure or electrical hazard
risks. This proactive approach aligns with the overarching goal of predictive maintenance:
optimizing system reliability and performance while minimizing operational disruptions.

In the domain of battery management, which might be related to PV energy storage
systems, the integration of machine learning algorithms has emerged as a powerful tool
for predictive maintenance [103]. While the focus lies primarily on lead–acid batteries,
the principles extrapolate to PV systems, where battery storage plays a crucial role. By
analyzing historical data and patterns, machine learning algorithms can forecast potential
failure modes or performance degradation in batteries, enabling preemptive measures to be
taken. This proactive maintenance approach minimizes the risk of unexpected downtime
and optimizes the utilization of energy storage resources within PV systems.

3. Operation of PV Plants from the DSO Perspective

Energy markets are evolving towards a significant decentralized-generation paradigm,
with a wide penetration of renewable energy sources (RESs). For this new paradigm, the
cost minimization of technologies such as PV and energy efficiency awareness, as well as
directives focusing on sustainability, flexibility, and diversification of energy markets, have
contributed decisively [104–106].

3.1. The Role of a DSO

The vast majority of DSOs are committed to regulatory frameworks and focused on
the decarbonization of the electrical energy sector. Therefore, it is a core mission of DSOs to
provide a friendly integration of RES into the electric grid, benefiting from it by finding
efficiencies in their grid operation [106–108].
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One of the major benefits of RES integration, from the DSO perspective, is grid
flexibility. With increased flexibility, several local problems can be mitigated [105]. In [109],
the authors investigated a real-time energy congestion management platform using market-
based flexible procurement. It was found that distribution transformer overload can be
significantly reduced with a dominant share of distributed energy resources. Other benefits
include the following [110]:

• More entities participating in the energy market.
• Innovative solutions.
• More awareness concerning energy efficiency.
• Reduction in greenhouse gas emissions.
• Improvement of grid reliability.
• Reduction in technical distribution losses.
• Reduction in outage times.

Many projects have been developed focusing on integrating PV sources in the grid. In
recent years, the European Union has been funding large projects with the participation of
DSOs, such as EU-SysFlex [111], INTERRFACE [112], and OneNet [113].

In the EU-SysFlex project, in which one of the authors has participated, the project
intended to identify constraints and viable solutions to allow the large-scale integration
of renewable sources, maintaining and optimizing, whenever possible, the current levels
of quality of service. The project implemented several pilots and showed many valuable
flexibility solutions to operate the power system with high levels of variable generation
(more than 50%) [114,115].

Concerning the INTERRFACE project, the objective was focused on the design, devel-
opment, and operation of an Interoperable Pan-European Network Service Architecture to
act as an interface between the energy system (Transmission System Operators (TSO) and
DSOs) and customers to allow an integrated and coordinated operation of all interested
parties in the use and acquisition of network support services [116].

The OneNet project is intended to create the conditions for a new generation of
grid services that can fully exploit demand response, storage, and distributed generation
while creating fair, transparent, and open conditions for the consumer. The project aims
to build a customer-centric approach to grid operation, proposing new markets, prod-
ucts, and services. Creating unique IT architecture to support innovative mechanisms is
proposed [117,118].

Besides the funded projects where many DSOs are involved with specific objectives,
they are also providing several open datasets available to all in order to democratize access
to energy data. One example can be found in [119], from where several datasets related
to the distribution grid of the major Portuguese DSO (E-REDES) can be explored. Other
examples from other countries can be found in [120,121]. The datasets can be explored
online, exported to a file, or collected via API. The available datasets have been developed
focusing on four major stakeholders, i.e., developers, academia, municipalities, and pro-
ducers. There are several thematic datasets, such as Consumed Energy, Electric Mobility,
Networks, Renewables, and Operation and Quality of Service. For instance, it is possible to
collect the geographical distribution of production units by municipality, installation date,
and connection power. Another example is the scheduled energy interruptions by zip code,
which can be incorporated, for example, in forecasting algorithms.

3.2. Integration of PV Sources

The DSO is responsible for maintaining the distribution grid as stably and reliably as
possible. To do so, there are several capital costs (such as redundant lines and systems of
control and protection) and operational costs (such as O&M operators and resilient dispatch
centers). In many regions, the classic business model of a DSO to recover costs is based on
tariffs charged to consumers according to their network usage (typically, two components
are charged, one fixed according to the contracted power and another that is proportional
to the energy consumed). Despite the emergence of more and more prosumers, which
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tend to reduce network usage (thus not contributing to compensate grid investments), the
decarbonization and electrification of industry, as well as mobility, are expected to increase
energy flows and more investments in the distribution grid.

PV integration will play an important role not only in the reduction in greenhouse gas
emissions but also in the reduction in the transmission of electricity over long distances,
thus improving technical losses. Currently, the Levelized Cost of Energy (LCOE) generated
from the PV utility scale (and even PV rooftops depending on their size and location) is
lower than wind generation technologies (onshore and offshore), whereby it is expected to
observe growing levels of PV penetration over the next decades [122].

The integration of PV sources will also benefit the most remote places. In less-meshed
networks, the availability of backup lines is reduced. Thereby, in the occurrence of an
abnormal failure event or even during maintenance activities, the operation in island mode
(provided by locally distributed generators) contributes to reducing unavailability periods
of electricity delivery.

3.3. Obstacles and Solutions

The increased penetration of distributed production brings more complexity to grid
management and operation. The main obstacles are grid stability, grid congestion, and
even potential market volatility. However, it is expected that the grid will become more
flexible and resilient against massive power outages [123,124]

As the installed capacity of PV sources increases, combined with the intermittency
of production, the voltage and frequency stability of the grid can be affected [125,126].
One of the main challenges concerning the increased penetration of PV plants is voltage
regulation, particularly when in low demand. Network incidents are higher in less-meshed
networks, typically in rural areas. Near real-time monitoring of the energy generated
and injected in the grid utilizing smart metering, along with forecasting of generation
and consumption, will be a key factor in avoiding voltage fluctuations and maintaining
frequency within normal operating ranges. Besides the well-known light flickering, the
negative consequences of voltage fluctuations include torque variation in machinery and
the potential reduced service life of connected loads [127]. In critical lines, installing grid
batteries mitigates network incidents and increases the network’s flexibility.

On the other hand, grid overcurrent protection should be properly sized to accom-
modate increased penetration of distributed sources. Prior to distribution grid connection,
DSOs first evaluate the impacts of such sources on the stability of the grid and the adequate
overcurrent protections. Due to the potential impact on grid stability, even smaller self-
consumption units (e.g., small rooftop PV plants) are subjected to evaluation in case of grid
connection. For instance, in Portugal, self-consumption units above 30 kWp are required
to be certified by their DSO before grid connection [128]. Depending on the location and
connection power, it is usual to perform smart meter installation (if not previously installed)
and overcurrent protection updates. In order to avoid the overload of Distribution Trans-
formers, grid updates are also considered, not only due to distributed generators but also
to the electrification of industry and transportation, such as EV charging. However, since
grid upgrades are generally capital-intensive, attention is given to the optimization of the
existing infrastructure. The development of smart grids and intelligent markets is often
the preferred way to increase flexibility in the grid [129–131]. Smart grids, particularly
with the support of smart meters, allow customers to manage their own consumption and
production in near real time. With increased awareness about energy consumption and
production, customers become more energy efficient and, therefore, reduce their electricity
bill, not only by reducing their consumption (as well as maximizing their production in
the case of prosumers) but also by participating in dynamic markets where the tariffs are
time-dependent [132].
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3.4. Optimization

Since grid-connected PV plants influence the distribution grid, the optimization of
PV plants is relevant to ensure that such plants are compatible with the operation of the
grid and do not cause problems such as voltage fluctuations, frequency instability, or
harmonic distortion.

On the one hand, there is the optimization of PV plants by itself, ensuring the optimal
operation of components such as inverters, wiring, and PV modules to ensure that such
plants operate at their maximum efficiency, producing the highest amount of energy from
the available solar irradiance. This contributes to a better exploration and planning of
distribution grids since it reduces the uncertainty about the expected production. In low-
demand and high solar availability, PV plants can also feed energy storage systems, such
as ion-lithium batteries or electrolyzers.

On the other hand, considering the flexibility that can be offered to the grid, PV plants
can also be aggregated in a portfolio to participate in energy markets [133]. In this scenario,
commonly denominated as virtual power plant (VPP), different generation plants are
virtually pooled to provide flexibility to the system via frequency regulation and balancing
reserve. In this scenario, only reliable and optimized PV plants are eligible.

VPPs use advanced systems to monitor and control the output of each contributing
source, ensuring a stable and reliable power supply to the grid. Generally, VPPs are
controlled with stochastic optimization algorithms [134,135]. Further, the operation is
orchestrated by workflows that execute the necessary periodic tasks, such as the creation of
market bids (both capacities and prices), the calculation of dispatch schedules, and the data
transfer between inner and outer data sources involved in the market.

Since the concept is still far from its maturity level, several studies and projects
have been developed to test and prove the concept of VPPs, such as EU-SysFlex [111],
GOFLEX [136], DRES2Market [137], and InterFlex [138]. In EU-SysFlex, the concept of a
VPP composed of several decentralized sources, including a windfarm, PV, and a grid
battery storage system, was successfully implemented in a French grid [111].

Besides the technical proof, several studies have been performed to evaluate the
economic aspects of VPPs. For instance, a cost–benefit analysis of the integration of VPPs
in the German energy market has been performed in [139]. In [140], the technical–economic
impact of the integration of a VPP in the Spanish electricity system was assessed. Hence,
it is expected that optimization will play an important role in the further development of
distributed generation and grid connection [141].

4. AI-Based Solutions to Increase PV System Performance and Trading
4.1. Forecasting PV Generation

In the context of artificial intelligence algorithms, predicting solar irradiation and the
resulting PV power of each generator remains crucial. The generator with the best forecast-
ing performance has an advantage in reduced balancing costs and a better understanding
of actual power system conditions. The eminent generator usually has information about
the generally expected error in the schedules of less accurate PV plants. This knowledge
makes it possible to submit profitable bids on ancillary service markets with optimal prices
and accurate quantities.

Many different machine learning tools have been utilized to forecast PV generation.
The exhausting review of the related literature is beyond the scope of this paper, but a
selection of recent relevant studies is briefly inspected in Table 2.
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Table 2. Machine learning tools for PV generation forecasting.

Source Machine Learning Tool Note

[142]
eXtreme Gradient Boosting, Light Gradient

Boosting, MultiLayer Perceptron, Elman
Neural Network, Long Short-Term Memory

comparative study

[143] MultiLayer Perceptron metaheuristic training

[144] Deep Neural Network auxiliary irradiation forecast

[145] Random Forest, Neural Networks, Support
Vector Machines comparative study

[146] MultiLayer Perceptron, Deep
Neural Network comparative study

[147] Convolutional Neural Network combined with load forecasting

[148] Transfer Neural Network, Convolutional
Neural Network

hybrid model with enhanced
data preprocessing

[148] Radial Basis Function Neural Network integrated Grey Theory System

As Table 2 illustrates, the forecast of PV generation is a well-known challenge with
many proposed answers. Nonetheless, the accuracy of PV forecasts is still limited be-
cause the architecture of forecasting algorithms (including those applying AI) is built on
inherently inaccurate weather forecasts. The improvement of input quality regarding
meteorological variables—especially solar irradiation—is a promising research direction
already recognized, e.g., in [144].

The weather forecast inputs of PV generation forecast algorithms usually originate
from Numerical Weather Prediction (NWP) models. NWP is a mature technology based on
refined meteorological knowledge and the application of differential equations. However,
image-based predictors can often provide more accurate results in the short-term and
ultra-short-term horizon (with lead times of less than 4 to 6 h [149]).

The simplest way to generate the images for irradiation forecasting is to use of ground-
based total sky imagers (TSIs). TSIs can provide images with high spatial and temporal
resolution, and these images can be effectively used to detect, classify, and predict clouds.
Multiple TSIs can provide enough information to construct a three-dimensional cloud
model of the sky [150]. The pictures can also be directly mapped to the solar irradiation
on the site of PV plants (e.g., through the use of Convolutional Neural Networks [151]
or a combination of AI techniques [152]). Remarkable prediction accuracy has also been
achieved using simple fish-eye lens cameras following the same general approach [153].
On the other hand, the lead time of prediction is severely limited by the distance the images
can show. The effective forecasting horizon of this technique is typically less than two
hours [154].

For forecast lead times between 4 and 2 h, a different image-based cloud prediction
method appears to be the most promising [155]. Instead of TSIs, this method uses satellite
imagery. Satellite data have become more commercially available in visible and infrared
images in recent years. Besides being available for longer lead time forecasts, the satellite-
based method poses new challenges as well. Firstly, the temporal resolution of satellite
images is usually much smaller compared with TSIs, and therefore, prediction requires
a nontrivial interpolation between images. Secondly, since the position of the Sun is
not captured in the images (as they show Earth instead of the sky), the exact area of
cloud shadows has to be calculated in a separate algorithm. After the consideration of
these additional steps, AI can be successfully applied to create PV power forecasts with
XGBoost [155], Support Vector Machines, and Gradient Boosting Decision Trees [156], as
well as deep learning [157] and Long Short-Term Memory networks [158].
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4.2. Advanced Trading Algorithms

The development of improved trading strategies is critically important for PV genera-
tors’ endeavor to enhance their profitability. In earlier years, the ramp-up of PV generation
received substantial government subsidies in many countries (e.g., in Belgium [159], Ger-
many [160], the UK [161], and China [162]), but this state of affairs is starting to change.
Subsidies to PV generators have been eliminated in the UK [161] and China [162]. The
Chinese experience provides ample opportunities to investigate the effects on generation
companies [162,163] and potential other incentive mechanisms for the adoption of PV
technology [164]. Initial PV support schemes are also (partially) retracted or substantially
modified in several countries in continental Europe (see the lists in [165,166]). It has to be
recognized that the PV generation sector is heavily reliant on government programs, and
therefore, sudden changes represent considerable financial risk. Furthermore, the economic
feasibility of PV projects without subsidies is still not guaranteed for a few more years
(even with widespread peer-to-peer trading [167]). PV plants that are already operating
have to prepare for the corresponding economic challenges. Even if they operate in a
jurisdiction with intact subsidy schemes, they can expect changes to encourage gradually
stepping out to electricity markets directly. However, the electricity market is a complex
configuration of many trading platforms for several products (e.g., energy and ancillary
services) with different lead times and technical requirements. Competent trading requires
a deep understanding of its components and the construction of an appropriate strategy.

An especially crucial decision for PV generators is the choice between energy and
control reserve markets. This is a relevant question for electricity producers in general
because energy and reserve products utilize the same production capacity of their units.
The two kinds of markets can be cleared simultaneously using unit commitment algo-
rithms (see, e.g., [168]), a setting that makes bidding easier for generators. In Europe,
the sequential clearing of energy and reserve markets is prevalent (the day-ahead energy
market is not coupled to reserve trading platforms [169]), although there are proposals
for coallocation in a common algorithm without unit commitment [170]. The considera-
tion and comparison of providing energy and reserves are especially important for PV
plants for two general reasons. The first one is that the growing penetration of weather-
dependent generation—including PV—has substantial effects on the expected behavior of
reserve market demand [171]. The second reason is that due to their connection to the grid
through power electronics devices, PV plants are capable of providing quick regulation
services—including automatic frequency regulation reserve (aFRR)—in their available
power range, i.e., between their available output and zero. The combination of these
observations holds the promise of advantageous business opportunities in the future.
Nonetheless, the trading decisions of PV generators have their own difficulties. Most
importantly, the uncertainty of the PV generation, as well as the price levels of energy
and reserve markets, has to be taken into account. All of these factors are suitable for
prediction with artificial intelligence algorithms. For PV generation, Section 4.1 provides
a summary, while price prediction has its own extended literature, e.g., with ensemble
learning methods [172], long and short-term memory networks with the sparrow search
algorithm [173], transfer learning [174], and integrated long-term recurrent convolutional
networks [175]. Several comparative studies are also available inspecting multiple machine
learning models, e.g., for applications in Spain [176] and Iran [177]. Most of the relevant
studies focus on energy prices, mainly because reserve markets are substantially more
complex and can be quite different in different regions. Nonetheless, their key indicators
can be predicted and utilized during the construction of trading strategies using statistical
and machine learning models [178] or mathematical programming [179].

Determining optimal PV generator trading strategies and the best structure of the
trading management tool remain important research questions. The control of power elec-
tronics can be adapted to the trading strategy, a step towards better economic performance
and flexibility of PV applications.
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5. Conclusions

Since adopting the Europe Green Deal in 2019, installed solar capacity has grown
rapidly in the EU countries. The rate of growth varies from country to country. Poland and
Hungary have seen the fastest growth in installed solar capacity over the last three years.
With fewer than 15 MW of installed solar capacity in 2012, the latter country increased
to 5500 MW by the end of 2023, comparable to the country’s current maximum energy
demand. One of the drawbacks of this rapid expansion may be that solar farms are being
built with more installation and design problems and need to be better thought out in terms
of operation and maintenance. However, as the second part of this article pointed out,
maximum profit can only be achieved through an adequately coordinated maintenance
and operation strategy. Inappropriate maintenance can result in losses of up to 20–30% for
solar farm owners.

Another valuable finding of the review is that some of the problems encountered in the
operation of solar parks depend on the installation environment. While in a northern coun-
try, the quick detection of snowfall and the quick removal of snow from the solar panels are
the biggest problems, in a southern or sandy desert environment, the cleaning of the solar
panels is the most significant general maintenance problem. Predictive maintenance-based
methods can simplify and speed up the detection of faulty solar panels and significantly
increase the yield of solar farms. It is not only the maintenance of solar panels that needs
attention; it is also essential to monitor the condition of inverters and switchgear, which
are responsible for a significant part of the outages in solar parks. Monitoring the cable
systems of aging solar parks can also significantly increase the availability of solar parks in
the future.

Most solar generation capacity is connected to the grid on the distribution level. There-
fore, DSOs have a significant role in answering the technical and institutional questions
regarding its integration. In line with the goals of reduced carbon emission, market liber-
alization, and improved grid efficiency, DSOs participate in several large-scale research
projects on solar energy and provide curated, open data sources for other scientific studies.
Projects such as EU-SysFlex, INTERRFACE, and OneNet are examples of projects funded
by the European Union, where DSOs have been involved in the development of innovative
mechanisms intended to create new markets, products, and services. The most essential
technical issues include the effects of intermittent solar generation on voltage quality and
grid stability, as well as the protection arrangements and sizing. Meanwhile, the new
institution type of VPP has been invented to aggregate and represent solar producers
in the environment of the power sector, including DSOs, TSOs, regulators, and various
market platforms.

The forecast of solar irradiation and the corresponding PV power is a well-established
field of research and practice with ever shorter lead times and innovative new prediction
methods. However, to achieve maximum profit for solar farms, it is necessary to consider
the weather and the regulation of the energy exchange in the country concerned. One of the
main tasks is deciding which market, e.g., the day-ahead market or an intraday market, is
the most suitable one to sell the electricity generated during a given hour. Many solutions,
including artificial intelligence, have been and are being developed in the literature to solve
these problems. It is essential to note that a country’s regulation and energy consumption
habits also play a significant role in these solutions. It seems from the review that due to
the operation algorithm highly depending on weather forecasting and many other country-
specific parameters, the applied artificial intelligence methods need some customization
before applying them from one region to another.
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