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Abstract: A three-phase multilevel inverter (MLI), synthesized with 31 levels in regard to its output
voltage, is used to provide the AC supply to a three-phase, squirrel cage induction motor. The
gating angles required for the 30 power switches on the MLI are optimized using both the genetic
algorithm (GA) and the grey wolf optimizer (GWO), in which the optimal angles are determined
through solving the trigonometric equations taken from Fourier analysis to target the minimum total
harmonic distortion (THD) at the MLI output. A simulation model and an experimental prototype
are developed for performance analysis and validation. The results demonstrate that the MLI is
effectively able to produce 31 levels of three-phase AC output voltage, with the THD not exceeding
5% when loaded with a resistive load and a three-phase induction motor. The voltage and current
are measured and recorded for different loads and operating conditions, including the amount of
energy consumed by the load. The results of the frequency analysis demonstrate that most of the
triple harmonics, which can harm the efficiency of the inverter, are cancelled.

Keywords: DC/AC (inverter); power converter; GA algorithm; GWO algorithm; induction motor

1. Introduction

Three-phase multilevel inverters (MLIs) are used in applications that require a medium
or high level of electrical power [1,2]. The control circuit in these inverters changes the
output voltage through changing the number of levels used and the frequency of the output
voltage, making them important power sources in many electrical systems. One of the
main tasks in MLI applications is the need to power a three-phase induction motor, which
are widely employed in numerous applications [3,4]. Recently, these inverters have been
used in important applications in the field of renewable energy [5-7]; furthermore, they
are also an essential component in the modern vehicle industry [8]. Researchers have
been working hard to develop efficient controllers for inverters through enhancing the
gating signals for the switches and reducing the number of switches required, to achieve
the minimum amount of losses resulting from on and off states [9-14]. In this research, a
three-phase MLI with 31 levels is designed, simulated, and implemented, using a Spartan
3E FPGA controller with an optocoupler, in order to drive the switches in a three-phase
inverter. The genetic algorithm [15,16] and the grey wolf optimization algorithm [17,18] are
employed as artificial intelligence techniques to solve and optimize the switching angles in
this three-phase MLI. The remainder of this paper is organized as follows: The proposed
topology of the three-phase MLI is shown in Section 2. The details of the methods employed
are presented in Section 3. A MATLAB simulation analysis and its results are discussed in
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Section 4. A prototype and the experimental results are presented in Section 5 and, finally,
the conclusions from the work are provided in Section 6.

2. Multilevel Inverter Topologies

Researchers are contributing to design topologies to reduce the switch count in MLIs
for better utilization of such inverters and higher efficiency. The classification of these
topologies in terms of the structure and selection, for medium power inverters and for PV
energy system applications, has been a valuable consideration in recent decades. A basic
unit in the proposed three-phase inverter topology is based on a basic unit reported by [19],
and in recent times it is known as a hexagonal switch cell (HSC), as shown in Figure 1.
An extended HSC unit with four DC sources, as reported by [20], is shown in Figure 2.
The topology has the merits of a simplified structure. The maximum output voltage is
(Esz + Erp) and the minimum output voltage is —(Egp + Egry). This topology can easily be
extended to include a higher number of levels. It only requires unidirectional switches. Eg;
and Eg; cannot be switched on together as an addition or subtraction. The same applies to
Esy and Egy. By selecting Eg; = Vdc, Egp = 5Vdc, Egy =2Vdc, and Egp = 10Vdc, a 31-level
output voltage can be produced.

H2
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Figure 1. Basic unit in the inverter structure.

——Es; =—Es1 —a 0O Er= Er:—

Figure 2. Extended HSC unit.
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A comparison of different basic units in a cascaded connection is shown in Table 1,
in terms of the number of levels, number of switches, number of DC sources, number of

phases (single or three-phase inverter), and advantages and disadvantages.

Table 1. Basic units in a cascaded connection.

No. of

No. of

No. of DC

Topology Levels Switches Sources No. of Phases Advantages Disadvantages
[19] 7 6 2 1 phase Simple structure Isolated DC sources
Cells share power Switches withstand
[21] 9 11 4 1 phase P different voltage
equally .
ratings
Symmetric and
[22] 17 12 4 1 phase . Complex control
asymmetric topology
Lower number of
[23] 17 10 4 1 phase Modular structure switches increases
power rating
Simple and modular
Proposed/ structure suitable for Switches exposed to
lejlase 31 10 4 3 phase cascaded topologies; various voltage

requires switches with

ratings

unidirectional operation

The proposed topology for the three-phase MLI with a reduced number of switches
consists of 10 switches (MOSFETs or IGBTs) and 4 DC sources for each single phase,
resulting in a total of 30 switches and 12 DC sources for the three-phase implementation, as
shown in Figure 3.
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Figure 3. Proposed topology of the three-phase, 31-level MLI.

To illustrate the principle of fabricating the multilevel inverter output, Figure 4 presents
the output voltage of a nine-level inverter with four angles (a1, ap, a3,and ay). These
angles are determined by solving trigonometric equations resulting from a Fourier analysis
of the output voltage of the inverter. The Fourier series of a staircase periodic function can
be expressed [24] as follows:
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vo(t) = {12—0 + ZZ=0 apcos(nwt) 4 bysin (nwt) (1)

where 4, is the average value of the output voltage, and a, and b, are even and odd
components of the periodic staircase signal, respectively. The staircase waveform possesses
a quarter wave symmetry, which sets the a,, a, and the even b, values to zero, and
simplifies Equation (1) to the following:

vo(t) = 2?:1,3,5,7,9,11 by sin(nwt) )

S

2

b, = 4:; [/041 sin(nwt)d(wt) + /vf sin(nwt)d(wt) + sin(nwt)} 3)

Xm—1
4V 4.

bn = . ZZ:1,3,5,7,9,11...... COS(T’lle) (4)

— wl
Q p Q3 Oy Q5 Qg Q7 Oy

V, 1

_]/'4 +
7]/5 4

Figure 4. A nine-level inverter and its timing instants.

These equations can be solved for any number of levels in the MLI. In a three-phase
system, the triple harmonics (3rd, 9th, 15th . ..) are eliminated implicitly. To eliminate other
harmonics (e.g., the 5th, 7th, 9th, and 11th harmonics), the following equations are solved
for the optimum values of the gating angles:

by = indc {cos(a1) + cos(az) + cos(az) + cos(ag)} = Viyna (5)
bs = 4;/7_‘56 {cos(5a1) + cos (5a2) + cos(5a3) + cos(5a4)} =0 (6)
by = % {cos(7ay) + cos (7az) + cos(7a3) + cos(7ag)} =0 )
by = 4;/7_‘? {cos(11aq) + cos (11ap) + cos(11az) + cos(1lay)} =0 (8)

where Vf, 4 is the fundamental output voltage. Intelligent algorithms are employed to
find the optimal solution for the values of these angles, relying on the selective harmonic
elimination (SHE) technique with the restriction #; < a < 7. The other timing instants
for one complete cycle of the output voltage are derived from these two angles.

3. Artificial Intelligence Algorithms

Artificial intelligence (Al) algorithms work efficiently to solve mathematical problems,
resulting in an improvement in the performance of engineering systems [25]. In this
research, the genetic algorithm (GA) and the grey wolf optimization (GWO) algorithm
are used to find the optimum switching angles for the inverter. A curve fitting principle
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is employed to determine the optimum solution between these two algorithms. For a
three-phase inverter system with 31 levels, 15 angles are required for Phase A, and phase
shifts of 120° and 240° are set for Phase B and Phase C, respectively. The inverter is operated
at a modulation index of M = 0.7. Other values in the modulation index can be implemented
following the same principle, which are summarized in Table 2.

Table 2. Switching angles for a 31-level inverter.

Angle % (.7} L% L7 as .73 L% ng &g X109  ¥11 &2 &13 K14 K5

GA 3.3 6.1 13.1 16.7 23.1 272 335 387 455 522 585 662 747 83.8 85

GWO 1.2 11.8 23.3 322 42.2 506 589 674 712 796 804 851 859 86 86

Optimum 24 521 8.42 14.2 16.3 26 274 316 371 429 505 584 674 786 85
4. Results

4.1. Simulation Results

The proposed three-phase, 31-level MLI was built and simulated using the MATLAB
Simulink software version R2019a, using the optimized angles provided in Table 1. The
three single-phase inverters are Y-connected to form a three-phase 50 Hz AC supply source,
as shown in Figure 3. Each phase has 10 power switches (IGBTs) and 4 DC sources. The
IGBTs work in complementary mode. Switches T2, T4, T6, T8, and T10 complement
T1, T3, T5, T7, and T9, respectively. A voltage of Vpc = 24 V is used for each staircase
level. The other three DC sources are 2Vpc =48 V, 5Vpc = 120 V, and 10Vpc =240 V. To
generate 31 levels in the inverter output voltage, multiple paths are chosen for the electrical
current to pass through the power switches. Here, several DC sources are used; either
adding them together, subtracting them from each other, or using individual sources. The
peak output phase voltage = 15 (level) x 24 V (one staircase voltage) = 360 V. The peak
line voltage = 580 V and Vi,rms) = 410 V. The three-phase induction motor specifications
used for the simulation are as follows: squirrel cage (5.4 HP, 4 KW, 50 Hz, 1430 RPM).
The Simulink model of the 31-level, three-phase MLI connected to a three-phase squirrel
cage induction motor load is shown in Figure 5a. The block diagram consists of three
main circuits, each of which has devices attached to measure the voltage, current, and
other variables.
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Figure 5. Cont.
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Figure 5. (a) Simulink model of the 31-level, three-phase MLI connected to a three-phase motor.
(b) Simulink model of the three-phase, 31-level MLI showing the gating signals.
The first circuit is a three-phase inverter, as shown in Figure 5b, which consists of a
three star-connected single-phase inverter. There are 30 insulated gate bipolar transistors
(IGBTs) with diodes and 12 DC sources. The output terminals of the three-phase inverter
are points (+A, +B, and +C), while points (—A, —B, and —C) are connected to form the
neutral point in the star connection.
The second circuit involves the operation of the switches based on artificial intelligence
algorithms and will be detailed later. The load circuit is the third part and consists of a
static load represented by a different set of resistors and a dynamic load represented by a
three-phase squirrel cage induction motor. The detailed fabrication of the gating periods in
Phase A is shown in Table 3; the asterisk (*) represents the complementary mode.
Table 3. Switch state for the positive half period.
TT21* T'l;3* TII6‘5* T£7* TI(? " Level Duration Shift
1 1 1 1 1 0 a1 0
0 1 1 1 1 1 Ny — o N1
1 1 0 1 1 2 N3 — Ko 4%
0 1 0 1 1 3 N4 — Q&3 a3
1 0 1 1 1 4 N5 — 0y 0y
0 0 1 1 1 5 g — &5 a5
1 0 0 1 1 6 Ay — Qg Ag
0 0 0 1 1 7 ong — Ky oy
1 1 1 0 1 8 ng — &g ag
0 1 1 0 1 9 10 — &9 X9
1 1 0 0 1 10 N1 — &10 n10
0 1 0 0 1 11 N1 — K11 n11
1 0 1 0 1 12 13 — &12 K12
0 0 1 0 1 13 N4 — K13 n13
1 0 0 0 1 14 15 — K14 K14
0 0 0 0 1 15 T — 20(15 o5
1 0 0 0 1 14 N5 — K14 7T — 15
0 0 1 0 1 13 14 — K13 7T — K14
1 0 1 0 1 12 X13 — K12 T — K13
0 1 0 0 1 11 N1y — K11 7T — K12
1 1 0 0 1 10 11 — &10 7T — K11
0 1 1 0 1 9 o190 — K9 T — K10
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Table 3. Cont.

T1 T3 T5 T7 T9 . .
To * T4 * T6 * T8 * T10 * Level Duration Shift
1 1 1 0 1 8 g — &g T — &g
0 0 0 1 1 7 ag — ay T—ag
1 0 0 1 1 6 ay — Qg T — 0y
0 0 1 1 1 5 ng — 5 T — &g
1 0 1 1 1 4 N5 — Ky 7T — 5
0 1 0 1 1 3 g — a3 TT— 0y
1 1 0 1 1 2 a3 — Qp T—a3
0 1 1 1 1 1 ay —aq T— 0y
1 1 1 1 1 0 nq T— 0

A detailed Simulink model of the switching controls is shown in Figure 6. The gating
signals for phases B and C are derived from Phase A, by adding phase shifts of 120° and
240°, respectively.
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ST

T
¥
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T

bheld Libdmat
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S7 and S8

T
TE

[}

3

Negative Cycle
S7 and S8

S$9 and $10

Figure 6. Fabrication of the gating periods for Phase A.

The three-phase output and line voltages for the 31-level MLI are shown in Figure 7
and Figure 8 respectively.

The phase currents supplied by the 31-level MLI to the induction motor are shown in
Figure 9. The current from 0 to 1 sec is about 4.25 A (rms) when the motor is operating at
no load. When the motor is subjected to an external 20 Nm load at an instance from 1 s to
2 s, the current increases to 11.3 A (rms). Finally, from 2 s to 3 s, the current increases to
about 24 A (rms), when the motor is subjected to a 40 Nm load. Figure 10 shows a phase
shift of about 36° between the supply voltage and the current, indicating a lagging power
factor of 0.81.

Figure 11 shows the measurements for the three-phase squirrel cage induction motor,
consisting of the motor speed, electromagnetic torque, and stator current. The motor
reaches the base speed of about 1500 rpm at no load. This speed is then reduced because of
the external load applied at an instance between 1 s and 2 s. The stator current increases
from no load to higher values to reflect the load torque applied. The power consumed
consists of active power, P, and reactive power, Q, as shown in Figure 12.
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Figure 7. Phase voltages from the simulation.
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Figure 8. Line voltages from the simulation.

The fast Fourier transform toolbox in the MATLAB software revealed that the harmonic
content in the inverter’s phase voltage is relatively low; the total harmonic distortion THD
is about 4.69%, and the recorded value of the line voltage THD is 4.05%, as shown in
Figures 13 and 14, respectively. The motor is considered to be an inductive load that
filters some harmonics, resulting in a low harmonic distortion THD of 1.54% for the motor
current, as shown in Figure 15. Figure 16 shows values for the DC component = 0.002039
and some of the harmonic contents, which have low values compared to the fundamental
50 Hz component.
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Figure 9. Squirrel cage motor currents.
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Figure 10. Phase shift between the voltages and currents.
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Figure 11. Motor measurements at different loads.
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Figure 12. Power consumed by the load.
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Figure 13. Phase voltage.
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Signal
Selected signal: 150 cycles. FFT window (in red): 2 cycles
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100 'Fundamen'tal (50Hz) = 34.2, THQ= 1.54%

o0
o

(o))
(=

H
o

N
o

Mag (% of Fundamental)

o
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Figure 15. Current harmonic content.

Sampling time = 3.28987e-05 s
Samples per cycle = 608
DC component = 0.002039
Fundamental = 34.2 peak (24.18 rms)
THD = 1.54%
0 Hz (DC) : 0.01% 270.0°
25 Hz 0.02% -48.2°
50 Hz (Fnd) : 100.00% -28.7°
75 Hz 0.03% 160.7°
100 Hz (h2): 0.01% 166.2°
125 Hz 0.01% 170.1°
150 Hz (h3): 0.01% 174.3°
175 Hz 0.01% 176.4°
200 Hz (h4) : 0.01% 181.3°
225 Hz 0.00% 193.4°
250 Hz (hS) : 1.45% -84.4°
275 Hz 0.00% 152.2°
300 Hz (heé) : 0.00% 159.2°
325 Hz 0.00% 156.6°
350 Hz (h7): 0.47% 93.5°
375 Hz 0.00% 188.0°
400 Hz (h8) : 0.00% 181.8°

Figure 16. List of harmonics content in inverter current.

4.2. Practical Results
4.2.1. Generating Gating Pulses

The Spartan 3E controller is used as the processor unit in the experiment. The clock
frequency of the controller is 50 MHz; therefore, the period of each clock is 20 ns. To cover
one 50 Hz AC supply cycle at the inverter output, a total of 20 ms/20 ns = 1,000,000 clocks
linked to the Spartan 3E controller are required. A prototype of the proposed three-phase,
31-level MLI is designed and built, as shown in Figure 17a. The operation of 30 switches
is programmed using the Spartan 3E controller through writing a program in the VHDL
language, then running a simulation such that the appropriate pulses can operate the
switches. The simulated pulses for one cycle of operation are shown in Figure 17b.
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Power quality Inverter A .= Inverter B Inverter C

e

Analyzer " . & ——

VHDL
program

(b)

Figure 17. (a) Experimental set up for the implementation of the proposed three-phase, 31-level MLI.
(b) Spartan 3E simulated pulses for the IGBTs.

The corresponding number of pulses for each optimized angle, as shown in Table 1, is
provided in Table 4.

Table 4. Corresponding pulse counts by the Spartan 3E clocks for the 15 angles.

ay = 6778 ay =14472  a3=23389  wg=39472  a5=45445  ac=62,889  ay=76278  wag=87,917
19 =103,056  aq9=119222 a3y =140,361 aqp =162278 g3 =187,389  ayq = 218,445 ap5 = 236,111
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Table 5 details the IGBT states for the positive half cycle of Phase A. The IGBT states
for phases B and C are determined by considering a 120° phase shift between the three

phases. The asterisk (*) represents the complementary mode.

Table 5. IGBT states for the positive half cycle of phase A.

T1 T3 T5 T7 T9 Duration

T2 * T4 * Te6 * T8 * T10 * PHASE A
1 1 1 1 1 1 aq 0— 6778
2 0 1 1 1 1 ny — g 6779 — 14,472
3 1 1 0 1 1 a3 — iy 14,473— 23,389
4 0 1 0 1 1 Ny — a3 23,390 — 39,472
5 1 0 1 1 1 N5 — oy 39,473 — 45,445
6 0 0 1 1 1 ng — 5 45,446 — 62,889
7 1 0 0 1 1 a7 — &g 62,890 — 76,278
8 0 0 0 1 1 ag — ay 76,279 — 87,917
9 1 1 1 0 1 ng — g 87,918 — 103,056
10 0 1 1 0 1 19 — Qo 103,057 — 119,222
11 1 1 0 0 1 11 — &9 119,223 — 140,361
12 0 1 0 0 1 M1y — K11 140,362 — 162,278
13 1 0 1 0 1 13 — 012 162,279 — 187,389
14 0 0 1 0 1 N4 — Q13 187,390 — 218,445
15 1 0 0 0 1 N5 — A4 218,446 — 236,111
16 0 0 0 0 1 T — 2015 236,112 — 263,890
17 1 0 0 0 1 X5 — A4 263,891 — 281,557
18 0 0 1 0 1 N1q — X3 281,558 — 312,613
19 1 0 1 0 1 13 — 012 312,614 —337,725
20 0 1 0 0 1 01y — K11 337,726 — 359,643
21 1 1 0 0 1 a1 — A 359,644 — 380,783
22 0 1 1 0 1 19 — Qo 380,784 — 396,950
23 1 1 1 0 1 ng — g 396,951 — 412,089
24 0 0 0 1 1 ag — ay 412,090 — 423,729
25 1 0 0 1 1 a7 — g 423,730 — 437,120
26 0 0 1 1 1 ng — &5 437,121 — 454,564
27 1 0 1 1 1 a5 — 0y 454,565 — 460,538
28 0 1 0 1 1 ny — a3 460,539 — 476,622
29 1 1 0 1 1 a3 — &y 476,623 — 485,540
30 0 1 1 1 1 Ny — g 485,541 — 493,235
31 1 1 1 1 1 aq 493,236 — 500,000

A VHDL file, based on the data in Table 4, used to obtain the 31-level MLI is uploaded
to the Spartan 3E controller. The controller outputs 30 gating signals. These gating signals
are fed to the 30 appropriate power switches. The 10 power switches in each phase’s
circuitry are designed to work in complementary mode, as shown in Figure 18 for Phase
A. Also shown are the 120° phase shifts between phases A, B, and C. A dead time of
4 psec is added between the outgoing and incoming switches, in order to avoid all possible

short circuits.

4.2.2. The Proposed 31-Level MLI Operating at No Load

The system is operated at no load to monitor the phase and line voltage. Figure 19a
shows the three-phase output voltage at 50 Hz and 122 Vrms. The line voltage (Vab) is

shown in Figure 19b at 50 Hz and 210 Vrms.
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Figure 18. Gating pulses for the IGBTs in Phase A and the phase shift between phases.
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The power and quality analyzer HZCR-5000 is used to record the results. The three-
phase voltage, THDs, and phase shift between the phases are shown in Figure 20a, and
Figure 20b respectively.
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Figure 20. The three-phase voltage and THDs at no load: (a) phase voltage, (b) phase THDs.

The line voltage, THDs, and phase shift between the phases are shown in Figure 21a,
and Figure 21b respectively.
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The phase shifts between the three-phase and the three-line voltage are shown in
Figure 22a and Figure 22b, respectively. The voltage unbalance is very low and about 0.4%.
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Figure 22. Phase shift (a) phase voltage shift (b) line voltage shift.
4.2.3. Load Test

The load test is divided into two parts: a static load using a three-phase resistive
load and a dynamic load using a three-phase squirrel cage induction motor. In the static
load test, a Y-connected resistive load is connected to the output terminals of the 31-level
MLIL The THD of the phase and line voltage are well below the 5% limit, as shown in
Figure 23a,b, respectively. The details of the consumed power are shown in Figure 23c,
where the power factor is almost at unity due to the purely resistive load.

The three phase currents in Figure 24a have an average THD value below 5%, which is
compatible with the respective voltage values. The relationship between the phase voltage
and current in the Phase A supply is shown in Figure 24b. The other phases responded
with very similar characteristics. Figure 24c shows the phase difference between the three
phase currents. Although the load is resistive, there is a small value difference in the phase
between the voltage and current, which is normal in practical work. The voltage unbalance
is recorded as 1.2%, which is a low value.
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Figure 23. Phase and line voltage values of the THDs and consumed power for a resistive load:
(a) phase voltage (resistive load) THDs, (b) line voltage THDs, (c) consumed power.

A three-phase squirrel cage motor is used in the dynamic load test. The motor has the
following specifications: three-phase induction motor (SIEMENS) 220/380 A/Y, 0.18 kW,
1315 rpm, 50 Hz. When the motor is at no load, the 31-level MLI supplies a relatively small
three-phase current of about 0.25 A per phase, as shown in Figure 25a. The relationship
between phase voltage and current in phase B is shown in Figure 25b. The current can be
seen to lag behind the voltage, as the load is now inductive. The recorded THDs are less
than 5%, as shown in Figure 25c.

The harmonic analysis is shown in Figure 26a, Blue color for phase A, green for phase
B, and grey for phase C, where most of the triple harmonics were either eliminated or exist
at low values. The power consumed by the motor, as in Figure 26b, shows the effect of the
inductive load on the total VAR power.
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Figure 26. Motor current harmonics and consumed power at no load: (a) harmonic analysis, (b) con-
sumed power.

The motor is later subjected to a fan load. The 31-level MLI supplied the current at
about 0.75 A per phase to the motor to compensate for the applied load torque, as shown
in Figure 27a. The THDs are still low, averaging about 3.8%, as shown in Figure 27b. The

power consumed by the motor at load is shown in Figure 27c.
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Figure 27. Motor current, THDs, and consumed power at load: (a) motor currents, (b) motor THDs,
(c) consumed power.

Using the MATLAB software, a three-phase motor was chosen with the following
specifications: squirrel cage (5.4 HP (4 KW), 400 V, 50 Hz, 1430 RPM). To obtain an output
voltage from the inverter of 400 volts, the value of the continuous source Vdc must be
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equal to 24 volts in the Simulink model. On the practical side, a three-phase delta induction
motor was connected to a voltage of 210 volts, which requires a Vdc voltage of 12 volts.
Here, the difference in the value of the inverter output voltage between the simulation and
the practical results appeared.

5. Conclusions

A three-phase, 31-level MLI is designed, modeled, and experimentally tested, as
described in this paper. The genetic algorithm and grey wolf optimization algorithm are
used to solve the trigonometric equations resulting from a Fourier analysis of the inverter
voltages, in order to find the ideal angles to cancel most of the triple harmonics. The
optimal angles are then chosen from the ideal angles, between the two algorithms, through
curve fitting. The inverter is loaded with a resistive load and a three-phase induction motor.
The THD values are not in excess of 5% for all the operating conditions, for the phase and
line voltages or for the load currents. The frequency analysis shows that most of the triple
harmonics are eliminated. The simulation of the three-phase MLI system is investigated
using the MATLAB Simulink model, and the simulation results are in good agreement with
the practical results. In all the operating conditions for the different resistive loads, as well
as when the induction motor is loaded, the inverter works smoothly with a stable THD
value, which indicates high efficiency of the practical model. The proposed 31-level MLI
system can potentially become an efficient and reliable three-phase inverter for various
static and dynamic loads. Table 6 summarizes the inverter’s output regarding the phase
voltage, line voltage, and current resulting from the resistive load and the induction motor.
The amount of THD did not exceed 5%, on average; noting that the value of the THD
is lower in regard to the inductive load compared to the resistive load, due to filtering
characteristic of the inductive load.

Table 6. Summary of the inverter output voltage and current.

Phase Voltage Line Voltage Current
RMS THD Phase Shift RMS THD Phase Shift RMS THD
V) % Unbalance% V) % Unbalance% (mA) %
No load 119 3.8 0.4 207 3.1 04 — —
Resistance 119 4.6 0.4 207 4.0 0.4 245 4.7
Motor/No load 121 4.6 0.4 210 4.0 04 235 4.0
Motor/Load 121 4.6 0.4 210 4.0 04 831 3.6

6. Future Suggestions

The THD value has a fundamental impact on the efficiency and utility of an inverter.
Two main factors significantly reduce the amount of FAD. First, optimal values should be
used in regard to the operating angles of the power switches. This is achieved through
choosing the best angles from a larger group of algorithms, which represents more algo-
rithms than those considered in this research. Second, the number of switches used should
be reduced by devising a topology that ensures smooth current pathways while, at the
same time, obtaining a larger number of inverter levels and contributing to reducing the
number of DC sources needed by the inverter.

Author Contributions: Conceptualization, T.A.H.; Data curation, D.I.; Formal analysis, T.A.H.; Inves-
tigation, T.A.H.; Methodology, D.I; Project administration, D.I; Resources, T.A.H. and M.T.; Software,
T.A.H,; Supervision, D.I. and M.T.; Validation, D.I. and M.T.; Visualization, T.A.H.; Writing—original
draft, T.A.H.; Writing—review and editing, D.I. and M.T. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.



Energies 2024, 17, 1267 21 of 22

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Maheswari, K.; Bharanikumar, R.; Arjun, V.; Amrish, R.; Bhuvanesh, M. A comprehensive review on cascaded H-bridge multilevel
inverter for medium voltage high power applications. Mater. Today Proc. 2021, 45, 2666-2670. [CrossRef]

Xing, L.; Wei, Q.; Li, Y. A Practical Current Source Inverter-Based High-Power Medium-Voltage PV System. IEEE Trans. Power
Electron. 2023, 38, 2617-2625. [CrossRef]

Ramesh, A.; Sekhar, O.C.; Kumar, M.S. A Novel Three Phase Multilevel Inverter with Single DC Link for Induction Motor Drive
Applications. Int. J. Electr. Comput. Eng. (IJECE) 2018, 8, 763-770. [CrossRef]

Sengamalai, U.; Anbazhagan, G.; Thentral, TM.T.; Vishnuram, P.; Khurshaid, T.; Kamel, S. Three Phase Induction Motor Drive: A
Systematic Review on Dynamic Modeling, Parameter Estimation, and Control Schemes. Energies 2022, 15, 8260. [CrossRef]
Durgalakshmi, K.; Anbarasu, P.; Karpagam, V.; Venkatesh, A.; Kannapiran, B.; Sharma, V. Utilization of Reduced Switch
Components with Different Topologies in Multi-Level Inverter for Renewable Energy Applications-A Detailed Review. In
Proceedings of the 2022 5th International Conference on Contemporary Computing and Informatics (IC3I), Uttar Pradesh, India,
14-16 December 2022; pp. 913-920. [CrossRef]

Bughneda, A.; Salem, M.; Richelli, A ; Ishak, D.; Alatai, S. Review of Multilevel Inverters for PV Energy System Applications.
Energies 2021, 14, 1585. [CrossRef]

Kala, P; Arora, S. A comprehensive study of classical and hybrid multilevel inverter topologies for renewable energy applications.
Renew. Sustain. Energy Rev. 2017, 76, 905-931. [CrossRef]

Poorfakhraei, A.; Narimani, M.; Emadi, A. A Review of Multilevel Inverter Topologies in Electric Vehicles: Current Status and
Future Trends. IEEE Open ]. Power Electron. 2021, 2, 155-170. [CrossRef]

Srinivasan, G.K,; Rivera, M.; Loganathan, V.; Ravikumar, D.; Mohan, B. Trends and Challenges in Multi-Level Inverter with
Reduced Switches. Electronics 2021, 10, 368. [CrossRef]

Vemuganti, H.P,; Sreenivasarao, D.; Ganjikunta, S.K.; Suryawanshi, H.M.; Abu-Rub, H. A Survey on Reduced Switch Count
Multilevel Inverters. IEEE Open |. Ind. Electron. Soc. 2021, 2, 80-111. [CrossRef]

Siddique, M.D.; Igbal, A.; Memon, M.A.; Mekhilef, S. A New Configurable Topology for Multilevel Inverter With Reduced
Switching Components. IEEE Access 2020, 8, 188726-188741. [CrossRef]

Antar, R K; Hussein, T.A.; Abdullah, A.M. Design and implementation of reduced number of switches for new multilevel inverter
topology without zero-level state. Int. . Power Electron. Drive Syst. (I[PEDS) 2022, 13, 401-410. [CrossRef]

Hussein, T.A.; Ishak, D. Three-phase MLI with Reduced Number of Switches and Hybrid Optimized Switching. In Proceedings
of the 2023 International Conference on Energy, Power, Environment, Control, and Computing (ICEPECC), Gujrat, Pakistan, 8-9
March 2023; pp. 1-6. [CrossRef]

Sardar, M.U.; Vaimann, T; Kiitt, L.; Kallaste, A.; Asad, B.; Akbar, S.; Kudelina, K. Inverter-Fed Motor Drive System: A Systematic
Analysis of Condition Monitoring and Practical Diagnostic Techniques. Energies 2023, 16, 5628. [CrossRef]

Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021, 80,
8091-8126. [CrossRef]

Lambora, A.; Gupta, K.; Chopra, K. Genetic Algorithm-A Literature Review. In Proceedings of the 2019 International Conference
on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 14-16 February 2019; pp. 380-384.
[CrossRef]

Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S. An improved grey wolf optimizer for solving engineering problems. Expert Syst.
Appl. 2021, 166, 113917. [CrossRef]

Bansal, J.C.; Singh, S. A better exploration strategy in Grey Wolf Optimizer. ]. Ambient Intell. Humaniz. Comput. 2021, 12,1099-1118.
[CrossRef]

Babaei, E.; Laali, S.; Alilu, S. Cascaded Multilevel Inverter with Series Connection of Novel H-Bridge Basic Units. IEEE Trans. Ind.
Electron. 2014, 61, 6664—6671. [CrossRef]

Dhanamjayulu, C.; Arunkumar, G.; Pandian, B.J.; Kumar, C.V.R.; Kumar, M.P; Jerin, A.R.A.; Venugopal, P. Real-Time Imple-
mentation of a 31-Level Asymmetrical Cascaded Multilevel Inverter for Dynamic Loads. IEEE Access 2019, 7, 51254-51266.
[CrossRef]

Babaei, E.; Laali, S.; Bayat, Z. A Single-Phase Cascaded Multilevel Inverter Based on a New Basic Unit with Reduced Number of
Power Switches. IEEE Trans. Ind. Electron. 2015, 62, 922-929. [CrossRef]

Alishah, R.S.; Hosseini, S.H.; Babaei, E.; Sabahi, M. A New General Multilevel Converter Topology Based on Cascaded Connection
of Submultilevel Units with Reduced Switching Components, DC Sources, and Blocked Voltage by Switches. IEEE Trans. Ind.
Electron. 2016, 63, 7157-7164. [CrossRef]

Alishah, R.S.; Hosseini, S.H.; Babaei, E.; Sabahi, M. Optimization Assessment of a New Extended Multilevel Converter Topology.
IEEE Trans. Ind. Electron. 2017, 64, 4530-4538. [CrossRef]


https://doi.org/10.1016/j.matpr.2020.11.519
https://doi.org/10.1109/TPEL.2022.3211409
https://doi.org/10.11591/ijece.v8i2.pp763-770
https://doi.org/10.3390/en15218260
https://doi.org/10.1109/IC3I56241.2022.10073430
https://doi.org/10.3390/en14061585
https://doi.org/10.1016/j.rser.2017.02.008
https://doi.org/10.1109/OJPEL.2021.3063550
https://doi.org/10.3390/electronics10040368
https://doi.org/10.1109/OJIES.2021.3050214
https://doi.org/10.1109/ACCESS.2020.3030951
https://doi.org/10.11591/ijpeds.v13.i1.pp401-410
https://doi.org/10.1109/ICEPECC57281.2023.10209481
https://doi.org/10.3390/en16155628
https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1109/COMITCon.2019.8862255
https://doi.org/10.1016/j.eswa.2020.113917
https://doi.org/10.1007/s12652-020-02153-1
https://doi.org/10.1109/TIE.2014.2316264
https://doi.org/10.1109/ACCESS.2019.2909831
https://doi.org/10.1109/TIE.2014.2336601
https://doi.org/10.1109/TIE.2016.2592460
https://doi.org/10.1109/TIE.2017.2669885

Energies 2024, 17, 1267 22 of 22

24. Rashid, M.H. Power Electronics, Devices, Circuits and Applications; Pearson Education Limited: London, UK, 2014.
25. Almomani, O. A Feature Selection Model for Network Intrusion Detection System Based on PSO, GWO, FFA and GA Algorithms.
Symmetry 2020, 12, 1046. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.3390/sym12061046

	Introduction 
	Multilevel Inverter Topologies 
	Artificial Intelligence Algorithms 
	Results 
	Simulation Results 
	Practical Results 
	Generating Gating Pulses 
	The Proposed 31-Level MLI Operating at No Load 
	Load Test 


	Conclusions 
	Future Suggestions 
	References

