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Abstract: With the promotion of the dual carbon target, the scale of the wind power grid connection
will significantly increase. However, wind power has characteristics such as randomness and volatil-
ity, and its grid connection challenges the pressure of system peak shaving, making it increasingly
difficult to regulate the power system. To solve the problem of wind power abandonment, the
positive and negative peak shaving characteristics of wind power were first analyzed. Based on this,
it is proposed that demand response resources and energy storage with adjustable characteristics
are used as the new means of wind power consumption. Together with the thermal power units,
they participate in the optimization and scheduling of the power grid, forming a coordinated and
optimized operation mode of source load storage. With the goal of minimizing system operating
costs, a two-stage economic scheduling model was formed for the day-ahead and intra-day periods.
Finally, optimization software was used to solve the problem, and the simulation results showed
the effectiveness of the proposed economic scheduling model, which can improve the system’s new
energy consumption and reduce the system’s operating costs.

Keywords: demand response; wind power consumption; source-load coordination; energy storage

1. Introduction

A new power system characterized by equipment for renewable energy power gen-
eration and new energy grid-connecting technologies, has gradually emerged with rapid
development [1–5]. According to the national electricity industry statistics released by
the National Energy Administration of China [6], China’s installed wind power capacity
is increasing year on year, and its volatility and the need for anti-peak regulation will
cause electricity costs to rise in proportion to this trend. If only traditional dispatching
methods are used to smooth out system fluctuations, it will have an impact on the stable
operation of thermal power units, and will also lead to serious abandoned wind and light
problems [7–11]. Enhancing the consumption level of wind power is a pivotal issue within
modern power systems. This problem requires urgent attention and resolution due to the
presence of large-scale wind power integration.

With the reform of electricity marketization, demand response (DR) resources have been
involved in the dispatching operation as adjustable resources of the power system [12–14].
In recent years, the Northeast Energy Regulatory Bureau and relevant departments have
formulated implementation plans regarding power demand response, aiming to further
implement the work of the National Energy Board to comprehensively promote the de-
velopment of the electricity market and improve the electricity market rules system. The
ability of DR resources to absorb wind power has been paid more and more attention by
experts. The literature [15,16] investigated the impact of price-based demand response
resources on the disruption of wind power consumption and highlighted their growing
significance; these resources play an increasingly crucial role in maintaining the equilibrium
between the short-term power supply and demand, considering the cross-price elasticity
coefficient of load changes between hours to adjust the demand situation in response to
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price changes. The literature [17] analyzed the results of PDR and IDR participation in
peaking, and the results showed that the two are interrelated and independent, and could
be coordinated according to the system’s requirements for economy and reliability. The liter-
ature [18] established a model for demand response resource agents to provide DR standby
resources, and a two-stage stochastic model was used to achieve optimal scheduling of
the DR standby resources. The literature [19] established a centralized control and tariff
response-based wind power consumption strategy, which considered different users to
develop different strategies. The studies included only considered the scheduling of the de-
mand response resources, so the paper added energy storage resources as a means of wind
power consumption, making the system more flexible in the use of regulatory resources.

The literature [20,21] proposed that DR resources are involved at the planning level
to improve the system flexibility, reduce the capacity demand of the wind power access
system peaking units, and improve the system operation efficiency. The literature [22–26]
established a stochastic unit combination model to analyze the impact of wind power
uncertainty on the system. It was somewhat better than the deterministic model [8] in
terms of economy and reliability. The literature [27] considered the combination of both
uncertainty optimization methods and the DR consumption of wind power, and the results
demonstrated that both can work synergistically to reduce the cost incurred by the uncer-
tainty of wind power. The literature further improved the grid-connected consumption of
new energy generation in practical applications, while also reducing carbon emissions to
improve the operational performance of comprehensive energy. This article also provides
inspiration for future research to introduce the goal of reducing carbon emissions in inte-
grated energy systems, while balancing the low-carbon and economic benefits. However,
there are the following shortcomings: one is the volatility and randomness of the new
energy output, and the uncertainty regarding how the demand response load will affect the
accuracy of the day-ahead dispatching plan formulated by the grid. Another point is that
most of the research in the literature only considers the scheduling situation of the power
grid in the day ahead, and only considers the scheduling of the demand response resources
at the day-ahead timescale. The advantage of its multi-timescale characteristics has not
been emphasized in many DR resource scheduling models. In the literature [28], one study
proposes an optimal scheduling model for the integrated energy system within the park,
incorporating multiple demand response models. To minimize the scheduling cost within
the park, an enhanced particle swarm algorithm and a fuzzy chance-conditional constraint
planning method were employed to formulate a rolling optimization model.

There are also many studies on the coordinated optimal dispatch of adjustable re-
sources on the source-side and load-side to reduce the system’s wind curtailment [29,30].
The literature [29] proposes a low-carbon economic operation model with a source-load in-
teraction. In [30], a multi-scenario optimization strategy for energy accumulation in heating
networks considering source-load uncertainty was proposed to improve the operational
performance of the integrated energy sources.

In recent years, energy storage systems have gained attention as potential solutions
to mitigate the intermittent nature of renewable energy sources such as wind power and
photovoltaics. Research on energy storage has also progressed considerably. Considering
the different energy storage technologies, mechanical energy storage systems are among
the various options considered to address the intermittency of renewable energy sources
(e.g., flywheel energy storage [31,32] and compressed air [33]), electrical energy storage
(e.g., energy storage batteries [34] and supercapacitors [35]), and other types of energy
storage (e.g., hydrogen, biomass, and thermal energy storage [36]). Each type of energy
storage is dependent on its own charging and discharging characteristics, as well as its
primary role in the grid. Energy storage can also regulate loads through ancillary services
with the aim of balancing the grid [37]. Moreover, energy storage systems can also meet
the reserves to cope with the uncertainty of wind power generation [38], thus improving
the stable operation of the system, and can also improve power quality [39].
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Among the theoretical studies on the optimal dispatching of source-grid load and
storage, the literature [40–45] presents innovations in terms of the integrated energy man-
agement system, hierarchical optimization of the model, and fast capability of the solution
algorithm to improve the new energy consumption capacity of the system by developing
a scheduling scheme. However, these studies have also considered the inadequacies in
their research, and most of these model studies only consider the dispatching situation of
the grid the day before, which may cause the effects of inefficient grid dispatching, energy
waste, and inability to cope with unexpected situations; these factors impede the safe,
stable, and economically efficient operation of the grid.

To address the above-mentioned problems in the demand response and new energy
development, this paper coordinates and optimizes the thermal power, wind power, energy
storage devices, and demand response resources on two timescales: day-ahead and intra-
day. Through the demand response mechanism, the flexible load, as one of the dispatching
resources, and the energy storage plant jointly participate in the dispatching plan, and
establish an optimal dispatching model with the objective of minimizing the operating cost
of the power system on both the day-ahead and intra-day-ahead timescales. The primary
objective is to maximize wind power utilization while ensuring its optimal consumption.
The method is also analyzed using arithmetic results to improve the system peaking
flexibility and to improve the wind power consumption capacity. In response to the above-
mentioned demand response and issues in the development of new energy, the first part
of this article analyzes the characteristics of wind power generation. The second part
coordinates and optimizes the thermal power, wind power, energy storage equipment, and
demand response resources in two stages: day-ahead and intra-day, forming a scheduling
mode for coordinated and optimized operation of source load storage, and modeling and
solving it. Finally, CPLEX was used as a solving method, and the results showed the
economic feasibility of the model.

2. Wind Power Characteristics Study
2.1. Analysis of Wind Power Forward/Reverse Peaking Characteristics

With the increasing scale of wind power, the range of fluctuations in the wind power
output increases accordingly, and may even vary from near-zero output to rated output.
Wind power exhibits a wide range of volatility, as well as a large day-to-day variability and
uncertainty. By studying the typical curves of wind power, two distinct and regular types of
wind power characteristic curves can be derived, as shown in the figure below. For power
system dispatch, the grid-connected wind power counter-peaking scenario has a greater
impact on the power system stability, and the frequency of counter-peaking scenarios is
higher. Figure 1 is a schematic diagram of a wind power forward peaking curve and a daily
load curve; there is no significant difference between the wind power output curve and the
load curve trend. Figure 2 is a schematic diagram of a wind power reverse peaking curve
and a daily load curve; there is a significant difference between the wind power output
curve and the load curve trend. In both figures, the green curve is the wind power output
curve and the red curve is the load curve. The left vertical axis is the load power unit and
the right vertical axis is the wind power unit.

2.2. Analysis of Wind Power Consumption Mechanism under Forward/Reverse Peaking Scenarios

The grid-connected capacity of wind power is gradually increasing. The randomness,
volatility, and reverse peaking regulation of wind power increase the equivalent load peak-
to-valley difference (difference between load power and wind power) of the system after
large-scale grid-connected consumption, leading to a multiplication of peak regulation
pressure on the thermal power units. When the regulation capacity of the thermal power
units cannot meet the regulation demand of the wind power and the load, one solution is
to introduce an energy storage system and flexible load regulation to ensure the balance of
the system’s supply and demand, thus enhancing the system’s ability to accommodate the
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wind power. Figures 3 and 4 show the analysis of the wind power consumption mechanism
based on the reverse regulation and forward peaking regulation characteristics, respectively.
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Under the traditional mode of dispatch, the net load of the power system is:

Pl_eq = Pl − Pw (1)

where Pl is the conventional load of the system and PW is the wind power output. The
blocked wind power ( 1⃝ + 2⃝ + 3⃝) at this time is:

Ww_abon =
∫ T4

T1

(PGmin − Pl_eq)dt (2)

where PGmin is the minimum value of the peaking capacity of conventional units.
If the flexible load participates in system peaking, its blocked wind power ( 1⃝ + 2⃝) is:

Ww_abon =
∫ T3

T2

(PGmin − P′
l_eq)dt (3)
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where P′
l_eq is the net load after the participation of the flexible load in the peaking. It can

be seen from the figure that the abandoned wind volume of the system is reduced due to
the participation of the flexible load.

As can be seen from the figure below, the participation of the energy storage system
can shift the peak hours in the demand-side management planning to off-peak hours on the
basis of the flexible loads for peaking. Simply put, during the hours of low electricity prices,
the energy storage system undergoes charging, and during the hours of high electricity
prices, it discharges stored energy. The system wind curtailment ( 1⃝) is also further reduced,
and the net load peak-to-valley difference is somewhat smaller for the forward peaking
scenario compared with the anti-peaking scenario.
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3. Multi-Timescale Scheduling Model Considering Wind Power Forward/Reverse
Peaking Scenarios
3.1. Multi-Timescale Models

These new energy sources have characteristics such as volatility and uncertainty, which
have important impacts on the power system. In the study of this paper, the wind power is
divided into two scenarios; one type exhibits a positive correlation with the daily load curve,
while the other type demonstrates a reverse correlation with the daily load curve. When
data from these two different scenarios are brought into the model for calculation, firstly,
the prediction accuracy of the wind power has some deviation; however, this improves
as the prediction scale is reduced. Secondly, there is a problem of differentiation in the
regulation characteristics of the dispatching resources in the system, so a level-by-level
refinement of the dispatching model is needed to accommodate different timescales. It is
difficult to satisfy the operational characteristics of the various types of resources by only
performing optimal scheduling on a single timescale. Therefore, to address these problems,
further research and optimization of scheduling strategies are necessary to effectively meet
the challenges of new energy consumption.

The two-stage optimization problem established in this article belongs to the mixed
integer linear programming (MILP) problem, which has many solving methods. This article
uses CPLEX to solve this type of problem. The standard form of the MILP problem [46] is:

min F(x, y)
s.t. gi(x, y) = 0 i = 1, 2, · · · , m

hj(x, y) ≤ 0 j = 1, 2, · · · , n
xmin ≤ x ≤ xmax y ∈ (0, 1)

(4)

In the formula, x is the variable to be optimized and includes the wind power, operat-
ing cost of the thermal power units, penalty cost for the wind curtailment, output of the
thermal power units, etc. Y is the start-stop plan for the thermal power units.

Considering the above factors, for the purpose of better improving the new energy con-
sumption capacity and system economy, this paper establishes a multi-timescale scheduling
model for the wind power forward/reverse peaking scenarios, the framework of which is
shown in Figure 5.

In the following sections, the day-ahead and intra-day scheduling models are ex-
plained separately from an economic perspective.

3.2. Day-Ahead Scheduling Model
3.2.1. Objective Function

The day-ahead optimal dispatch model, incorporating thermal power, wind power,
and flexible load, constructed in this paper aims to achieve the economic operation of the
power systems containing wind power by coordinating and optimizing the generation-side
and load-side resources. The model converts the wind curtailment and load shortage into
penalty costs by incorporating them into the system operating costs to achieve economic
optimization and improves the grid new energy consumption capacity and power supply
reliability in an emergency mode. The objective function includes the operating costs
of conventional units, start-up and shutdown costs, wind farm operating costs, wind
curtailment penalty costs, incentive-based demand response resource call compensation
costs, energy storage costs, and load outage costs, aiming to minimize the total operating
costs of the system. The day-ahead scheduling plan is implemented on a daily basis,
utilizing an hourly timescale. The objective function is expressed as follows:

Fmin =
24

∑
t=1

( fTH,t + fQT,t + fw,t + fqw,t + f IDR,t + fbat,t + floss,t) (5)
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fTH,t =
Ns
∑

s=1

NG
∑

i=1
ps(aiP2

Gi,s,t + biPGi,s,t + ci)

fQT,t =
Ns
∑

s=1

NG
∑

i=1
Si(1 − uGi,t−1)uGi,t

fw,t =
Ns
∑

s=1
pskwPw,s,t

fqw,t =
Ns
∑

s=1
ps[kqw(Ppre,rq

w,s,t − Pw,s,t)]

f IDR,t =
Ns
∑

s=1
ps(kIDRA|∆PIDRA,t|+ kIDRB|∆PIDRB,t|)

fbat,t = µ+
s P+

s,t + µ−
s P−

s,t
floss,t = λlossPloss,t

(6)
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In Formula (5), fTH,t is the cost of the conventional unit operation; fQT,t is the cost of
the start-up and shutdown; fw,t is the cost of the wind farm operation; fqw,t is the cost of the
wind curtailment penalty; fIDR,t is the cost of the IDR incentive-based demand response
resource call compensation; fbat,t is the cost of the energy storage; and floss,t is the cost of the
load shortage. Formula (6) is the expansion of each cost in Formula (5). In Formula (6),
Ns is the number of scenarios; NG is the conventional unit; Ps is the probability coefficient
of occurrence of s scenario; PGi,s,t is the generation capacity of the i-th conventional unit
in s scenario at time t; ai, bi, and ci are the generation cost coefficients of the i-th unit,
respectively; Si is the start-stop cost coefficient of the i-th conventional unit; uGi,t is the
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start-stop status of the i-th unit at time t, which is a decision variable, where 1 means
start and 0 means stop; kW is the wind farm operation cost coefficient; Pw,s,t is the wind
farm output in scenario s at moment t; kqw is the wind curtailment penalty coefficient;
Ppre,rp

w,s,t is the predicted wind power output of the previous day’s wind farm in scenario
s at moment t; kIDRA and kIDRB are the class A IDR load and class B IDR load invocation
cost coefficients, respectively; ∆PIDRA,t and ∆PIDRB,t are the class A IDR and class B IDR
invocations at moment t, respectively; µ+

s and µ−
s are the charging and discharging energy

storage cost coefficients, respectively; P+
s,t and P−

s,t are the charging and discharging powers
of the energy storage, respectively; λloss is the cost coefficient of the load deficiency; and
Ploss,t is the amount of load deficiency.

3.2.2. Binding Conditions

NG

∑
i=1

PGi,s,t + Pw,t + Pbat,t = PL0,t + ∆PPDR,t + ∆PIDRA,t + ∆PIDRB,t − Ploss,t (7)

Equation (7) is the active power balance constraint, where ∆PPDR,t is the PDR call at
time t, PL0,t is the initial state load value of the system, and Pw,t is the wind power output.

Pmin
Gi ≤ PGi,s,t ≤ Pmax

Gi (8)

Equation (8) is the unit output constraint, where the regulating capacity of thermal
power units is limited [47], and Pmin

Gi and Pmax
Gi are the upper and lower limits of the

output, respectively. {
PGi,s,t − PGi,s,t−1 ≤ ui,tRi
PGi,s,t−1 − PGi,s,t ≤ ui,t−1Ri

(9)

Equation (9) is the unit climbing constraint, where Ri is the climbing rate.
Ton,i−1

∑
k=0

uGi,t+k ≥ Ton,i(uGi,t − uGi,t−1)

To f f ,i−1

∑
k=0

(1 − uGi,t+k) ≥ To f f ,i(uGi,t−1 − uGi,t)

(10)

Equation (10) is the minimum start/stop time constraint for the unit, where Ton,i
and Toff,i are the minimum continuous start time and the minimum continuous stop
time, respectively.

0 ≤ Pw,t ≤ Ppre
w,t (11)

Equation (11) is a constraint on the upper and lower limits of the wind power output,
where Ppre

w,t is the wind power forecast at time t.

−Rw_down ≤ Pw,t − Pw,t−1 ≤ Rw_up (12)

Equation (12) is the climbing constraint of the wind power output, where Rw_down and
Rw_up are the climbing rate limits of the increase and decrease in the wind power, respectively.

∆q1
...
∆qt
...
∆qT

 = E



∆p1
...
∆pt
...
∆pT

 (13)

PDR mainly influences customers’ electricity consumption plans through the electricity
price, so its response amount is related to the electricity price. Equation (13) is the elasticity
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matrix, where ∆qt is the rate of change in the load at moment t; ∆pt is the rate of change in
the electricity price at moment t; and E is the price-based elasticity coefficient.

Pmin
pdr ≤ Ppdr,t ≤ Pmax

pdr (14)

Equation (14) provides the upper and lower bound constraints of the PDR resource invo-
cation, where Pmin

pdr and Pmax
pdr are the lower and upper limits of the PDR load calls, respectively.

0 ≤ P+
idra,t ≤ P+,max

idra
0 ≤ P−

idra,t ≤ P−,max
idra

0 ≤ P+
idrb,t ≤ P+,max

idrb
0 ≤ P−

idrb,t ≤ P−,max
idrb

(15)

Equation (15) is the IDR constraint, where P+
idra,t and P+

idrb,t are the IDR increase load
amounts of class A and B, respectively; and P−

idra,t and P−
idrb,t are the IDR decrease load

amounts of class A and B, respectively.

SOC =
Ebat
Cbat

× 100% (16)

Equation (16) is the SOC calculation formula, where Ebat is the current battery storage
capacity and Cbat is the energy storage battery capacity.

SOCt+1 =

(
∆Pcha,t

bat ηcha∆t
Cbat

−
∆Pdis,t

bat ∆t
ηdisCbat

)
× 100% + SOCt (17)

Equation (17) shows the change in power during the charging and discharging of the
battery. The prolonged use of a battery can cause its capacity to drop [48]. ∆Pcha,t

bat is the
moment t energy storage device charging power, and similarly, ∆Pdis,t

bat is the moment t
energy storage device discharging power. ηcha and ηdis are the energy storage charging and
discharging efficiencies, respectively, and ∆t is the charging and discharging time interval.

SOCmin ≤ SOCt ≤ SOCmax

Pcha
b_min ≤ ∆Pcha,t

battery ≤ Pcha
b_max

Pdis
b_min ≤ ∆Pdis,t

battery ≤ Pdis
b_max

(18)

In Equation (18), SOCmax and SOCmin are the maximum and minimum values of the
charge state of the energy storage device, respectively; Pcha

b_min and Pcha
b_max are the minimum

charge power and maximum charge power of the energy storage device, respectively; and
similarly, Pdis

b_min and Pdis
b_max are the upper and lower limits of the discharge power of the

energy storage device, respectively.

−Pmax
ex,t ≤ Pex,t ≤ Pmax

ex,t (19)

Equation (19) is the transmission line power constraint, where, Pex,t is the power of
the grid transmission line and Pmax

ex,t is the transmission line power limit.

3.2.3. Optimization Results

The model was analyzed by the optimal solution algorithm to obtain the regular unit
start/stop schedule. The PDR callable resource calls and class A IDR resource calls were
brought into the subsequent scheduling model as the deterministic quantities.
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3.3. Intra-Day Scheduling Model
3.3.1. Objective Function

The intra-day optimal scheduling objective is still to minimize the system operation
cost, and the scheduling plan for this subsection is to schedule every 15 min with a timescale
of 15 min in the next 4 h. With the gradual improvement of the accuracy of the new energy
and load forecasting, at this time, the class B IDR and energy storage can respond in a
shorter period of time with the following objective function:

Fmin =
24

∑
t=1

( fTH,t + fw,t+ fqw,t + f IDR,t + fbat,t + floss,t) (20)

3.3.2. Binding Conditions

The constraints in these two phases are similar. Since the regular unit start/stop
schedule, PDR resource calls, and class A IDR resource calls were determined in the
scheduling optimization results a few days ago, these constraints do not exist in this
subsection and will not be repeated here.

3.3.3. Optimization Results

Using the algorithm to solve the model, the conventional unit output plan, class B IDR
dosage, and electrochemical energy storage power station charge and discharge amounts
were obtained.

4. Example Analysis
4.1. Example Overview

For the model in this paper, the IEEE 30-node system was used as the base system
model for improvement. The improved system contains six conventional units; Table 1
shows the operating parameters of the conventional thermal units: one wind farm with
an installed capacity of 300 MW, an energy storage plant, and two IDR demand resource
dispatching stations, whose topology diagram is shown in Figure 6 below. It is assumed
that the variation range of the PDR does not exceed 6% of the total load, the invocation of
the class A IDR load does not exceed 3% of the total load, the invocation of the class B IDR
load does not exceed 2% of the total load, and the compensation cost of both the class A
IDR and class B IDR are fixed values of 50 and 60, respectively. Table 2 shows the demand
response resources classified as incentive-based according to the dispatch response speed,
and the model that can be found in the MATLAB 2018 platform of the YALMIP 2018 toolkit
to call the solver for solving.

Table 1. Some operating parameters of thermal power units.

Thermal
Power Units

Power/MW Price/(CNY/MW2·h)

Pmax Pmin a b c

G1 405 259 0.00048 16.19 1000
G2 165 94 0.00398 19.7 450
G3 160 94 0.00411 21.5 316.5
G4 182 68 0.00334 32.5 329.2
G5 65 35 0.0025 30 276.4
G6 60 27 0.0025 30 232.2

Table 2. IDR resource categories.

Type Response Speed Scheduling Timescale

Class A IDR >1 h 1 h
Class B IDR 15 min~4 h 15 min



Energies 2024, 17, 1257 11 of 18

Energies 2024, 17, x FOR PEER REVIEW 11 of 18 
 

 

load does not exceed 2% of the total load, and the compensation cost of both the class A 
IDR and class B IDR are fixed values of 50 and 60, respectively. Table 2 shows the demand 
response resources classified as incentive-based according to the dispatch response speed, 
and the model that can be found in the MATLAB 2018 platform of the YALMIP 2018 toolkit 
to call the solver for solving. 

Table 1. Some operating parameters of thermal power units. 

Thermal Power 
Units 

Power/MW Price/(CNY/MW2·h) 
Pmax Pmin a b c 

G1 405 259 0.00048 16.19 1000 
G2 165 94 0.00398 19.7 450 
G3 160 94 0.00411 21.5 316.5 
G4 182 68 0.00334 32.5 329.2 
G5 65 35 0.0025 30 276.4 
G6 60 27 0.0025 30 232.2 

Table 2. IDR resource categories. 

Type Response Speed Scheduling Timescale 
Class A IDR >1 h 1 h 
Class B IDR 15 min~4 h 15 min  

G

1 2 5 7 8

3 4

13

14

12

15 18

17

19 20

16 10 9 11

22 21

23 24 25

26

27

29 30

286

G G G G

G

W
Bat

IDRA

IDRB

 
Figure 6. IEEE 30-node system architecture diagram. 

The load and wind power forecasts are generated based on measured data plus white 
noise, where the day-ahead forecast curve is extended from the original 1-h interval (24 
data points) to 96 data points at 15-min intervals (the four extended data points within 
each hour are taken to be the same value). The prediction errors are 4% and 1% for the 
day-ahead and intra-day loads, respectively, and 6% and 3% for the corresponding wind 
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The load and wind power forecasts are generated based on measured data plus white
noise, where the day-ahead forecast curve is extended from the original 1-h interval (24 data
points) to 96 data points at 15-min intervals (the four extended data points within each hour
are taken to be the same value). The prediction errors are 4% and 1% for the day-ahead
and intra-day loads, respectively, and 6% and 3% for the corresponding wind powers,
respectively. With the objective of verifying the effect of the proposed scheduling strategy
in different wind power output scenarios, two typical scenarios of forward and reverse
peaking regulation of wind power are selected for analysis in the example part, and the
ratio of forward and reverse peaking regulation probability is taken as 3:7. The measured
and forecasted load and wind power curves are shown in the following figures: Figures 7–9
show the day-ahead and intra-day prediction curves of the load and the forward and
reverse peaking regulation of the wind power, respectively.

Energies 2024, 17, x FOR PEER REVIEW 12 of 18 
 

 

strategy in different wind power output scenarios, two typical scenarios of forward and 
reverse peaking regulation of wind power are selected for analysis in the example part, 
and the ratio of forward and reverse peaking regulation probability is taken as 3:7. The 
measured and forecasted load and wind power curves are shown in the following figures: 
Figures 7–9 show the day-ahead and intra-day prediction curves of the load and the for-
ward and reverse peaking regulation of the wind power, respectively. 

Time/T

Po
w

er
/M

W

600
650
700
750
800
850
900
950

1000
1050
1100

0 10 20 30 40 50 60 70 80 90 100

The day-ahead load 
forecasting

The day-intraday load 
forecasting

 
Figure 7. Load day-ahead and intra-day forecast graphs. 

Time/T
0 10 20 30 40 50 60 70 80 90 100

Po
w

er
/M

W

50

100

150

200

250

300

The day-ahead wind power 
forecasting

The day-intraday wind power 
forecasting

 
Figure 8. Day-ahead and intra-day forecast curves for wind power forward peaking. 

Time/T
0 10 20 30 40 50 60 70 80 90 100

50

100

150

200

250

300

Po
w

er
/M

W

The day-ahead wind power 
forecasting

The day-intraday wind power 
forecasting

 
Figure 9. Day-ahead and intra-day forecast curves for wind power reverse peaking. 

Figure 7. Load day-ahead and intra-day forecast graphs.



Energies 2024, 17, 1257 12 of 18

Energies 2024, 17, x FOR PEER REVIEW 12 of 18 
 

 

strategy in different wind power output scenarios, two typical scenarios of forward and 
reverse peaking regulation of wind power are selected for analysis in the example part, 
and the ratio of forward and reverse peaking regulation probability is taken as 3:7. The 
measured and forecasted load and wind power curves are shown in the following figures: 
Figures 7–9 show the day-ahead and intra-day prediction curves of the load and the for-
ward and reverse peaking regulation of the wind power, respectively. 

Time/T

Po
w

er
/M

W

600
650
700
750
800
850
900
950

1000
1050
1100

0 10 20 30 40 50 60 70 80 90 100

The day-ahead load 
forecasting

The day-intraday load 
forecasting

 
Figure 7. Load day-ahead and intra-day forecast graphs. 

Time/T
0 10 20 30 40 50 60 70 80 90 100

Po
w

er
/M

W

50

100

150

200

250

300

The day-ahead wind power 
forecasting

The day-intraday wind power 
forecasting

 
Figure 8. Day-ahead and intra-day forecast curves for wind power forward peaking. 

Time/T
0 10 20 30 40 50 60 70 80 90 100

50

100

150

200

250

300

Po
w

er
/M

W

The day-ahead wind power 
forecasting

The day-intraday wind power 
forecasting

 
Figure 9. Day-ahead and intra-day forecast curves for wind power reverse peaking. 

Figure 8. Day-ahead and intra-day forecast curves for wind power forward peaking.

Energies 2024, 17, x FOR PEER REVIEW 12 of 18 
 

 

strategy in different wind power output scenarios, two typical scenarios of forward and 
reverse peaking regulation of wind power are selected for analysis in the example part, 
and the ratio of forward and reverse peaking regulation probability is taken as 3:7. The 
measured and forecasted load and wind power curves are shown in the following figures: 
Figures 7–9 show the day-ahead and intra-day prediction curves of the load and the for-
ward and reverse peaking regulation of the wind power, respectively. 

Time/T

Po
w

er
/M

W

600
650
700
750
800
850
900
950

1000
1050
1100

0 10 20 30 40 50 60 70 80 90 100

The day-ahead load 
forecasting

The day-intraday load 
forecasting

 
Figure 7. Load day-ahead and intra-day forecast graphs. 

Time/T
0 10 20 30 40 50 60 70 80 90 100

Po
w

er
/M

W

50

100

150

200

250

300

The day-ahead wind power 
forecasting

The day-intraday wind power 
forecasting

 
Figure 8. Day-ahead and intra-day forecast curves for wind power forward peaking. 

Time/T
0 10 20 30 40 50 60 70 80 90 100

50

100

150

200

250

300

Po
w

er
/M

W

The day-ahead wind power 
forecasting

The day-intraday wind power 
forecasting

 
Figure 9. Day-ahead and intra-day forecast curves for wind power reverse peaking. 

Figure 9. Day-ahead and intra-day forecast curves for wind power reverse peaking.

4.2. Analysis of Scheduling Results

In this paper, the results of the established scheduling model are analyzed under
the two scenarios of forward and reverse peaking. Figures 10 and 11 below show the
scheduling results of the two scenarios of forward and reverse peaking. Figures 12 and 13
show the demand response resource calling plans under the two scenarios, and Figure 14
shows the scheduling of the energy storage plants.
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This study examines the forward and reverse peaking regulation scenarios. The
scheduling model’s results were analyzed comprehensively. During the forward peaking
scenario, the wind power exhibits peak periods from 1:15 to 3:00, 5:00 to 11:00, and 17:00 to
19:30. The wind power output aligns closely with the load curve during these periods, and
can efficiently absorb the wind power without any extensive demand response resource
adjustments. Consequently, the system has a high non-DR capacity, requiring less IDR
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resource allocation compared with the wind power reverse peaking scenario. In the wind
power reverse peaking scenario, the wind power peaks from 3:00 to 8:00 and from 13:30 to
17:00, with a significantly different output curve trend from the load curve and a lower load
demand. During these periods, positive adjustments in the demand response resources
and energy storage charging improve the level of wind power consumption.
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It can be seen, based on the integrated result scheduling diagrams in Figures 10 and 11,
and the demand response resource regulation diagrams in Figures 12 and 13, that the
system still primarily relies on the conventional units for power adjustment to fulfill the
peaking plan. Although the total amount of the load that can be transferred by the class
B IDR resources and energy storage plants is less, it is more flexible compared with the
class A IDR resources, which can only respond over a short period of time and need to
be called upon frequently to alleviate wind power fluctuations over a short period of
time. The magnitude of the class B IDR resources fluctuation is smaller, but its changes
are more dramatic; in the figure, this can be seen in the intra-day dispatch of the class
B IDR resources with the changes reflected being more dramatic, and suitable for some
sudden load fluctuations or to calm the wind power fluctuations in a shorter timescale.
From Figure 14, it can be concluded that the amount of energy storage called during the
forward peaking regulation is smaller than that during the reverse peaking regulation,
so that it can respond to regulation more quickly in the face of changing wind power or
sudden load changes.

4.3. Comparison Analysis of Different Scheduling Modes

To compare and analyze the roles of the different scheduling methods in promoting
wind power consumption and reducing system costs, this paper also set up different
scheduling schemes for comparison and analysis under the two scenarios of forward and
reverse peaking of wind power:

(1) No energy storage plants are involved, while no multi-timescale dispatch is considered
and only the thermal power units are involved in peaking;

(2) Add DR resources on the basis of scheme (1) and only perform the day-ahead scheduling;
(3) Based on the scheduling method proposed in this paper.

Table 3 shows the comparison of the results.
In the day-ahead dispatching in option 1, where both the energy storage and flexible

loads are not involved in regulation, especially in the high wind power new energy time, a
single thermal power unit cannot meet the large-scale wind power consumption after the
new energy is connected to the grid, leading to a serious wind curtailment phenomenon.
The forward and reverse peaking scenarios in option 1 have abandonment rates of 8.4%
and 12.3%, respectively, and the total system cost in the first option is also the highest,
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reaching 647,216 CNY. In the same scenario, the wind power abandoned in the reverse
peaking scenario is larger than the wind power abandoned in the forward peaking scenario.
This reverse peaking characteristic of the wind power increases the net load peak-to-valley
difference and further enhances the difficulty of peak regulation.

Table 3. Comparison of system operating costs under different scheduling schemes.

Scheduling Plan Thermal Power Costs/CNY Cost of IDR/CNY Wind Curtailment Costs/CNY Total Cost/CNY

Option 1 487,718 0 159,430 647,216
Option 2 427,240 12,514 50,797 490,632
Option 3 410,393 19,411 16,345 446,281

Option 2 and option 3 increase the flexible load on the basis of option 1. Adding an
energy storage power station in option 3 alleviates part of the peak load of thermal power,
and the total cost is reduced by 156,584 CNY and 200,935 CNY compared with option 1.
Compared with option 1, option 2 adds an adjustable flexible load, which can decrease
the system’s curtailment wind to a certain extent. Under the two scenarios of forward
and reverse peaking regulation, the wind curtailment rate is reduced by 4.8% and 7.4%,
respectively, and the total system cost is also significantly reduced due to the absorption of
a large amount of wind power. The flexible load and the thermal power jointly participate
in peaking regulation, so that the overall benefit of the system is improved, and the flexible
load can adjust the load change according to the flexible fluctuation of the wind power,
which better promotes the consumption of new energy. On the basis of option 2, option
3 makes full use of the multi-timescale characteristics of the energy storage and other
demand response resources, and can adjust wind power fluctuations in a short timescale
in a timely manner. The class B IDR and energy storage can be more accurately invoked
in the intra-day optimal scheduling, further reducing the system’s wind curtailment rate
and improving the system’s benefits. In option 3, under the two scenarios of forward
and reverse peaking regulation, the wind curtailment rate is reduced by 2% and 2.4%,
respectively. The total system cost of option 3 is also the smallest at 446,281 CNY.

In summary, the scheduling model designed in this paper can make full use of the more
or less timescale characteristics of the demand response resources to develop a reasonable
scheduling plan, which can play a role in alleviating the wind curtailment problem and
improving the system’s economy.

5. Conclusions

In order to improve the wind power consumption, reduce the loss caused by the wind
power fluctuations, and reduce the peak load balancing pressure of the power system,
this paper proposes a two-stage scheduling method under the scenario of positive and
negative peak balancing of the wind power. In these two stages, the wind power utilizes
energy storage devices and demand response resources to participate in grid optimization
scheduling through a smaller timescale, flexibly reducing the impact of the wind power
grid-connection on the power system. With the continuous reduction in the thermal power
generation scale and the continuous increase in the grid-connected capacity of the wind
power, the coordination of the various resources in the power system is a very important
research direction.

The composition of the energy storage power station proposed in this paper only
considers electrochemical energy storage. Different energy storage technologies have
different characteristics, and future power systems will be connected with various types of
large-scale energy storage systems. In the future, we can consider adding a real-time phase
on the basis of the two phases (day-ahead and intra-day) used in this paper to assess the
scheduling performance of the system at a deeper level.
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