
Citation: Pang, C.M.; Kennedy, D.M.;

O’Rourke, F. An Investigation of Tidal

Stream Turbine Wake Development

Using Modified BEM–AD Model.

Energies 2024, 17, 1198. https://

doi.org/10.3390/en17051198

Academic Editors: Patrick G. Verdin

and Andrey A. Kurkin

Received: 23 January 2024

Revised: 20 February 2024

Accepted: 28 February 2024

Published: 2 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

An Investigation of Tidal Stream Turbine Wake Development
Using Modified BEM–AD Model
Chee M. Pang 1 , David M. Kennedy 2 and Fergal O’Rourke 1,*

1 Centre of Renewables and Energy (CREDIT), School of Engineering, Dundalk Institute of Technology,
A91 K584 Dundalk, Ireland; cheemeng.pang@dkit.ie

2 Department of Mechanical Engineering, Technological University Dublin, Bolton Street,
D07 H6K8 Dublin, Ireland; david.kennedy@tudublin.ie

* Correspondence: fergal.orourke@dkit.ie

Abstract: Tidal stream turbines (TST) are a promising option for electricity generation to meet the ever-
increasing demand for energy. The actuator disk (AD) method is often employed to represent a TST, to
evaluate the TST operating in a tidal flow. While this method can effectively reduce the computational
cost and provide accurate prediction of far-wake flow conditions, it falls short of fully characterising
critical hydrodynamics elements. To address this limitation, a hybrid method is implemented by
coupling AD with the blade element momentum (BEM) theory, using detailed performance data,
such as thrust, to enhance the prediction of the wake effects. This work focuses on the development
of a hybrid BEM–AD method using Reynolds-Averaged Navier–Stokes (RANS) turbulence models
within computational fluid dynamics (CFD). Two variations and a hybrid modification of an AD
model are presented in this paper. The first modified variation is a velocity variation that takes into
account velocity profile inflow into the disk’s configuration. The second modified variation is a radial
variation that integrates the blade element theory into the disk’s configuration. The hybrid modified
model combines both the velocity profiles influenced and blade element theory in the design and
analysis of the actuator disk. Several key investigations on some of the pre-solver parameters are
also investigated in this research such as the effect of changing velocity and radial distance on the
porosity and loss coefficient of the actuator disk performance. Importantly, this work provides an
improved method to evaluate the key wake effects from a TST array which is crucial to determine the
power performance of the TST array.

Keywords: tidal energy; CFD; RANS; actuator disk; BEM

1. Introduction

Marine tidal currents stand out as a promising and renewable energy resource with
the advantages of high predictability and consistent availability. This reliability makes
them ideal for optimised energy output [1]. To effectively harness this energy resource, the
installation of turbines in arrays proves to be the most efficient approach, to ensure maxi-
mum power extraction [2]. In recent years, a diverse range of different turbine designs has
emerged [3]. Despite the many proposed designs of tidal stream turbines, the configuration
that has garnered the most attention, especially in the context of commercial-scale array
development, is the three-bladed horizontal axis tidal stream turbine [4]. Numerous tidal
stream turbine (TST) arrays have been strategically deployed in highly energetic locations
worldwide, in most cases serving as generators to produce electricity for local networks [5].

Employing a TST array stands as an effective strategy for maximising the power
extraction from a given tidal energy site, while also contributing to cost reduction by
sharing transmission and grid integration systems when compared to individual TST
installations [6]. However, the deployability of TSTs in an array is limited by factors such
as water depth and bathymetry. Furthermore, the wake generated by TSTs can impact the
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downstream velocity distribution, introducing turbulence that alters the flow field, and thus
affecting energy output. Consequently, investigating the spanwise and streamwise spacing
between turbines is important to minimise disturbance induced by TST and maximise
energy output [7]. Several experimental and numerical studies have been conducted to
improve the understanding of the TST, including aspects like design, environmental impact,
and hydrodynamic performance of the TSTs, both individually and in arrays. Numerous
studies [8–12] have presented critical experiments suitable for the assessment of turbine
performance. The data sets derived from these experiments serve as valuable benchmarks
for the validation of numerical models that characterise turbine performance, providing
details on local turbine flow details to be determined, which are difficult to obtain using
experiments only.

Various approaches exist to numerically model TSTs to predict the response of tidal
turbines in response to complex environmental inflow conditions, including their loading,
performance, and wake generation. Computational fluid dynamics (CFD) is one such
approach used to model TSTs. There are advantages and disadvantages to using CFD, the
critical factor lies in striking a balance between detailed simulation of the physics and the
computational time and resources required for accuracy [13]. Among the CFD models, the
most comprehensive and intricately detailed approach for gaining insights into the wake
development of a TST is the fully resolved turbine geometry approach [14,15]. However,
this approach requires small time steps to solve the flow field around the turbine, resulting
in a high computational demand. For this reason, the fully resolved turbine geometry
approach is not always a feasible option when modelling a large array of full-scale turbines
to provide considerable predictions of turbine performance and wake flow, especially in
environments with a wide range of highly variable flow conditions. Thus, an alternative
method is needed to represent the TST in CFD simulations.

Two popular modelling approaches to represent a TST are the actuator disk (AD)
and blade element momentum (BEM) theory methods. The coupling of the AD and BEM
methods, known as the AD–BEM model for TST array studies, has gained traction in
recent years [4,16–20]. The AD is a momentum sources model that describes the force
distributions along the rotor blades to determine the overall performance of a turbine with
significantly lower computational costs and fast processing time. However, the AD model
is typically unable to provide realistic near-field downstream wake results within seven
diameters [21]. Consequently, BEM theory has been introduced to the AD model to better
describe the momentum source term by imitating the effects of blade twist, chord, lift, and
drag characteristics. The BEM–AD model requires a reasonable but inexpensive increase in
computational requirements.

There were some limitations to the BEM–AD models presented in this paper. Firstly,
the model is non-rotating, therefore eliminating any swirl in the flow, but studies have
suggested that the effects of swirl are not significant outside the near-field downstream
wake region of the TST [22]. However, in some situations, swirl in the near wake can
persist further downstream, potentially influencing the flow boundaries and distorting
the wake [23]. Secondly, it is assumed that tip vortices from a rotating turbine blade are
ignored due to the actuator disk’s inability to replicate these vortices, thereby speeding
up the wake velocity recovery rate downstream [24,25]. Thirdly, the BEM–AD model was
treated as a steady-state model, keeping it in line with the RANS time-averaged nature.
However, a pseudo-transient-state model can be produced to account for the various
turbulence parameters [13]. Other approaches have been used to model a TST such as
moving reference frame (MRF) and sliding mesh. MRF and sliding mesh approaches can
capture the rotational effects of TST such as swirl and blade tip vortices [26] but require
very fine grid resolutions around the turbine rotor to capture flow field detail; hence, this is
computationally expensive [27]. In recent years, there have been various important studies
that focus on the development of vortex flow [28–30]; these have brought MRF and sliding
mesh back into the spotlight in array modelling.
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Numerous studies have been carried out on TSTs using the RANS-actuator disk model
to predict the velocities and turbulence intensities in the wake [21]. Studies conducted
by Harrison M.E., et al. [31] and V.T. Nguyen [32] have highlighted the performance of
Reynolds-Averaged Navier–Stokes (RANS) actuator disk models in 3-dimensional domains.
Similar studies were also carried out in an array study performed by Mycek. P [11],
Chawdhary S. [33], and Gaurier et al. [2] to investigate turbine–turbine wake interaction
in an array to determine the optimal spacing both spanwise and streamwise. Turbine
spacing is one of the most important factors influencing the performance of a tidal array,
but its effects on the turbine wake interactions or turbine array efficiency are not yet well
understood. Hence, an improved understanding and description of individual turbine
wake development could greatly aid in optimising turbine layout or spacing that provides
the maximum array efficiency [34].

The work presented in this paper provides details on the investigation carried out on
the developed BEM–AD model’s ability to predict downstream wake effects for potential
future use in an array study. The paper presents an empirical formula approach to better
describe the relationship between velocity profile and geometry radial effects on porosity
and resistance coefficient of a porous disk, as showcased in the work as two modified
variations of the BEM–AD model and a hybrid modified BEM–AD model. All models in
this work are validated with experimental measurements by L.E. Myers (2013) [8,22]. The
first variation is a modified BEM–AD model to incorporate the influence of inlet velocity
profile (i.e., tidal current shear) in the disk configuration, which is known as velocity
variation. The second variation, known as the radial variation, modified the BEM–AD
model by dividing the actuator disk into radial annular elements; this allows the disk to
have a radial variation instead of an overall averaged approach. The radial variation also
included corrections such as tip loss correction, etc. to the BEM calculation. Meanwhile,
the hybrid modified BEM–AD model is a combination of two of the variations discussed.
In the sections below, the theory, methodology, results, and discussions of the modified
BEM–AD models are detailed, and finally, some key conclusions are presented.

2. Theory
2.1. Reynolds-Averaged Navier–Stokes (RANS) Equations

The approximated forces exerted on the flow by the turbine are applied as source
terms in the RANS equations of momentum conservation given in Equation (1) [35,36] and
are solved along with the continuity equation given in Equation (2) [35,36]. The source
terms are only applied at elements within the turbine region, and the Einstein notation is
used in these equations for brevity given in (2) [35].

∂(ρUi)

∂t
+

∂
(
ρUiUj

)
∂xj

= − ∂P
∂xi

+
∂

∂xj

[
(µ + µt)

(
∂Ui
∂xj

+
∂Uj

∂xi

)]
+ Si (1)

∂Ui
∂xi

= 0 (2)

where Ui is the velocity of the water averaged over time, t, xi is the spatial distance, µ is the
dynamic viscosity of water, µt is the eddy viscosity, and Si is an added source term for the
momentum equations, using porous disk domain in ANSYS CFX [35], given by:

Si = −K
ρ

2
u|u| (3)

where K is the resistance coefficient which needs to be defined by the user in ANSYS CFX,
ρ is the density of the fluid, and u is fluid velocity. The term u|u| is to define the source
term as a vector in the direction of the flow.
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2.2. Actuator Disk Theory

In the actuator disk theory, a thrust force, FT, is homogeneously distributed across the
disk which represents the tidal current turbine. This concept involves treating the turbine
as an actuator disk and making assumptions about the flow using momentum theory, as
shown in Figure 1. The presence of the actuator disk causes the stream tube to expand after
passing through the disk. The disk extracts energy from the flow and creates a discontinuity
across the disk, which results in the velocity decreasing and pressure dropping passing
through the disk.
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Figure 1. Simple illustration of flow passing through an actuator disk.

However, the disk cannot replicate the swirl caused by the rotating turbine rotor in
the near wake between 2D and 5D. Most swirl components of the flow usually dissipate
in the near wake and generally play a less significant role in the far wake of the turbine.
Despite the limitations, the AD method has demonstrated an ability to model the far-wake
condition of the turbine provided that the scale effects are properly parametrised with the
suitable production of turbulence. The thrust force acting on the actuator disk results in a
discontinuity in pressure, a reduction in kinetic energy of the flow, and a decrease in flow
velocity downstream. The thrust force, FT, is calculated using Equation (4) [37].

FT =
1
2

CTρAU∞
2 (4)

where CT is the thrust coefficient, and U∞ is the upstream flow velocity. According to the
Betz limit, the maximum ideal power from the tidal current flow occurs when the axial
induction factor, a, is at 0.33, which results in a power coefficient and thrust coefficient of
0.59 and 0.88, respectively. The relationship between the thrust coefficient and the axial
induction factor is demonstrated in Equation (5) [22], and the relationship between the
power coefficient and the axial induction factor is given in Equation (6) [22].

CT = 4a(1 − a) (5)

Cp = 4a(1 − a)2 (6)

According to Taylor [38], a relationship can be formed between the open-area ratio or
porosity, θ, and the resistance coefficient, K, as shown in Equation (7). With the consideration
of the flow through a porous disk and the use of local velocity, it would be easier to apply
a resistance coefficient, K, instead of a thrust coefficient [38]. This relationship has been
examined by Harrison [31], which shows this relationship as a reasonable approximation.
The resistance coefficient can be determined using the axial induction factor, a, given in (8).

θ2 =
1

1 + K
(7)
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K =
4a

1 − a
(8)

2.3. Blade Element Momentum (BEM) Theory

Blade element momentum (BEM) theory is a combination of momentum theory and
blade element theory. It can be used to assess the hydrodynamic performance of a tidal
stream turbine blade. BEM theory is utilised by dividing the blade into several elements
that are analysed independently [39]. The forces and moments on each local blade element
can be obtained by first determining the lift coefficient, CL, and drag coefficient, CD. The
further integration of the forces over the length of the blade can be used to determine the
torque and thrust acting on the turbine rotor [39]. The tangential coefficient, Ctan, of each
element is calculated using Equation (9), where ϕ is the angle of relative tidal current flow.
Using the calculated value of Ctan from Equation (9), the local torque developed, dM, is
now calculated using Equation (10)

Ctan = CL sin ϕ − CD cosϕ (9)

dM =
1
2

BρV2
relCtancdr (10)

where B is the number of blades, Vrel is the relative tidal current velocity, c is the sectional
chord length, and dr is the thickness of the blade element. The overall power developed, P,
by the tidal stream turbine blade for the specified tidal current speed is calculated by the
sum of all elements for Equation (11), where N is the number of blade elements. The power
coefficient, CP, is calculated by using Equation (12) divided by the power available in the
free stream, as shown in Equation (13).

dP = ΩdM (11)

P =
N

∑
i=1

dP (12)

CP =
P

1
2 ρAU∞3

(13)

Blade tip loss effects occur as the blade tip is approached. To quantify the blade tip
losses, Prandtl’s tip loss correction factor, F, can be used as given in Equation (14),

F =
2
π

cos−1

[
exp−

(
B
2
[
1 −

( rm
R
)]

rm
R sinϕ

)]
(14)

where R is the radius of the turbine, and rm is the sectional radius of the turbine. It is
necessary to include Glauert’s correction model to account for the relationship between
the thrust coefficient and axial induction factor when Prandtl’s tip loss correction factor
is included [40]. Equations (15) and (16) are Glauert’s characteristic equations [40] for the
thrust coefficient, CT,

CT = 4aF(1 − a) a > 0.333 (15)

CT =
8
9
+

(
4F − 40

9

)
a +

(
50
9

− 4F
)

a2 a < 0.333 (16)

Based on Glauert’s model [40], the axial induction factor, a, is determined using
Equations (17) and (18),

a =
1

1 + 4F sin2 ϕ
σ(CL cosϕ+CD sinϕ )

CT < 0.96 (17)
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a =
18F − 20 − 3

√
CT(50 − 36F) + 12F(3F − 4)

36F − 50
CT > 0.96 (18)

where solidity, σ, can be defined as the ratio of the area of the turbine rotor to the total
swept area of the turbine. The local solidity at any specific radial position can be calculated
using Equation (19),

σ =
cB

2πrm
(19)

2.4. BEM–AD Theory

As mentioned, this work coupled both the AD and BEM theory together to explain the
porous disk parameters. The momentum loss through the actuator disk is represented in a
porous disk as porosity, θ, and the resistance coefficient, K, as seen in Equations (7) and (8).
Based on Equation (8), an axial induction factor is needed to describe the resistance coefficient,
which can be determined using BEM theory, as shown in Equations (17) and (18). Hence, by
combining Equations (17) and (18) into Equation (8) to obtain Equations (20) and (21), which
described the resistance coefficient of the porous disk (actuator disk) using BEM theory,

K =
σ(CL cosϕ+ CD sinϕ )

F sin2 ϕ
CT < 0.96 (20)

K =
4(18F − 20 − 3k1)

18F − 30 + 3k1
CT > 0.96 (21)

where k1 is a variable described in Equation (22).

k1 =
√

CT(50 − 36F) + 12F(3F − 4) (22)

3. Methodology
3.1. Introduction

This section details the methodology employed in this work, more specifically the
CFD model to predict the downstream wake of a turbine and the model configuration for
the variation and hybrid models. Firstly, an overview description of the CFD model is
given, followed by a detailed description of the fluid domain and actuator disk domain.
Finally, the disk domain is described with a focus placed on the parameters and setup
details for each of the variations and hybrid models.

3.2. Computational Fluid Dynamics (CFD) Modelling

Computational Fluid Dynamics (CFD) is a method of analysing a fluid flow field
under certain conditions using computational methods. The CFD software used in this
work was ANSYS CFX version 2019 R2, which utilises the RANS equation mentioned in
Section 2.1. The turbulence model selected in this work was the k-ω Shear Stress Transport
(SST) model as it is popular in solving turbulence problems for external flows. The k-ω SST
model is a hybrid of k-ω and k-ε turbulence models expressed in k-ω form with shear stress
limiting near solid boundaries. However, the actuator disk model has no solid boundaries
associated with blades; hence, the model would revert to the k-ε model [41]. Therefore, for
these conditions, the k-ω SST model seems to behave similarly to the k-ε model, but the k-ω
SST model, according to Johnson, performs better in flows featuring pressure gradients, in
terms of accuracy to predict flow properties, this condition is similar to the flow conditions
in this work [42]. In this work, the model is assumed to be time-invariant, and the fluid flow
field problem was solved in a three-dimensional domain. Before solving a CFD problem
using a CFD solver, the following are required: domain construction, mesh development
for the domain, and parameter specification for the domain. There were two types of
domains constructed in this work, which are the fluid domain and actuator disk domain
(porous domain). The two sub-sections below describe the two domain geometries and the
parameter setup, while the meshing of the fluid domain is discussed in detail in Section 5.
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3.2.1. Fluid Domain

Based on experiments [22,31], the fluid domain in this work has dimensions of 6D
(disk diameters) in width, 6D in height, and 20D in length, where the disk is placed in
mid-depth of the flow and 5D from inlet, as shown in Figure 2. The domain has a blockage
ratio of 6% and a Froude number of 0.18, which were similar to the parameters of expected
full-scale tidal sites [22]. In this work, the boundary layer condition is not of specific interest,
and the free surface effect is insignificant. Therefore, symmetry conditions are used on the
side and top surface boundaries.
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The outlet boundary was defined as an opening condition with zero relative pressure
and zero turbulence gradients. The bottom surface boundary was described as a smooth
wall with a no-slip condition applied. The inlet boundary was described by velocity Uinlet(z)
profiles and the turbulent kinetic energy kturb(z) profile, as shown in Figure 3. Both of these
profiles can be determined using Equations (23)–(25); the numerical profiles match well
with the experimental inlet condition [31].

UInlet(z) = 2.5U∗ln
(

zU∗

ν

)
+ CV (23)

kturb =
3
2

Imean
2Umean

2 (24)

ε = Cµ
3/4 kturb

3/2

l
(25)

where velocity Uinlet is the inlet velocity, U* is the friction velocity, z is the distance from the
bottom, CV is a velocity constant with a value of 0.197 m/s, ν is the kinematic viscosity of
water, kturb is the turbulent kinetic energy, Umean is the mean inlet velocity, Imean is the mean
turbulence intensity, ε is the turbulent dissipate rate, Cµ is a constant of value 0.09, and l is
the turbulence intensity, l = 0.07 H (where H is the characteristic length).

The fluid domain was defined as water with an incompressible fluid setting, and the
turbulence model used is the k-ω SST model. The convergence criteria of the simulation
were set as RMS residual of value 1 × 10−6. Table 1 shows a summarised boundary
condition of each surface in the fluid domain.

Table 1. Summary of surface boundary conditions.

Surfaces Boundary Conditions

Top Symmetry
Sides Symmetry

Bottom Smooth Wall with no slip
Outlet Opening; Entrainment; zero relative pressure and turbulence gradient
Inlet Velocity condition based on Equations (23)–(25)
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3.2.2. Disk Domain and Case Studies Setup

The dimensions of the disk domain have a diameter of 5 m and a thickness of 0.1 m.
The disk domain is treated as a porous disk; thus, the porous disk domain needs to be
defined in terms of porosity and resistance coefficient, as described in Section 2.2. The
BEM–AD model utilises the BEM numerical calculation to calculate the thrust and power
coefficient of a tidal stream turbine rotor, which is then used to determine the porosity
and resistance coefficient of the porous disk (actuator disk) in the CFD model. In the
velocity variation, the disk domain is defined with a non-uniform and varying porosity and
loss coefficient due to the velocity profile of the fluid domain. In the radial variation, the
disk is divided into 10 annular sections, as shown in Figure 4, and each of the 10 annular
sections corresponds to the section of the tidal stream turbine used in this work. The
hybrid modified model combines both variations, and each of the annular sections has
a non-uniform and variable porosity and resistance coefficient according to the velocity
profile. Section 4.4 provides details on the influence of velocity and radial variation on the
porosity and resistance coefficient of the disk domain.
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4. Tidal Stream Turbine Blade Performance
4.1. Introduction

This section presents details of the characteristics of the hydrofoil/spanwise blade
section used in this body of work; these characteristics are crucial for numerically mod-
elling the hydrofoil using BEM. The hydrofoil modelling is validated against experimental
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measurements in terms of power and thrust coefficient at a range of tip speed ratios. The
relationship between inlet velocity and TSR can be defined using Equation (26),

TSR =
ωR
U∞

(26)

where ω is the angular velocity of the turbine.

4.2. Blade Characteristic

The tidal stream turbine rotor blade used as a reference in this work is based on the
experimental measurements from the work of A.S. Bahaj [8]. The diameter of the rotor is
800 mm, and the blade has a profile shape of a NACA 63-8xx with a chord, thickness, and
pitch distribution presented in Table 2. The lift coefficients, CL, and drag coefficients, CD, of
this hydrofoil can be obtained through a software called XFoil version 6.99.

Table 2. Parameters of the rotor blade [8].

r/R r (mm) c/R Pitch (deg) t/c (%)

0.2 80 0.1250 20.0 24.0
0.3 120 0.1156 14.5 20.7
0.4 160 0.1063 11.1 18.7
0.5 200 0.0969 8.9 17.6
0.6 240 0.0875 7.4 16.6
0.7 280 0.0781 6.5 15.6
0.8 320 0.0688 5.9 14.6
0.9 360 0.0594 5.4 13.6
1.0 400 0.0500 5.0 12.6

4.3. Power and Thrust Coefficient

A numerical model has been developed to calculate the overall power and thrust
coefficient of the TST rotor based on the blade characteristics detailed in the previous
sections. The theory used to develop the BEM numerical model is detailed in Section 2.
A comparison, for the purpose of model validation, is conducted for the BEM numerical
model with measured experimental results [8]. For this comparison, the tidal current fluid
speed is set to 1.73 m/s, a background turbulence intensity of 3% is utilised, and a hub
pitch angle of 20 degrees is set. The numerical model is constructed using the MATLAB
version R2022b software. Figure 5 shows the comparison of the numerical model against
measured results in terms of power and thrust coefficient against a range of TSRs. The
numerical model shows good agreement with the measured results for both power and
thrust coefficient, but there is slight underprediction in thrust coefficient when the tip
speed ratio is greater than 7. A further investigation into the numerical model is needed to
address this slight underprediction in future work. The tip speed ratio range utilised, in
this body of work, ranges between 4 and 7. Thus, the current BEM numerical model is very
appropriate for implementation in the BEM–AD model. Thrust Coefficient: CT.

4.4. Porosity and Resistance Coefficient

The development of the BEM–AD model allows the use of a BEM numerical model
in defining the key features required to solve the CFD AD model. Hence, it is crucial to
translate the blade performance calculated in the BEM numerical model as inputs into the
CFD model to define the AD representation of the TST. The two main crucial elements
needed are the porosity and resistance coefficients of the disk domain. As mentioned in
Section 3, these two factors can be determined using the thrust coefficient. The porosity
and resistance coefficient of the disk domain can be determined using the thrust coefficient,
which is an output from the BEM numerical model. As mentioned in the introduction, the
two variations and hybrid models carried out in this work have different configurations for
the porosity and resistance coefficient of the disk domain.
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The first variation of the developed BEM–AD model is a velocity variation, which
takes into account the velocity profile, where the disk experiences a non-uniform incoming
velocity, and thus the disk has a varying porosity and resistance coefficient, as shown in
Figure 6. The relationship between velocity and porosity is described in Equation (27), and
the relationship between velocity and the resistance coefficient is described in Equation (28).
It is observed that when velocity increases, the porosity of the disk increases. The resis-
tance coefficient decreases as velocity increases. There is a high correlation between the
empirical formula described in Equations (27) and (28) and numerical calculation from
BEM calculations of R-square values of 0.9982 and 0.9917, respectively.

θ = −0.076u3 + 0.369u2 − 0.307u + 0.608 (27)

k = 0.5227u2 − 2.943u + 4.193 (28)
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The second variation of the developed BEM–AD model is a radial variation, which
incorporates the blade element momentum theory into the design of the disk, and thus
the disk has a radial varying porosity and resistance coefficient, as shown in Figure 7. It
is observed that as the radius increases, the porosity and resistance coefficient fluctuate
around 0.58 and 2, respectively, except for the tip region (at normalised radius, r/R = 1.0).
The significant change in porosity and resistance coefficient at the tip region is due to tip
loss correction. Hence, one can separate the disk into two different groups of annular
sections, which were the body (0.2 ≤ r/R ≤ 0.9) and the tip (r/R = 1.0). The relationship
between radius and porosity of the body region is described in Equation (29), and the
relationship between radius and resistance coefficient of the body region is described in
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Equation (30). The correlation between the numerical and empirical formulae of the body
region has R-square values of 0.936 and 0.932, respectively. The tip region has a numerically
calculated porosity and resistance coefficient of 0.52 and 2.75, respectively.

θ = −0.076R2 + 0.1437R + 0.5472 (29)

k = 1.348R2 − 1.486R − 2.312 (30)
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The hybrid modified BEM–AD model incorporates both variations in describing the
porosity and resistance coefficient of the actuator disk. Therefore, there are now two factors
affecting the porosity and resistance coefficient, which are the radius of the disk and the
velocity profile. The disk domain of the hybrid modified BEM–AD model can also be
separated into three sections, where the base (r/R = 0.2) and tip (r/R = 1.0) sections show
only velocity variation, as shown in Figures 8 and 9. The relationship between radius and
porosity of the base region is described in Equation (31), and the relationship between
radius and resistance coefficient of the base region is described in Equation (32). The
correlation between the numerical and empirical formulae of the body region has R-square
values of 0.9992 and 0.9902, respectively.

θbase = 0.00134u3 − 0.034u2 + 0.276u − 0.225 (31)

kbase = −0.00049u3 + 0.012u2 + 0.095u − 1.057 (32)
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on the disk’s tip.

The relationship between radius and porosity of the tip region is described in Equation (33),
and the relationship between radius and resistance coefficient of the tip region is described
in Equation (34). The correlation between the numerical and empirical formulae of the tip
region has R-square values of 0.9830 and 0.9363, respectively.

θtip = 0.329 log(u) + 0.502 (33)

ktip = 3.122u−2.05 (34)

The body (0.3 ≤ r/R ≤ 0.9) sections exhibit porosity and resistance coefficient change
due to velocity profile and radius, as shown in Figure 10. The relationship between
radius and porosity of the tip region is described in Equation (35), and the relationship
between radius and resistance coefficient of the tip region is described in Equation (36). The
correlation between the numerical and empirical formulae of the tip region has R-square
values of 0.9628 and 0.9883, respectively.

θbody = 0.5729 +0.02766 u + 0.001946 R + 0.01727 u2 + 0.01921 uR
+0.002978 R2 + 0.006895 u3 − 0.03471 u2R
+0.01267 uR2

(35)

kbody = 1.958 −0.3879 u − 0.08988 R − 0.05596 u2 − 0.346 uR
+0.04775R2 + 0.2981 u2R − 0.1159 uR2 + 0.0615 R3 (36)
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5. CFD Meshing

The model described in Section 3 was executed in ANSYS CFX. Before solving the
CFD model, the model required a well-constructed mesh to accurately model the AD
representations of the TST. Thus, this section describes the mesh configuration and provides
a mesh sensitivity study.

5.1. Mesh Configuration

Using the meshing software available in ANSYS, two domains can be constructed and
discretised, which are the fluid domain and the disk domain. The meshing type used in
all domains is tetrahedron unstructured mesh and has a smooth transition inflation with
a growth rate value of 1.2. The fluid domain constructed is a concentrated mesh fluid
domain, as shown in Figure 11. A normal mesh fluid domain in the main mesh domain has
a constant element size; whereas in contrast, a concentrated mesh fluid domain has a region
with a smaller element size value than the surrounding volume, this region is also known
as the region of interest. As the element size decreases in a domain, the number of elements
in the domain increases. A higher number of elements tends to give a more accurate result.
However, this is dependent on the quality of the mesh. In Figure 11, the sectional side
view of a concentrated mesh fluid domain is shown; the region of interest is a semi-circular
dome and a cylinder in the regions close to the actuator disk. The semi-circular dome has
a radius of 3 disk diameters and is placed before the disk, whereas the cylinder disk has
the same radius and is placed directly after the disk with a length extending to the end
of the domain. The element size of the region of interest is smaller than the surrounding
regions. The reason for this setup is to reduce the computation time of the solver while not
sacrificing the accuracy of the results in the region of interest.
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A comparison study between the normal mesh fluid domain and the concentrated
mesh fluid domain is carried out. The configuration of the element size in the region of
interest in the concentrated mesh fluid domain is the same as the element size in the normal
mesh fluid domain, but the surrounding regions have a larger element size. In Figure 12,
a comparison is given between the normal mesh and concentrated mesh fluid domain at
5 disk diameters downstream from the disk in terms of velocity and turbulence intensity.
The comparison results revealed that there is little difference in terms of downstream
velocity and turbulence intensity, particularly in the region of interest. The time required
for the normal mesh fluid domain to solve is 2 h 57 min, and the time required for the
concentrated mesh fluid domain to solve is 1 h 58 min; these studies were conducted
on a Dell desktop PC with 16GB RAM and Intel® Core™ i7-8700 3.20 GHz processor
sourced from Dell Technologies, Cork, Ireland, and the solver was run parallel across four
processors to further reduce the computational time. A slight overprediction was observed
in the velocity prediction outside the region of interest in the concentrated mesh between
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the normalised vertical distance at 1.5 to 3.0 and −1.5 to −3.0. This can be further improved
by decreasing the element size in the area surrounding the region of interest.
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diameters downstream from the actuator disk.

5.2. Mesh Sensitivity Study

An independent mesh study is important in creating an efficient computational sim-
ulation while maintaining appropriate accuracy to capture areas of more complex fluid
flow behaviour. Five meshes, each with a different number of elements, were investigated
and compared for suitability for velocity at six different centreline locations downstream
of the actuator disk. These five meshes were produced by reducing the element size in
the region of interest, as shown in Table 3, which shows the total number of elements for
each mesh setup. These studies were conducted on a Dell PC with 16 GB RAM and Intel®

Core™ i7-8700 3.20 GHz processor, and the solver was run parallel across four processors
to further reduce the computational time. The mesh independence study was conducted
with maximum residuals of 1 × 10−5 and was allowed to run until the solution converged.

Table 3. Total number of elements of 5 different mesh setups.

Mesh 1 2 3 4 5

Element size (m) 0.75 0.50 0.40 0.30 0.15
No. of elements 2.16 × 105 5.18 × 105 9.96 × 105 1.76 × 106 1.13 × 107

The six different point locations, P1 to P6, were taken from the centreline location, with
P1 being 2-disk diameters upstream and P2 to P6 located at downstream disk diameters
distances of 3, 5, 8, 10, and 15, respectively. Table 4 presents summarised details on the
mesh convergence study for each mesh setup and the computational time requirements. A
percentage difference between each mesh setup at point locations P2 and P3 is included
also. As mentioned earlier, the velocity at P3 converges for Mesh 3 where the percentage
difference with Mesh 4 is 0.9% (less than 1%), and the velocity at P2 converges for Mesh 4
where the percentage difference with Mesh 5 is 0.3% (less than 1%). This can be further
observed in Figure 13, which shows the velocity at P6 for the range of mesh setups. It is
observed that the velocities converge around Mesh 3 for all points with the exception of
point 2, which converges for Mesh 4. Point 2 lies within the near-wake region (less than
5 disk diameters from the disk). This being the case, if the study is only interested in results
in the far-wake region (more than 5 disk diameters from the disk), then Mesh 3 is suitable.
However, the focus of this work is on the near and far-wake regions. Hence, Mesh 4 was
selected with a number of elements of 1.76 × 106 and a convergence time of approximately
3 h 44 min.
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Table 4. Summary of mesh study for different mesh setups detailing number of elements, normalised
velocity at point locations P2 and P3, and convergence time.

Mesh
No. of

Elements

Normalised Velocity at Point
Location Normalised Velocity Difference (%) Convergence Time

(hrs: min: sec)
P2 P3 ∆P2 ∆P3

1 2.16 × 105 0.835 0.886 - - 00:58:35
2 5.18 × 105 0.763 0.828 8.6 6.5 01:17:08
3 9.96 × 105 0.732 0.808 4.0 2.4 01:57:08
4 1.76 × 106 0.716 0.801 2.3 0.9 03:44:56
5 1.13 × 107 0.714 0.802 0.3 0.1 08:14:21
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6. Results

In this section, the results obtained from the BEM–AD model are presented and
discussed. This section contains four sub-sections detailing the capability and suitability
of the two variations and hybrid models to predict downstream wake effects in the fluid
flow field. The first sub-section presents the velocity variation BEM–AD model, which
takes into account the velocity profile of the water column, and the results are compared
to experimental measurements [22]. The second sub-section presents the radial variation
BEM–AD model, which incorporates the blade element momentum theory method into the
disk, and the results are compared to experimental measurements. The third sub-section is
the hybrid modified BEM–AD model, which combines both radial and velocity variations
to further improve the accuracy of the results. Lastly, the final sub-section provides an
overall discussion.

6.1. Modified BEM–AD Model: Velocity Variation

In this sub-section, the developed velocity variation BEM–AD model was validated
against experimental measurements. The disk’s porosity and resistance coefficient take
into account the velocity profile of the water column. Details of this configuration are
mentioned in Sections 3.2 and 4.4. Figure 14 shows the centreline downstream velocity
and turbulence intensity of the velocity variation BEM–AD model against experimental
measurements. The developed model matches well with the experimental measurements,
especially after a distance greater than 8D. The model tends to overpredict both velocity
and turbulence intensity at downstream distances of less than 7D.
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Figure 14. Comparison of downstream centreline (a) Velocity and (b) Turbulence intensity (bottom)
of the velocity variation BEM–AD model against experimental measurements.

Figure 15 shows the downstream velocity and turbulence intensity profile at down-
stream distances of 5D, 8D, and 10D. The velocity profile at 10D matches closely with the
experimental measurements, but for velocity, profile overpredictions occur at 5D and 8D.
Whereas, the turbulence intensity is underpredicted at 5D, 8D, and 10D and underpredicted
at the centreline region at 5D. The results show that the velocity variation model can predict
downstream velocity well at distances greater than 8D. However, it is observed that for
vertical depth above the centreline, the model is less accurate compared to below the centre-
line. The vertical depth below the centreline has a more severe change in vertical velocity
profile compared to the vertical depth above the centreline, see Section 3.2.1 for details.
This results in the disk having a larger variation in porosity and resistance coefficient below
the disk centreline compared to above, which causes the model to describe the downstream
wake below the centreline better than above the centreline.
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6.2. Modified BEM–AD Model: Radial Variation

In this sub-section, the developed radial variation BEM–AD model was validated
against experimental measurements. The blade element momentum theory method is
incorporated into defining the disk’s porosity and resistance coefficient. Details of this con-
figuration are described in Sections 3.2 and 4.4. Figure 16 shows the centreline downstream
velocity and turbulence intensity of the radial variation BEM–AD model with experimental
measurements. The developed model matches well with the experimental measurements,
and it seems to be performing better at predicting the centreline downstream wake than
the velocity variation BEM–AD model, especially at a downstream distance of less than 8D.
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Figure 16. Comparison of downstream centreline (a) Velocity and (b) Turbulence intensity (bottom)
of the radial variation BEM–AD model against experimental measurements.

Figure 17 shows the downstream velocity and turbulence intensity profile at down-
stream distances of 5D, 8D, and 10D for the radial variation BEM–AD model. The velocity
profile at 10D matches well with the experimental measurements in both downstream
velocity and turbulence intensity. It is noticed that downstream velocity matches closely
with the experimental measurements around the depth region of 1 to −1, while the model
outside this region tended to underpredict the results, and the downstream turbulence
intensity was shown to be overpredicting around the depth region of 1 to −1. The high
accuracy in predicting the downstream velocity at the depth region of 1 to −1 is contributed
by the radial variation approach describing the porosity and resistance coefficient of the
disk, while it is speculated that outside the depth region of 1 to −1, the wake prediction
being less accurate might be due to the velocity profile not being taken into account while
describing the disk properties.

6.3. Modified BEM–AD Model: Hybrid Model

In this sub-section, the developed velocity variation and radial variation BEM–AD
models were combined to form a hybrid modified BEM–AD model in which both the
blade element momentum theory radial approach and the velocity profile in describing
the disk properties are taken into account; details of this configuration are described
in Sections 3.2 and 4.4. Figure 18 shows the centreline downstream velocity and turbulence
intensity of the hybrid modified BEM–AD model against experimental measurements. The
developed model matches closely with the experimental measurements; it is shown to be
performing better than both the velocity and radial variations. The combination of both
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variations greatly improves the ability of the hybrid model to predict downstream wake;
this can be further observed in the vertical profile of downstream distance 5D, 8D, and 10D
in Figure 19.
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Figure 17. Comparison of (A) Vertical velocity and (B) Vertical turbulence intensity (right) of the
radial variation BEM–AD model with experimental measurements at downstream distances of (a) 5D,
(b) 8D, and (c) 10D.
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of the modified hybrid BEM–AD model against experimental measurements.

Figure 19 shows the downstream velocity and turbulence intensity profile at a down-
stream distance of 5D, 8D, and 10D for the hybrid modified BEM–AD model. The velocity
profile at 10D matches well with the experimental measurements in both downstream
velocity and turbulence intensity. It is observed that the overall wake results greatly im-
proved, especially for all results below the vertical depth of 1. However, the results above
the vertical depth of 1 show underprediction in both downstream velocity and turbulence
intensity. The reason for this might be due to the developed model not taking into account
fluid surface conditions and the surface being treated as a symmetry boundary face. A rela-
tionship was observed between velocity and turbulence intensity, i.e., a higher downstream
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turbulence intensity will result in a higher downstream velocity. This shows that a high
turbulence intensity promotes wake velocity recovery.
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Figure 19. Comparison of (A) Vertical velocity and (B) Vertical turbulence intensity (right) of the
modified hybrid BEM–AD model with experimental measurements at downstream distances of
(a) 5D, (b) 8D, and (c) 10D.

6.4. Overall Discussion

Overall, the modified hybrid BEM–AD model has proven to be the most accurate
among all of the models proposed and investigated in this work. All three models display a
similar degree of accuracy after a downstream distance greater than 8D. At the downstream
distance greater than 5D, the ability of the radial variation model and modified hybrid
model to capture the wake effects shows little difference. However, for a downstream
distance of less than 5D, the modified hybrid BEM–AD model provides the most accurate
results. Figure 20 shows the centreline downstream velocity and turbulence intensity of the
three models against experimental measurements. In Table 5, a statistical analysis is pre-
sented for the three studied models which are compared with experimental measurements
of centreline downstream velocity and turbulence intensity.
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Table 5. Statistical analysis of the model for the three models against experimental measurements in
terms of downstream centreline velocity and turbulence intensity.

Model
Velocity Turbulence Intensity

R2 RMSE MAPE R2 RMSE MAPE

Velocity variation 0.9868 0.0283 3.83% 0.9775 0.0101 6.56%
Radial variation 0.9860 0.0154 1.88% 0.9823 0.0052 3.25%

Hybrid modification 0.9917 0.0131 1.31% 0.0058 0.0045 2.82%

The statistical analysis presented shows that the velocity variation model has the worst
correlation and the largest error among all three models, while the radial variation model
and the hybrid modified model show very similar correlation and error when compared
with the experimental measurements. The hybrid modified model correlates best with the
experimental measurements in terms of both downstream velocity and turbulence intensity
with a coefficient of determination, R2 value of 0.9917 and 0.9863, respectively. The hybrid
modified model has the smallest error among all three models, with root-mean-square error
values of 0.0131 and 0.0058 and mean absolute percentage error (MAPE) values of 1.31%
and 2.82% for velocity and turbulence intensity, respectively.

Figures 21 and 22 show contours of velocity and turbulence intensity comparison
between radial variation and hybrid modified models. Radial variation models have a
more intense turbulence intensity than the hybrid modified model; this will decrease the
rate of wake velocity recovery, and it is reflected in the velocity contour. Furthermore, the
hybrid modified model shows a shorter contour shape than the radial variation model.
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Figure 21. Velocity contour of (a) Radial variation model and (b) Hybrid modified model from the
side view.

Figure 23 shows the power density of the disk for the three studied models. It is
observed that the velocity variation disk has a high-power density near the edge of the disk
when compared to the other two models. This is due to the velocity variation disk not taking
radial blade element characteristics into account. Thus, some BEM-calculated parameters
were neglected, such as tip loss correction, while the radial variation model and the hybrid
modified model were able to address the tip loss issues. Table 6 is a comparative analysis of
the overall thrust and power coefficient of the disk in the three studied models compared
with a BEM numerical model discussed in this work. Table 6 shows that all three models
have a lower thrust coefficient prediction than the numerical value, which were 0.7571,
0.6278, and 0.7919, respectively; and the velocity variation and hybrid modification models
have a higher power coefficient prediction than the numerical value, which were 0.5229
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and 0.4714, respectively; while the radial variation model has a lower power coefficient
prediction than the numerical value, which was 0.4616.
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Table 6. Comparative analysis of the model for the three studied models against a numerical BEM
model in terms of overall thrust and power coefficient of the disk.

Model
Overall Thrust Coefficient Overall Power Coefficient

CT ∆CT CP ∆CP

BEM 0.7960 - 0.4680 -
Velocity Variation 0.7571 4.89% 0.5229 11.73%
Radial Variation 0.6278 21.13% 0.4616 1.37%

Hybrid Modification 0.7919 0.51% 0.4714 0.72%

The radial variation has the highest difference with the numerical value in terms of
thrust coefficient, which was 21.13%, and the velocity variation has the highest difference
with the numerical value in terms of power coefficient, which was 11.73%. These indicate
that the velocity variation model which incorporates the inflow velocity profile in describing
the disk has predicted the thrust more accurately than the radial variation model. The radial
variation model, which incorporates radial blade element characteristics in describing
the disk, has predicted power better than the velocity variation model. Overall, the
hybrid modification model has the least difference when compared with the numerical
thrust and power coefficient, which were 0.51% and 0.72%, respectively. Hence, the
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hybrid modification model has the advantage of both velocity and radial variation due
to the incorporation of radial blade element characteristics and inflow velocity profile in
describing the disk. However, the hybrid modification model requires more setup and
takes longer to solve than velocity and radial variation. Hence, the velocity variation can be
used in cases which require good thrust coefficient calculations, while the radial variation
can be used in cases which require good power coefficient calculations.

Figure 24 presents the side-view power density contour of the hybrid modified model.
The contour in Figure 24 gives a good illustration of the available power density down-
stream from the disk, as observed as the wake develops further downstream from the disk,
the available power from the wake also recovered. Table 7 shows the power coefficient
performance of a second disk at downstream distances of 5D, 8D, 10D, and 15D at different
heights. It is observed that at a disk vertical offset distance of +1.0 D, the second disk was
mostly unaffected by the downstream wake of the first disk and has a difference of less
than 2.0% compared to the performance of the first disk. Whereas, it is seen from Table 7
that a positive vertical offset of the second disk has a better performance than a negative
vertical offset. At the vertical offset distance of –1.0D, the second disk was least affected by
the downstream wake of the first disk but was influenced by the bottom surface and has a
difference of less than 27.1% compared to the performance of the first disk.
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Table 7. Comparative analysis of the power coefficient of the second disk at various downstream
distances compared to the performance of the first disk.

Disk Vertical
Offset

Overall Disk Power Coefficient at Downstream Distance

5D 8D 10D 15D

CP ∆CP CP ∆CP CP ∆CP CP ∆CP

+1.0 D 0.472 0.1% 0.467 0.9% 0.466 1.2% 0.463 1.9%
+0.5 D 0.288 38.9% 0.304 35.6% 0.312 33.8% 0.328 30.5%
0.0 D 0.172 63.3% 0.207 56.2% 0.225 52.4% 0.256 45.7%
−0.5 D 0.240 49.2% 0.258 45.2% 0.267 43.4% 0.283 40.0%
−1.0 D 0.348 26.2% 0.347 26.5% 0.346 26.7% 0.344 27.1%

7. Conclusions

The work presented in this paper demonstrates the ability of the modified actuator
disk models to predict the wake effects of a tidal stream turbine. The hybrid modified
model is the most accurate approach to predict the time-averaged velocities and turbulence
intensities in the wake of a turbine; however, the pre-solver configuration of the hybrid
modified model is more complex compared to the velocity and radial variation model.
The results between the three models show very little difference in wake velocity at the
downstream distance greater than 5D. For investigations of the far-wake region (greater
than 5D), the velocity and radial variation model is a more computational efficient approach.
For situations where the velocity profile is constant throughout the whole depth, a radial
variation approach can be adopted, while for situations where the velocity profile is varying,
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a velocity variation approach can be adopted. On the other hand, the hybrid modified
model is suitable for investigations for the near-wake region (less than 5D).

These studies also reveal a strong relationship between turbulence intensity and wake
velocity recovery rate. A less-intense turbulence after the disk will promote the wake
velocity to recover rapidly, and the intensity of the turbulence after the disk is hugely
influenced by the porosity and loss coefficient of the disk domain. As a result of these
findings, a much more in-depth investigation is needed to investigate the relationship of
porosity and loss coefficient of the disk domain with the downstream turbulence intensity.
At an offset vertical distance greater than 1D, placement of a second turbine anywhere
downstream would yield little difference, while for an offset vertical distance between
0.5D and 1D, a downstream distance greater than 8D would be a better placement for a
second turbine. This requires further investigation such as the effects of sitting multiple
turbines in the flow field, the effect of yaw misalignment, and also predicting the array
layout and power output of a real tidal current energy site. Other areas of interest for
further work include an investigation to improve the BEM numerical model to address
some of the underprediction issues on thrust coefficient when the tip speed ratio is greater
than 8. Also, an investigation into the impact of different turbulence models in predicting
the downstream wake development would be valuable.
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