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Abstract: Detecting and locating high impedance faults (HIF) in overhead distribution networks
(ODN) remains one of the biggest challenges for manufacturers and researchers due to the complexity
of this phenomenon, where the electrical current magnitude is similar to that of the loads. To
simulate HIF, the selection of the HIF model is important, because it has to correctly reproduce the
characteristics of this phenomenon, so that it does not negatively influence the simulations results.
Therefore, HIF models play a fundamental role in proposing solutions and validating the effectiveness
of the proposed methods to detect and localize HIF in ODN. This paper presents a systematic review
of HIF models. It is intended to facilitate the selection of the HIF model to be considered. The models
are validated based on experimental data from medium voltage (MV) laboratories, specifically,
recorded waveforms from two HIF tests conducted in an MV lab were analyzed and compared with
three established HIF models. The efficacy of these models was assessed against MV lab test data to
ensure a precise representation of both transient and steady-state conditions for fault conductance
and current waveforms. The findings show that the two nonlinear resistor models better approximate
the waveforms obtained in the experimental tests performed in this study.

Keywords: high impedance faults (HIFs); HIF models; overhead distribution networks (ODN);
lab experiment

1. Introduction
1.1. General Considerations

A high impedance fault (HIF) is defined as a disturbance caused by a conductor
that touches a high-resistance nonmetallic surface connected to the ground, producing
an arcing fault current lower than the residual relay pickup setting. According to [1],
HIFs involving downed conductors in contact with a surface, correspond to 10% of all
faults occurring in overhead distribution networks (ODN) [1]. The percentage of HIFs in
ODN is even higher since not all HIF events are reported [2]. In addition, HIFs can occur
without rupture or downfall of conductors on a surface, therefore, the HIF current is so
low that it cannot be detected by conventional overcurrent protection functions [3]. This
protection issue has been a challenge for distribution utility engineers for a long time [4].
To further complicate matters, HIF current waveforms have diverse characteristics, such as
asymmetry, nonlinearity, build-up, shoulder, intermittence, and randomness [5].
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High impedance faults in ODN may cause serious and harmful effects, such as (1) risk
of electric shock; (2) risk of fire in material assets and forests; (3) electricity supply in-
terruptions; and (4) long service restoration times. These effects continuously motivate
the development of new ideas and innovative solutions for HIF detection and location,
since they are challenging issues remaining unsolved or partially solved by the power
distribution industry. In that sense, more reliable algorithms for HIF studies should be
developed based on the above-mentioned HIF current waveform characteristics, which can
be represented by mathematical models that can reproduce them.

Test data from many early staged HIF studies have provided valuable information to-
ward understanding and characterizing HIFs [6,7]. To test the effectiveness and robustness
of these algorithms, time-domain computational simulations must be performed consider-
ing the asymmetric, nonlinear, intermittent, and random nature of the HIF phenomenon. It
is worth highlighting that HIFs are a random and dynamic phenomenon since they produce
arcing and flashing at the point of contact, and the conductor may move around due to
electromagnetic force [8].

The use of accurate HIF models for purposes of designing and testing HIF detection
and location algorithms is essential. HIF computational simulations can provide, at the
very least, initial data for preliminary research. On the other hand, field tests on an actual
medium voltage (MV) distribution network are not a recommended practice due to the
inherent danger involving this type of arcing fault in an uncontrolled environment.

Modeling of HIFs in ODN can be classified into three main categories: (1) model based
on active and passive circuit elements; (2) model based on passive circuit elements; and
(3) arcing model. Modeling based on active and passive circuit elements was proposed
by [9] and analyzed in [10]. The model is based on antiparallel diodes and its parameters
are considered to remain constant during the analyzed period. However, this model cannot
reproduce transient-state conditions of the HIF current waveform. A model based on
passive circuit elements was introduced by [11]. Some proposed modifications by [12] were
included in the model, which allows to simulate HIF on different types of ground surfaces.
Yet, this model depends on the V × I curve at the HIF point for each type of ground surface.
The arcing model was initially introduced by [13,14] in the form of a first-order differential
equation. This model is a simple physical representation that describes the behavior
of an electric arcing. In the last years, arcing models have been investigated in [15,16].
However, representing HIFs by arc models that can reproduce varied characteristics of the
phenomenon is not always possible, which motivates the research in HIF modeling.

1.2. Motivation and Contribution

In the literature there are works related to the review of HIF detection and localization
techniques [5,17–19], but the main goal is not to analyze HIF models. And the works that
include HIF models [10,20], do not perform a validation of the analyzed models, on the
other hand, some authors only validate the selected model separately [12,16,21,22], without
comparing the waveform reproduction, using the different HIF models that exist in the
literature. In that sense, the main contributions of this work are:

• A systematic review of existing works on HIF models for ODN with a critical analysis
on reproducing HIF characteristics. The paper shows the evolution, popularity, limi-
tations, advantages, and disadvantages of HIF models. As a result, researchers and
specialists can save time in the selection of the appropriate HIF model for their studies.

• The primary contribution of this work is the comparison of three well-known HIF
models for ODN with actual experiments conducted in a high-voltage laboratory at the
Federal University of Para. This analysis highlights both the strengths and limitations
of these models across various applications.

The motivation and contribution of this study arise from the limitations that the
authors may experience at the beginning of the research on issues developed in HIF, as
occurred in previous studies presented by the authors in [21,23–28]. Based on the above,
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this study contributes directly to the proposal and validation of the most appropriate
detection or localization method in HIF.

2. High Impedance Fault Characteristics

The HIF characteristics contained in the current waveform, as defined follow:

• Asymmetry: Peak values of current are different in the positive and negative half cycle.
The asymmetric nature of HIF current is influenced by the porosity and moisture of
the surface contact. The presence of silica in the contact surfaces causes asymmetry,
according to [9]. The heated silica forms a type of cathode spot that absorbs electrons,
causing voltage drops when the cable is subjected to a positive voltage.

• Nonlinearity: Voltage x current characteristic curve is highly nonlinear. This character-
istic is caused by the electric arc associated with the nonlinearity of high-impedance
objects [9,29,30].

• Build-up: HIF current magnitude gradually increases up to its maximum value. This
is due to: (a) the physical accommodation of the cable in the soil, since the cable can
move or settle into the soil [12–31]; and (b) the arc penetrates the soil surface and
causes soil ionization, increasing the effective area of the equivalent electrode [30].

• Shoulder: HIF current magnitude maintains constant right after the Build-up end.
• Intermittence: HIF electric arc is extinct during a time due to the loss of moisture in

the surface and physical accommodation of the cable.
• Randomness: Peak values of current randomly oscillate at each half cycle within a

relatively small range due to the random behavior of the electric arc.

Describe these characteristics related to [7], published in 1982. The works in [12] and
in general, works addressing HIFs in ODN describe the first five characteristics of HIF
mentioned above, since they are consolidated in the literature [32,33]. The randomness char-
acteristic of a HIF, mentioned in [15,34–38], is manifested by a random oscillation in the HIF
current waveform. In the technical literature, the characteristic of randomness and some
others can be observed in actual HIF current waveforms presented in [11,12,15,34,37–43],
in which the randomness issue is not addressed [11], among others, consider that the HIF
current waveform can be divided into two distinct conditions: transient and steady-state
conditions. Some HIF models only consider the steady-state condition, in which the HIF
current waveform of a cycle is repeated over time. The transient state condition lasts only
the first few cycles, during the build-up. The steady-state condition starts after the build-up
end. The nonlinearity and asymmetry characteristics are contained in the steady-state
current waveforms. The presence of randomness in the HIF current waveform leads the
steady-state condition to a quasi-steady-state condition, as shown in Figure 1. It is observed
that, after the current peaks build up, a random oscillation appears. HIF current peak
values are within a standard deviation. This characteristic of randomness is contained
practically in any HIF current waveform.
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References [5,34,38,44] mention other characteristics contained in the HIF current
waveform. However, this paper does not focus on other characteristics, since they are
dependent on the main characteristics (e.g., the harmonic content depending on the nonlin-
earity characteristic). According to [30], HIFs are considered single-phase faults because
an incident involving two or more phases is typically a high current fault event or can be
treated as two isolated single-phase HIF events. Also, it should be borne in mind that the
HIF current is exactly in phase with the voltage at the fault point and the resulting har-
monic currents tend to reach their peaks at the same time as the HIF current fundamental
component, according to [30,45,46].

3. Categories of HIF Models for ODN
3.1. Models Based on Active and Passive Circuit Elements

This section shows the evolution of the models of active and passive circuit elements
used in the studies of the last 30 years for each HIF model in the ODN, classified in terms
of their elements, representation and year of publication. The base model (model “a”)
and the rest of the models in this category can be constructed using Figure 2 and Table 1.
Figure 2 shows the different active and passive elements that can be connected in series
within elements 1, 2, 3 and 4. For example, in model “a”, element 1 consists of a DC voltage
source (VP) and a diode (DP) connected in series. Element 2 consists of a DC voltage source
(VN) and a diode (DN) connected in series, and element 3 consists of a resistor (R) and an
inductor (X) connected in series.
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Table 1.

The electrical circuit elements that compose a HIF model consist of a constant impedance
(resistance R and reactance X) in series with two antiparallel diodes (DP and DN). Each
diode is in series with a DC voltage source (VP or VN). This antiparallel-diode configuration
allows the current during positive half cycles to circulate only through one branch and the
current during negative half cycles flows through another branch. The fault current magni-
tude is controlled by the impedance value, but the source voltage values also influence the
current magnitude control, as observed in Figure 3, which presents simulation results to
understand the behavior of the model proposed in [9].
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Table 1. Timeline of HID models based on active and passive circuit elements.

Model Year Ref. Element 1 Element 2 Element 3 Element 4 Control
System

a 1990 [9]
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 

- -

Energies 2024, 17, x FOR PEER REVIEW 5 of 23 
 

 

Table 1. Timeline of HID models based on active and passive circuit elements. 

Model Year Ref Element 1 Element 2 Element 3 Element 4 
Control 
system 

a 1990 [9] DP  
 

VP  
 

- - DN  
 

VN  
 

- - X 
 

R 
 

-  -  - 

b 1993 [47] DP  
 

R 
 

VP  
 

- DN  
 

R 
 

VN  
 

- 
 

- -  -  - 

c 1998 [48] DP  
  

- - DN  
  

- - 
  

R 
 

 
 

 TACS 

d 2004 [49] DP  
 

VP  
 

- - DN  
 

VN  
 

- - 
 

R 
 

-  -  - 

e 2005 [50] DP  
 

VP  
  

- DN  
 

VN  
  

- R 
 

R 
 

-  -  
MOD-

ELS 

f 2006 [51] DP  
 

X 
 

R 
 

VP  
 

DN  
 

X 
 

R 
 

VN  
 

- - -  -  - 

g 2010 [52] DP  
 

R 
 

VP  
 

- DN  
 

R 
 

VN  
 

- 
 

- -  -  - 

h 2011 [53] DP  
 

R 
  

- DN  
 

R 
  

- R 
 

- -  -  - 

i 2015 [54] DP  
 

R 
 

VP  
 

- DN  
 

R 
 

VN  
 

- 
 

R 
 

-  -  - 

j 2016 [55] DP  
 

VP  - - DN  VN  - - X R -  -  - 

k 2017 [31] DP  
 

VP  
 

- - DN  
 

VN  
 

- - 
 

R 
 

-  
 

 
MOD-

ELS 
TACS 

The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
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lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 
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current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 

- - - - -
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 

- -
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 

Energies 2024, 17, x FOR PEER REVIEW 5 of 23 
 

 

Table 1. Timeline of HID models based on active and passive circuit elements. 

Model Year Ref Element 1 Element 2 Element 3 Element 4 
Control 
system 

a 1990 [9] DP  
 

VP  
 

- - DN  
 

VN  
 

- - X 
 

R 
 

-  -  - 

b 1993 [47] DP  
 

R 
 

VP  
 

- DN  
 

R 
 

VN  
 

- 
 

- -  -  - 

c 1998 [48] DP  
  

- - DN  
  

- - 
  

R 
 

 
 

 TACS 

d 2004 [49] DP  
 

VP  
 

- - DN  
 

VN  
 

- - 
 

R 
 

-  -  - 

e 2005 [50] DP  
 

VP  
  

- DN  
 

VN  
  

- R 
 

R 
 

-  -  
MOD-

ELS 

f 2006 [51] DP  
 

X 
 

R 
 

VP  
 

DN  
 

X 
 

R 
 

VN  
 

- - -  -  - 

g 2010 [52] DP  
 

R 
 

VP  
 

- DN  
 

R 
 

VN  
 

- 
 

- -  -  - 

h 2011 [53] DP  
 

R 
  

- DN  
 

R 
  

- R 
 

- -  -  - 

i 2015 [54] DP  
 

R 
 

VP  
 

- DN  
 

R 
 

VN  
 

- 
 

R 
 

-  -  - 

j 2016 [55] DP  
 

VP  - - DN  VN  - - X R -  -  - 

k 2017 [31] DP  
 

VP  
 

- - DN  
 

VN  
 

- - 
 

R 
 

-  
 

 
MOD-

ELS 
TACS 

The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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Figure 3. High impedance fault current waveforms: (a) when source voltage varies; (b) when
resistance varies.

In Figure 3a, the variation of the current for different values of voltage VN are pre-
sented, where: VN1 < VN2 < VN3, maintaining both constant impedance and constant
voltage VP. It can be concluded that the variable parameter (VN) simultaneously modifies
the current magnitude and the current conduction instants during negative semi-cycles (the
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three currents are superimposed during positive semi-cycles). By analogy, this behavior
will be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of
VP and VN only affect their respective semi-cycles. Figure 3b shows the current variation
for different resistance values, where R1 < R2 < R3, keeping constant the voltage values of
the DC source (VP and VN). It is clearly observed that the variable parameter influences on
current during two half-cycles and controls the current magnitude. It is important to note
that the phase angle difference between the voltage at the fault point and the fault current
is negligible, as indicated in the previous section. This fact must be considered to assign a
minimum value of inductive reactance to models that consider this element.

As described in Section 2, the HIF current changes over time. However, in the model
based on active and passive circuit elements, when it considers constant parameters from
the beginning to the end of the simulation, produces a current waveform in which all cycles
are equal over time, not allowing full reproduction of this characteristic. Regarding the
non-linearity characteristic of HIF, the model does not reproduce this characteristic in the
complete cycle, the linearity is maintained within the HIF current conduction intervals.
Therefore, this model does not fully reproduce this feature, a fact that can be seen in
Figure 4, where the current waveform of a typical HIF is shown, as well as the waveform
reproduced from simulations (with the model "a” of Table 1) for a given voltage.
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In 1993, the model proposed in [9], derived from works [47,56], is modified as shown
in the model “b”, of Table 1. The reactance is neglected, and a resistance is considered in
each branch (RP and RN), allowing independent control of the current magnitude at each
half cycle, but without solving other model limitations.

Reference [57] clearly shows how to reproduce different fault current magnitudes,
asymmetries, arc extinctions and arc restarts by modifying VP, VN , RP and RN . A model
proposed later in [51,58] does not neglect the reactance, unlike [9], but it considers a
resistance for each branch, as observed in the model “f” of Table 1, represented in Figure 2.
The work in [59] proposes two non-linear resistances RP and RN , as observed in the
model “b” of Table 1 in Figure 2, but it does not provide knowledge of this characteristic.
With this proposal, the non-linear characteristic can be reproduced in the conducting and
non-conducting intervals as presented in Figure 4. Since HIF is a random and nonlinear
phenomenon, authors in [60–64] propose that the parameters VP, VN, RP and RN vary
randomly between certain limits at each time interval (ms), following a uniform and/or
Gaussian distribution.

The use of random values for elements of this model has been extended to several
studies, such as [65–68]. By proposing the time-varying parameters, the fault current
waveform is no longer the same as that of the other cycles. However, the build-up and
shoulder characteristics are not guaranteed due to random behavior. Modified models of [9],
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configured in parallel, are proposed in [52,69] (see model “g” of Table 1 represented in
Figure 2). The energization of each of the models in parallel is done by employing switches.
According to the authors, this model can reproduce the characteristics of randomness and
build-up but adding a greater number of parameters and a switching control system.

In [48,53], DC sources are replaced by sawtooth waveform generators (see models
“c” and “h” of Table 1 represented in Figure 2), to control the phase difference between
the voltage at the fault point and the fault current. But as described in Section 2, it is
not necessary to control this difference, because it is negligible. In addition, a variable
resistance is added to the model. In the model in Figure 2, switch 1, normally open, isolates
the downstream load from the fault point, and switch 2, normally closed, connects the
HIF model to the electrical system. Switch 3 controlled by TACS controls the re-ignition
and extinction of the electric arc, to reproduce the intermittency, which is one of the main
characteristics of the HIF.

Afterwards, in [54], it is proposed to randomly modify the value of the resistance,
in each cycle, and the model is according to the model “i” of Table 1. The references
described ([48,53,54]) are not intended to reproduce buildup and other features. In [49,70],
the reactance of the model proposed in [9] is neglected and the fixed resistance becomes
a non-linear resistance, as can be observed in the model “d” of Table 1, represented in
Figure 2. In [49], the voltage values of the DC sources vary randomly at each half-cycle.
In [70], the resistance value varies randomly under a uniform distribution. However,
in [49] there is the problem of dependence between the beginning of the current conduction
and the magnitude of the current waveform, as can be observed in Figure 3a. The HIF
models proposed in [49,70] reproduce the current waveform nonlinearity and the current
magnitude random behavior.

In [50], a model modification is proposed based on a combination of the model
proposed in [9] with the arc model based on a differential equation, according to the model
“e” of Table 1. This model is based on works [9,48,71]. Some new features have been
added to the model, such as the impedance from [9] which has been replaced by a linear
resistor and a time-varying non-linear resistor, representing the earth resistance and the
dynamic arc, respectively. AC sources have also been added to the model guaranteeing the
variable point of arc ignition and cooling. This model is not simple, since it is practically the
union of two models classified into different categories. Therefore, the model complexity is
increased due to the greater number of elements composing the model.

In [55], the constant resistance of the model from [9] is replaced by a time-varying resis-
tance to correctly simulate the build-up and shoulder. The model remained simple, as can
be observed in the model “j” of Table 1 in Figure 2. The time-varying resistance is modeled
by a polynomial function and a constant for transient and quasi-steady states, respectively.

The modeling proposed in [55] can be associated with [11]. In reference [39], regarding
the circuit configuration, a resistance is added to each branch that represents the arc
resistance. In reference [72], the model proposed in [9] is adapted to be used in the
frequency domain, demonstrating the importance of this modeling in the literature. In
short, this HIF model can reproduce the characteristics of asymmetry, nonlinearity, build-up,
and shoulder considering transient and quasi-steady states.

The model “k” in Table 1, represented by Figure 2 shows the last model based on the
combining of electric circuit elements, which was proposed in [31]. It is basically the model
proposed in [9] with some features of other models. The main difference is that the model
proposed in [31] has a complex control system of resistance and a sectionalizing switch
that controls the current circulation. The resistance consists of three portions that add up to
the total resistance value. The first portion is established to reproduce the build-up. The
second portion is responsible for simulating the asymmetry between half cycles of the same
cycle. Finally, the last part reproduces the arc resistance variation, similarly to [11].

It is important to highlight that the evolution of this category of HIF models has not
been independent of other categories. Some features present in models of other categories
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have helped in the evolution of models in this category and vice-versa. A clear example is
the way described in [11] to model the build-up and shoulder.

An important observation is that, when this category of HIF models is used, the fault
current waveform does not faithfully reproduce waveforms of an actual HIF, especially
in the vicinity of zero crossings. In Figure 4, it can be observed the difference between
the simulated current (Isim) using the model from [9] and the typical current (Ityp) for a
type of surface (e.g., gravel). It is worth noting that the nonlinear resistance can reproduce
nonlinearity in the current conduction interval, but not in the non-conduction interval. Last,
when DC sources are considered in the model, the reproduced current has limitations in
the zero-crossing.

3.2. Models Based on Passive Circuit Elements

Figure 5 and Table 2 illustrates a representation of the different HIF models based on
passive elements such as resistance and/or reactance. It can be observed that the evolution
of this category of models is not based on a single model, unlike the evolution of models
presented in Section 3.1. First, in 1981, authors in [73] proposed a HIF model based on two
series nonlinear resistance as a function of the current as shown in the model “a” of Table 2
and represented in Figure 5.
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Figure 5 and Table 2 illustrates a representation of the different HIF models based on 

passive elements such as resistance and/or reactance. It can be observed that the evolution 
of this category of models is not based on a single model, unlike the evolution of models 
presented in Section 3.1. First, in 1981, authors in [73] proposed a HIF model based on two 
series nonlinear resistance as a function of the current as shown in the model “a” of Table 
2 and represented in Figure 5. 

One resistance represents the arc resistance, and the other represents the earth re-
sistance. Subsequently, in [74], HIF is modeled by a resistance and an inductance, both 
non-linear as a function of the current, subject to a second-order polynomial, as can be 
observed in Figure 5 and the model “b” of Table 2. Similarly, in [75], HIF is simulated in 
two ways: (a) constant resistance and reactance; and (b) non-linear resistance as a function 
of current and constant reactance, as can be observed in Figure 5 and model “d” of Table 
2. These models have a common ability to reproduce the characteristic of nonlinearity. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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(Model “c” of Table 2 and Figure 5). This model consists of a normally open switch con-
nected in series with a variable fault resistance to produce a variety of fault current wave-
forms each half cycle. After the fault starts, periodic switching operations are determined 
by the voltage values of the corresponding arc, chosen randomly for each half cycle. This 
model has the ability to reproduce the intermittency characteristic, but the reproduction 
of the build-up and shoulder characteristics is not guaranteed due to the stochastic simu-
lation. 

The work in [11], published in 2001, presents the most important HIF model this cat-
egory of models based on passive elements, illustrated in Figure 5 and Table 2, model “e”, 
since it is capable of reproducing several characteristics of HIF. This model consists of two 
nonlinear resistances in series, one resistance is responsible for simulating the asymmetry 
and nonlinearity characteristics, and the other resistance is controlled by TACS to simulate 
the build-up and shoulder characteristics. The two resistances are determined from curves 
of voltage at the fault point versus fault current. 

In reference [12], published in 2013, the model from [11] is combined with the con-
figuration of switches proposed by [48] (see model “c” of Table 1 in Figure 2), and switches 
S1 and S2 are used for disconnecting downstream load from the fault point and connecting 
the HIF model at the fault point, respectively. In reference [12], experimental tests were 
carried out to establish HIFs of six surface types. The test results were used to model each 
HIF associated with a surface type. Subsequently, ref. [79] has proposed a control in the 
switch S3 to simulate the intermittency characteristic. Switch operations are the same 
adopted in [48], as seen in model “c” of Table 1 in Figure 2. The evolution of this model 
allows us to reproduce five basic HIF characteristics described in section II. Reference [80] 
proposes the use of two series connected resistors, one dielectric resistance and the other 
constant bad contact resistance between the conductor and dielectric. The dielectric re-
sistance behavior is based on the solid dielectric electrical breakdown theory. The author 
shows that the proposed nonlinear resistance model is more consistent in reproducing 
current waveform at zero-crossing points than the traditional arc model based on 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 

-
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 

TACS

One resistance represents the arc resistance, and the other represents the earth re-
sistance. Subsequently, in [74], HIF is modeled by a resistance and an inductance, both
non-linear as a function of the current, subject to a second-order polynomial, as can be
observed in Figure 5 and the model “b” of Table 2. Similarly, in [75], HIF is simulated in
two ways: (a) constant resistance and reactance; and (b) non-linear resistance as a function
of current and constant reactance, as can be observed in Figure 5 and model “d” of Table 2.
These models have a common ability to reproduce the characteristic of nonlinearity.
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In 1985, the work in [76] used the simplest model consisting of a constant resistance
connected at the fault point. This model reproduces only the low HIF magnitude. In
recent years, some authors used this model, such as [77], published in 2015. Afterward,
the authors in [78] proposed a model based on a combination of 16 nonlinear impedances
with different degrees of nonlinearity and with an arc start for different voltage values.
HIF simulations can be performed by applying any combination of 16 impedances, that
is, one impedance is used for each half-cycle of the voltage waveform. However, this
model reproduces with limitations in the shoulder and build-up characteristics through a
combination sequence that increases the model complexity. In reference [45], the random
nature of the arc has stochastically been simulated using the MODELS language in ATP
software (Model “c” of Table 2 and Figure 5). This model consists of a normally open
switch connected in series with a variable fault resistance to produce a variety of fault
current waveforms each half cycle. After the fault starts, periodic switching operations
are determined by the voltage values of the corresponding arc, chosen randomly for each
half cycle. This model has the ability to reproduce the intermittency characteristic, but
the reproduction of the build-up and shoulder characteristics is not guaranteed due to the
stochastic simulation.

The work in [11], published in 2001, presents the most important HIF model this
category of models based on passive elements, illustrated in Figure 5 and Table 2, model
“e”, since it is capable of reproducing several characteristics of HIF. This model consists
of two nonlinear resistances in series, one resistance is responsible for simulating the
asymmetry and nonlinearity characteristics, and the other resistance is controlled by TACS
to simulate the build-up and shoulder characteristics. The two resistances are determined
from curves of voltage at the fault point versus fault current.

In reference [12], published in 2013, the model from [11] is combined with the configu-
ration of switches proposed by [48] (see model “c” of Table 1 in Figure 2), and switches S1
and S2 are used for disconnecting downstream load from the fault point and connecting the
HIF model at the fault point, respectively. In reference [12], experimental tests were carried
out to establish HIFs of six surface types. The test results were used to model each HIF
associated with a surface type. Subsequently, ref. [79] has proposed a control in the switch
S3 to simulate the intermittency characteristic. Switch operations are the same adopted
in [48], as seen in model “c” of Table 1 in Figure 2. The evolution of this model allows us
to reproduce five basic HIF characteristics described in Section 2. Reference [80] proposes
the use of two series connected resistors, one dielectric resistance and the other constant
bad contact resistance between the conductor and dielectric. The dielectric resistance be-
havior is based on the solid dielectric electrical breakdown theory. The author shows that
the proposed nonlinear resistance model is more consistent in reproducing current wave-
form at zero-crossing points than the traditional arc model based on differential equations
(Mayr model). However, the work does not show the reproduction of the build-up and
shoulder characteristics.

3.3. Arc Model

This subsection presents the third category of HIF modeling, which is expressed in the
form of a first-order differential equation and represented by the Figure 6 and the Table 3.
This HIF model is well known as the arc equation and basically consists of: (1) a single
resistance subject to the arc model, as illustrated in Figure 6 and model “a” of Table 3; and
(2) two resistances, one that represents the arc resistance (modeled by a differential equation)
and the other that can be a constant resistance, shown in Figure 6 and model “b” of Table 3,
or a variable over time, shown in Figure 6 and model “c” of Table 3, which represents the
resistance of a surface. According to [22], the thermal model has been used since the first
descriptions of the arc electrical conductivity shown by Cassie [13] and Mayr [14], in the
form of a first-order differential equation. This model has subsequently been improved
and modified according to needs. For example, ref. [81] details the implementation of the
arc model described in [71] using EMTP. Known as the arc digital model and derived from
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the description of Hochrainer’s arc, the model from [71] is derived from the works of Mayr
and Cassie.
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Table 3. High impedance fault models based on the physical process involved in the electric arc.
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
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rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
be repeated during the positive semi-cycle, but varying VP. Therefore, the variations of VP 
and VN only affect their respective semi-cycles. Figure 3b shows the current variation for 
different resistance values, where 𝑅ଵ < 𝑅ଶ < 𝑅ଷ, keeping constant the voltage values of the 
DC source (𝑉௉ and 𝑉ே). It is clearly observed that the variable parameter influences on cur-
rent during two half-cycles and controls the current magnitude. It is important to note that 
the phase angle difference between the voltage at the fault point and the fault current is 
negligible, as indicated in the previous section. This fact must be considered to assign a min-
imum value of inductive reactance to models that consider this element. 
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The electrical circuit elements that compose a HIF model consist of a constant impedance 
(resistance R and reactance 𝑋) in series with two antiparallel diodes (𝐷௉ and 𝐷ே). Each diode 
is in series with a DC voltage source (𝑉௉ or 𝑉ே). This antiparallel-diode configuration al-
lows the current during positive half cycles to circulate only through one branch and the 
current during negative half cycles flows through another branch. The fault current mag-
nitude is controlled by the impedance value, but the source voltage values also influence 
the current magnitude control, as observed in Figure 3, which presents simulation results 
to understand the behavior of the model proposed in [9]. 

In Figure 3a, the variation of the current for different values of voltage 𝑉ே  are pre-
sented, where: 𝑉ேଵ  < 𝑉ேଶ  < 𝑉ேଷ, maintaining both constant impedance and constant volt-
age VP. It can be concluded that the variable parameter (V୒) simultaneously modifies the 
current magnitude and the current conduction instants during negative semi-cycles (the 
three currents are superimposed during positive semi-cycles). By analogy, this behavior will 
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imum value of inductive reactance to models that consider this element. 

- MODELS

In [82], HIF is modeled by a single resistance based on the first-order differential
equation in (1), as originally proposed in [71]. To simulate the random behavior of the
phenomenon, the arc voltage per unit length parameter of the differential equation assumes
random values within pre-defined limits (G0 is a function of the arc voltage per unit
length parameter). In reference [22], HIF is also modeled using the detailed arc description
from [71], and to implement the model, the implementation method from [81] is used.
Reference [22] models a HIF caused by the cable contact with the tree. This model is
represented by two resistances in series, one constant that represents the tree resistance and
the other variable that represents the arc resistance.

dg(t)
dt

=
G0 − g(t)

τ
(1)

where G0 is stationary arc conductance, τ is arc time constant, and g(t) is time-varying arc
conductance [22,71].

In works [83,84], two variable resistances in series are used, one that represents the
surface resistance varying between two limits and the other that represents the arc resistance
modeled by Equation (1). To reproduce the randomness characteristic, parameter τ takes
random values with uniform distribution within predefined limit values.

References [15,85,86] model the HIF based on the Equation (1), whose parameters are
obtained from the voltage waveform at the fault point and fault current waveform using the
least squares method and the sum of squared deviations from theoretical and experimental
values. In these works, the reproduction of nonlinearity and build-up characteristics can
be observed. Among works addressing HIF modeling based on the arc model, ref. [15] is
recommended because the model is described in a detailed way, showing the calculation of
differential equation parameters. Reading [22] is also recommended. Finally, it is worth
mentioning that, according to [80], the model based on the arc equation is not consistent in
reproducing the HIF waveform at zero-crossing points (see Figure 3 in [80]) and therefore
it has a similar limitation to models of the first category.
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4. High Impedance Fault Models for ODN

The interaction between any HIF model with an ODN can be illustrated in Figure 7.
The configurations of switches S1, S2, and S3 are based on [48]. The switches S1, S2, and
S3 allow to simulate different HIF classes. Under normal system conditions, S1 and S2 are
normally closed and S3 is normally open. In the case of a load-side HIF, S1 is normally
open and S2 and S3 are normally closed, while if the fault is from the source side, S1 and S3
are closed, and S2 is open, in both scenarios there is a similarity between the waveform,
both from the source and from the load, as analyzed in [87]. It is also possible to simulate
the cable downfall time, which is represented by the time S3 takes to close. For faults
involving the unbroken conductor in contact with a tree branch, the three switches are
normally closed. It is worth highlighting that S3 has two functions, one that is to connect
the HIF model to the distribution system model and the other that is to simulate the
intermittence characteristic.
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Figure 7. Interaction between the HIF model and distribution network model.

Figure 8a,b show the circuits that represent categories of HIF models based on a
combination of electric circuit elements and passive elements, respectively. In the category
of models based on a combination of electric circuit elements, the parameter values can be
modified to reproduce other models in the same category.
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For example, making RP = RN , the circuit model of Figure 8a reproduces the same
behavior as the circuit model “d” of Table 1 represented in Figure 2. In this model category,
the inductive reactance XL and other elements proposed to control the phase difference
between the voltage at the fault point and fault current are neglected. Equation (2) relates
the voltage at the fault point and the fault current using the sign function expressed in
Equation (3) to represent the diodes behavior, similar to [88].

v(t) = (R P·i(t) + VP

)
·sgn

(
i(t)

)
+(−R N ·i(t) + VN

)
·sgn

(
i(t)

)
(2)
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where sgn
(

i(t)
)

is the current sign function, as follows.

sgn
(

i(t)
)
=


1 i f i(t) < 0,
0 i f i(t) = 0,

−1 i f i(t) > 0.
(3)

Note that HIF models based on a combination of electrical circuit elements are easy to
implement, especially when model parameters are constant. However, such models can
become complex when the dynamic behavior of model parameters is considered due to
the need to employ a control system. To use HIF models of this category, the values of
resistances and DC sources must be known. To simulate the random behavior as suggested
by many authors, it is necessary to randomly modify the interest parameter values during
the simulation. In the case of nonlinear behavior of the resistances, the modification of
parameter values over time can be done following a certain function (e.g., a polynomial
function). It is worth noting that RP and RN can be composed of several resistances, as
proposed in [31]. Figure 8b shows the electrical circuit that represents categories of HIF
models based on passive elements and order first differential equations. It is possible to
obtain different HIF models that compose these two categories, defining the constant or
dynamic behavior of the resistances.

The relationship between the voltage at the fault point and fault current is given by:

v(t) = (R 1(t) + R2(t)

)
·i(t) (4)

Equation (4) is apparently very simple; however, the model complexity is proportional
to the dynamic behavior of the resistances, similar to the first category of HIF models.

The HIF models based on passive elements, which reproduce the greatest number
of HIF characteristics, represent the dynamic behaviors of the two resistances. According
to [11], dynamic behaviors of R1(t) and R2(t) are expressed by Equations (5) and (6),
respectively. It is worth mentioning it is possible to reproduce the randomness characteristic
adding to the model a third resistance that varies randomly.

R1(t) =
v(t)

in +
in+1−in
vn+1−vn

·(v(t)− vn)
(5)

R2(t) = a0 + a1·t1 + a2·t2 + . . . + an−1·tn−1 + an·tn, (6)

For the HIF model based on the order first differential equation, R1(t) is determined
by the arc equation in (1) and R2(t) is constant or time-varying. However, ref. [15] shows
that is possible to model a HIF making R2(t) = 0.

The solution from Equation (1) is expressed by Equation (7), in which the calculation
of parameters G0 and τ are described in detail by [15]. R1(t) is expressed by Equation (8).

g(t) = G0·
(

1 − e−t/τ
)

(7)

R1(t) =
1

g(t)
(8)

From the mathematic point of view, the three categories of HIF models do not present
a clear difference in terms of model implementation complexity. To use HIF models based
on a combination of electric circuit elements, four parameters (VP, VN, RP, and RN) of
Equation (2) need to be determined. Simulation of a HIF becomes simple if these four
parameters are constant. However, it is necessary to determine the four parameters if the
resistances are time-varying, increasing the model implementation complexity. To use HIF
models based on passive elements, it is necessary to determine the behaviors of the two
resistances, which usually are time-varying. This HIF model becomes the simplest of all
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HIF models if the two resistances are constant. Lastly, to use HIF models based on the order
first differential equation two parameters need to be determined. These two parameters
usually are constant during simulation, which implies in limitations to reproduce all HIF
characteristics. On the other hand, when these parameters are time-varying is necessary to
determine a time-varying function.

5. Comparison of HIF Models for ODN with MV Lab Test Measured Data
5.1. Materials and Methods

Besides the systematic literature review, this study presents an experimental evalua-
tion to verify the three predominant HIF models with real data obtained from oscillographs
in laboratory facilities. Figure 9 shows the methodology used in this study. The computa-
tional evaluation was carried out using the ATP/EMTP software (https://atp-emtp.org/,
accessed on 25 January 2020) for the simulation of all the HIF models. The following types
of HIF models for ODN are compared in this section with lab test results:

• Model 1—model based on active and passive circuit elements;
• Model 2—model based on passive elements;
• Model 3—arcing model.
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(CTs), conductors, 75 kVA, 13.8 kV/0.22 kV service transformer of the WEG manufacturer
and load.

The 225 kVA transformer is delta connected on the low-voltage (LV) side (0.22 kV) and
grounded wye connected on the medium voltage (MV) side (13.8 kV) to emulate a typical
distribution substation. The MV system is a three-phase three-wire circuit, and the neutral
conductor is grounded on the transformer. In this paper, oscillography records captured by
the SEL-751 relay are used to compare the three HIF models. The oscillography records
were obtained from two HIF experimental tests, one using a Bamboo tree branch and the
other using an Açai tree branch. The SEL-751 relay’s residual overcurrent element was
used for tripping purposes with a sensitive setting.

https://atp-emtp.org/
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5.2. Results and Discussion

From the measurements in the laboratory presented in Figure 10, data were obtained
from the relay for further processing and analysis. Figures 12 and 13 show HIF current
waveforms obtained through experimental laboratory tests using a bamboo tree branch and
an açai tree branch (common trees in the Amazon region, site of the study), respectively,
both subjected to a 13.8/√3 kV phase voltage. The two waveforms were selected because
they present the typical characteristics of a HIF, such as nonlinearity, asymmetry, shoulder
and build up, especially because they have a marked envelope, one with an increasing
envelope, where the magnitude of the instantaneous current exceeds 10 A, and the other
with an oscillating envelope, where the maximum current does not exceed 3 A. To evaluate
the limitations or capabilities of the studied models, the two HIF current waveforms are
reproduced, using the three selected models. The models are implemented in the ATPDraw
software version 7.0, and the results of the simulations are presented graphically, where
the differences in the reproduced currents in relation to the measured current can be
visually appreciated.
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Figure 13. Measured current waveform obtained from a HIF experimental test with an Açai
tree branch.

Figure 14 shows the comparison of the conductance reproduced by each type of
HIF model with the measured conductance data (red color curve) from an experimental
HIF test with a bamboo tree branch. The conductance is determined by the relationship
between simulated or measured current and voltage waveforms. When Model 1 is used,
the average conductance calculated for positive and negative cycles are 0.00023084 S and
0.00023094 S, respectively.
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In this case, they are practically the same, indicating that the asymmetry is negligible.
It is noteworthy that the parameters of Model 1 are constant and therefore the conductance
is represented by a straight (cyan color line). The black color curve is the conductance
calculated using Model 2, represented by a fifth-order polynomial expressed by Equation
(6), where its coefficients were determined by fitting the curve. The blue color curve is
the conductance calculated using Model 3, whose parameters G0 = 0.000232432 S and
τ = 0.016045 s were estimated by the least-squares method. Note that the conductance
calculated using the model 2 has better matching with the measured conductance (red
color curve), both in the transient and steady-state conditions. The steady-state condition is
reached when t = 0.35 s.

Figures 15 and 16 show comparisons of the current waveforms calculated by HIF mod-
els with the measured current waveforms resulting from a HIF experimentally generated
by a bamboo tree branch, for transient and steady-state conditions, respectively. The steady-
state condition is reached when t = 0.3 s. It can be observed that the Model 2 more accurately
replicates the measured transient waveform when compared with Models 1 and 3. As for
the steady-state waveform, all HIF models have similar and sufficiently accurate results.
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Figure 17 shows the comparison of the conductance reproduced by each type of HIF
model with the measured conductance data (red color curve) from an experimental HIF
testing with açai tree branch. The average conductance calculated using Model 1 for
positive and negative cycles are 0.00059475 S and 0.00059823 S, respectively. The black color
curve is the conductance calculated using Model 2 represented by a sixth-order polynomial.
The blue color curve is the conductance calculated using Model 3, whose parameters
G0 = 0.001699 S and τ = 2.345621 S were estimated by the least-squares method. It can be
observed that model 2 accurately reproduces the measured conductance in the transient
and steady-state conditions.
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Figures 18 and 19 show comparisons of the current waveforms calculated by HIF
models with the measured current waveforms resulting from a HIF experimentally gen-
erated by an Açai tree branch, for transient and steady-state conditions, respectively. The
steady-state condition is reached when t = 0.35 s. It can be observed that the Model 2
accurately replicates the measured current waveform when compared with Models 1 and 3,
for both transient and steady-state conditions.
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Currently, models based on active and passive circuit elements are the most widely
used category in investigations related to the detection and location of HIF. This paper
systematically reviewed three broad categories of HIF models for overhead distribution
network studies performed by EMT-type programs and compared three well-known HIF
models, one of each category, with MV laboratory experimental data. The comparison
presented in this work showed that the model based on two non-linear resistances is
more accurately matched with measured waveforms obtained from two experimental
HIF tests using tree branches when compared with other models. The presented review,
models, studies, and comparison will be useful to researchers and practicing distribution
protection engineers who are actively using EMT simulation tools for modeling and analysis
of overhead distribution networks. The lab experimental results reported in this paper
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