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Abstract: This paper proposes an analytical model of the double-stator spoke-type permanent magnet
vernier machine (DSSTVM) using the subdomain method (SDM), which can be used to calculate
the magnetic field distribution and corresponding electromagnetic parameters of the DSSTVM. The
whole field domain is divided into several subdomains according to the magnetic characteristics
of each region, within which Laplace’s and Poisson’s equations are solved accordingly in terms of
magnetic vector potential (MVP). Then, the corresponding magnetic flux density distribution, back
electromotive force (EMF), and electromagnetic torque of the DSSTVM can be obtained. Ultimately,
finite element analysis (FEA) is adopted to validate the proposed analytical model’s effectiveness for
quickly predicting the no-load and on-load performances of the DSSTVM.

Keywords: finite element analysis; subdomain method; spoke-type permanent magnet; double-stator
machine; vernier machine

1. Introduction

Compared to conventional single-stator electric machines, double-stator machines
(DSMs) have the merits of a more compact structure, higher torque/power density, and
better fault-tolerant capability [1]. Due to these advantages, DSMs have great potential to be
applied in torque-sensitive scenarios, such as wind turbines, ship propulsion motors, robot
actuators, etc. [2]. With the development of manufacturing technology, DSMs have recently
become a research hot spot, and various types of DSMs have been proposed, including
DS flux-switching machines [3,4], DS synchronous machines [5], DS-switched reluctance
machines [6], and DS vernier machines. The prominent feature of DSMs is the double-stator
structure, where two stators sandwich the rotor at the inner and outer sides. Thus, DSMs
can effectively use the magnetic force at both air gaps to produce a large torque.

Among all the DSM topologies, DS vernier machines have the largest torque density
due to the use of the magnetic-gearing effect [7,8], but a relatively low power factor. A
DS vernier machine topology was raised in [9], and the low power factor problem can be
solved with the introduction of spoke-type permanent magnets. This motor topology is
named a double-stator spoke-type permanent magnet vernier machine (DSSTVM), and it
shows great promise in low-speed direct-drive applications.

However, the electromagnetic performance prediction for this DSSTVM is never
an easy task. In general, the difficulties of the DSSTVM’s field prediction come in two
aspects. The first one is the dual air-gap structure. The second is plenty of effective spatial
harmonics within the DSSTVM to generate such a large output torque. Electromagnetic field
calculation based on finite element analysis (FEA) is the most popular and mature research
method, it can accurately calculate the electromagnetic field of the electrical machines. FEA
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has good geometric adaptability, however, the FEA model for the DSSTVM should have
a very dense mesh to accurately calculate its electromagnetic field distribution and key
electromagnetic parameters. The large-scale FEA requires high computer hardware and
takes a long time to model and calculate, while SDM can realize the electromagnetic field
calculation of DSSTVM at a lower cost, it is used to realize the fast and accurate prediction
of the electromagnetic scheme of DSSTVM. Considering the complex harmonic magnetic
flux density in the vernier motor, the FEA model needs a denser mesh and smaller time
step to describe the sensitive and saturated magnetic flux density distribution, while the
SDM has a lower computation cost when describing the more precise characterization of
electromagnetic fields. In conclusion, FEA can accurately calculate the electromagnetic field
of electrical machines. However, the FEA model for the DSSTVM should have a very dense
mesh to accurately calculate its electromagnetic parameters, which significantly reduces
the computation speed.

An alternative to FEA used for the preliminary design of electric machines is the
analytical modeling method. Up to now, various analytical modeling methods have been
proposed based on different mathematical theories. Three analytical modeling methods
have been frequently used for the field prediction of various electric machines, namely
the conformal mapping method (CMM), magnetic equivalent circuit method (MEC), and
subdomain method (SDM). CMM can be used for single-rotor electric machines with two
different magnetic potentials [10], and the sliding mesh modeling is very complicated in
MEC [11,12]. Thus, neither CMM nor MEC is feasible for the field prediction of DSSTVM.
SDM is a semi-analytical modeling method that utilizes the Fourier series expansion to
satisfy magnetic field distribution within electric machines [13]. It has the advantages of
high accuracy and fast computation speed, and it is highly suitable for modeling vernier
machines where plenty of spatial harmonics exist [14]. In summary, compared with CMM,
SDM consumes less time than CMM; when considering plenty of spatial harmonics in
vernier machines, SDM has the greater advantage in computation speed. Compared with
MEC, SDM is easy for physical and mathematical modeling and consequent programming,
and it does not need the complicated sliding mesh modeling. However, in the literature,
there is little concerning the SDM for DSM. The magnetic field of a consequent-pole DSM is
solved using SDM in [15], but the mathematical modeling of open slot structure, split-tooth
structure, and spoke-type PMs are not involved.

This paper provides an SDM model for the field prediction of the DSSTVM with a
split tooth structure. The modeling deduction is a supplement to [15]. Thereafter, SDM
can be completed to be used for magnetic field predictions of DSMs with any topologies
and pole-slot combinations. Finally, the proposed SDM model is verified by FEA software
JMAG-Designer 22.0.

2. Machine Geometry and Methodology

The studied DSSTVM is composed of three components, namely a rotor, an open-slot
outer stator, and a split-tooth inner stator with axial length L, as depicted in Figure 1a, and
its winding configuration is shown in Figure 1b. In this DSSTVM, its rotor’s permanent
magnets (PMs) pole-pair number, the pole-pair numbers of the inner and outer stators’
windings, and the slot numbers of the inner and outer stators are represented by Pr, Pw,
and Z, respectively. To output a relatively large torque, this DSSTVM should obey the basic
flux modulation principle of vernier machines [16]. Hence, the relation among Pr, Pw, and
Z is governed by:

Pw = Z − Pr (1)

The values of the geometrical parameters for the studied DSSTVM are provided
in Table 1. All the sides of the machine’s geometry are parallel to the axes of the polar
coordinates to simplify the modeling process. Additionally, a few assumptions are settled
before the detailed modeling process: (1) the permeability of silicon steel is regarded as
infinite; (2) the axial-direction magnetic field is ignored.
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Figure 1. DSSTVM topology. (a) Subdomain division parameters and shift angle definition in the 
studied DSSTVM; (b) 3D scheme and winding configuration of the studied DSSTVM. 
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Figure 1. DSSTVM topology. (a) Subdomain division parameters and shift angle definition in the
studied DSSTVM; (b) 3D scheme and winding configuration of the studied DSSTVM.

Table 1. Geometrical Parameters of The Studied DSSTVM.

Symbol Value Symbol Value

R1 24.8 mm α π/6 rad
R2 41 mm β1 π/9 rad
R3 45.3 mm β2 π/10 rad
R4 50.3 mm γ 37π/900 rad
R5 50.9 mm δ 37π/300 rad
R6 66 mm Pr 10
R7 75.2 mm Pw 2
N 200 Z 12
L 100 mm Jz 6 A/mm2

To solve the magnetic field within the DSSTVM, one can first divide the whole field
domain into seven subdomains, namely the inner stator slot, slot-opening type 1, slot-
opening type 2, inner air gap, rotor slot, outer air gap, and outer stator slot. Then, the
magnetic field distribution within each region should follow Maxwell’s equation. By
adopting magnetic vector potential (MVP) Az in the polar coordinates and considering
various materials’ properties, one can obtain the general expressions as follows [17]:

∂Az

∂r2 +
1
r

∂Az

∂r
+

1
r2

∂Az

∂θ2 = −µ0

r
(

∂(r · Mθ)

∂r
− ∂Mr

∂θ
)− µ0 Jz (2)

where Mr and Mθ are the magnetizations in the radial and tangential directions, respectively,
Jz is the current density in the z-direction, and µ0 is the magnetic permeability in vacuum.

Both Region I and VII only contain electrified conductors, so (2) can be transferred into
a Poisson’s equation where the magnetization term is eliminated. Region V only contains
the tangential magnetization, so (2) can be transferred into another Poisson’s equation
where the radial magnetization term and the current term are eliminated. As for the rest
regions, they contain nothing but air, so (2) can be simplified into Laplace’s equation.

The general solution of (2) is the sum of a particular integral and its complementary
solution. Using the method of separation of variables, the complementary solution to (2)
can be written as (The detailed derivation can be found in Appendix A):

Az(r, θ) = (A0 + B0 ln r)(C0θ + D0)

+
∞
∑

n=1
(Anrn + Bnr−n)(Cn cos nθ + Dn sin nθ)

(3)
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where A0, B0, C0, D0, An, Bn, Cn and Dn are the Fourier coefficients to be determined
through the satisfaction of the boundary conditions in Section 3; n is the harmonic order
in the Fourier series, and the maximum number of harmonics used in the calculation is
represented by N. Then, the expression of a particular integral varies with the right side of
(2), and it will be discussed case by case in the following section.

Additionally, two notations, namely Pw(u, v) and Ew(u, v), are introduced to simplify
the expressions of the general solutions [18]:

Pw(u, v) =
(u

v

)w
+
( v

u

)w
(4)

Ew(u, v) =
(u

v

)w
−
( v

u

)w
(5)

3. Analytical Modeling Process
3.1. Boundary Condition and General Solution Expressions

There are three kinds of boundary conditions within the DSSTVM, namely periodic
condition, continuous condition, and Neumann condition [18]: In the air gap region, MVP
has a period of 2π; at the interfaces between two regions, MVP AZ should be continuous;
while the tangential component of the magnetic field intensity H should be continuous.
Considering that the permeability of iron cores is regarded as infinite, the tangential
component of H should be zero at the interface between the iron core and the region with
other materials. With the above continuity rules, the boundary conditions of the DSSTVM
will be determined from the innermost region to the outermost one subsequently. The flow
chart of the analytical modeling process in this article is as shown in Figure 2.
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3.1.1. Region I

First, the three sides surrounding the ith slot within Region I are connected to the iron
core, where the tangential component of the magnetic field is zero. These features lead to:

∂AI,i
∂r

∣∣∣
r=R1

= 0; θ ∈ [θi, θi + α]

∂AI,i
∂θ

∣∣∣
θi
= 0& ∂AI,i

∂θ

∣∣∣
θi+α

= 0; r ∈ [R1, R2]
(6)

where AI,i is the MVP of the ith slot in Region I, θi is the initial angle of the ith slot in Region
I, and α is the angle of ith slot within Region I.

The remaining upper side of Region I is connected to both the iron core and Region
II. For the arc that corresponds to the iron core, the tangential component of the magnetic
field is zero, while for the arc that corresponds to Region II, the tangential component of
the magnetic field is continuous between Region I and Region II, so we can obtain the
following boundary condition:

∂AI,i

∂r

∣∣∣∣
r=R2

=

{ ∂AI I,j
∂r

∣∣∣
r=R2

θ ∈ [θj, θj + β1]

0 elsewhere
with i = j (7)

Considering the boundary conditions in (6) and (7), the general solution of the MVP
and the corresponding Fourier series coefficient in Region I can be expressed as:

AI,i(r, θ) = Ai
0 +

1
2 µ0 Ji0(R2

1 ln r − 1
2 r2)

+
∞
∑

n1=1

Ai
n1

αR2
n1π

Pn1π/α(r,R1)

En1π/α(R2,R1)
cos
( n1π

α (θ − θi)
)

+
∞
∑

n1=1

(
2α

n1π

R2
1Pn1π/α(r,R2)−R2

2Pn1π/α(r,R1)

En1π/α(R2,R1)
+ r2

)
· µ0 Jin

(n1π/α)2−4
· cos

( n1π
α (θ − θi)

)
(8)

where

Ai
n1

=
2
α

θj+β1∫
θj

∂AI I,j

∂r

∣∣∣∣
r=R2

cos
n1π

α
(θ − θi)dθ (9)

3.1.2. Region II

Secondly, for the jth slot of Region II, its two lateral sides are connected to the iron core,
while the lower and upper sides are connected to the ith slot of Region I and IV, respectively.
Thus, the boundary conditions can be deduced as:

∂AI I,j

∂θ

∣∣∣∣
θj

= 0 ;
∂AI I,j

∂θ

∣∣∣∣
θj+β1

= 0 with r ∈ [R2, R4] (10)

AI I,j(R2, θ) = AI,i(R2, θ)
θ ∈ [θj, θj + β1]

;
AI I,j(R4, θ) = AIV(R4, θ)

θ ∈ [θj, θj + β1]
(11)

where AI I,j is the MVP of the jth slot within Region II, θj is the initial angle of the jth slot
within Region II, and β1 is the angle of jth slot within Region II (slot-opening type 1).

Combining the boundary conditions in (10) and (11), the general solution of MVP and
the corresponding Fourier series coefficient in Region II can be given by:

AI I,j (r, θ) = Aj
0 + Bj

0 ln r

+
∞
∑

n2=1

(
Aj

n2

En2π/β1
(r,R4)

En2π/β1
(R2,R4)

− Bj
n2

En2π/β1
(r,R2)

En2π/β1
(R2,R4)

)
cos
(

n2π
β1

(θ − θj)
) (12)
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where

Aj
0 + Bj

0 ln R2 =
1
β1

θi+
α+β1

2∫
θi+

α−β1
2

AI,i(R2, θ)dθ (13)

Aj
0 + Bj

0 ln R4 =
1
β1

θi+
α+β1

2∫
θi+

α−β1
2

AIV(R4, θ)dθ (14)

Aj
n2 =

2
β1

θj+β1∫
θj

AI,i(R2, θ) cos(
n2π

β1
(θ − θj))dθ (15)

Bj
n2 =

2
β1

θj+β1∫
θj

AIV(R4, θ) cos(
n2π

β1
(θ − θj))dθ (16)

3.1.3. Region III

Next, for the kth slot belonging to Region III, its three sides are connected to the iron
core, where the tangential component of the magnetic field should be zero. The remaining
upper side is connected to Region IV, so the MVPs of Regions III and IV are continuous at
the upper side. Hence, the boundary conditions can be represented as:

∂AI I I,k
∂θ

∣∣∣
θk
= 0

∂AI I I,k
∂θ

∣∣∣
θk+β2

= 0
, r ∈ [R3, R4] ;

∂AI I I,k
∂r

∣∣∣
r=R3

= 0

θ ∈ [θk, θk + β2]
(17)

AI I I,k(R4, θ) = AIV(R4, θ) with θ ∈ [θk, θk + β2] (18)

where AI I I,k is the MVP of the kth slot within Region III, θk is the initial angle of the kth slot
within Region III, β2 is the angle of kth slot within Region III (slot-opening type 2).

Taking into account boundary conditions (17) and (18), the general solution of MVP
and the corresponding Fourier series coefficient in Region III can be acquired as:

AI I I,k(r, θ) = Ak
0 +

∞

∑
n3=1

Ak
n3

Pn3π/β2(r, R4)

Pn3π/β2(R3, R4)
cos
(

n3π

β2
(θ − θk)

)
(19)

where

Ak
n3

=
2
β

∫ θk+β2

θk

AIV(R4, θ) cos(
n3π

β2
(θ − θk))dθ (20)

3.1.4. Region IV

Then, the boundary conditions for Region IV are more complicated since Region IV is
adjacent to Regions II, III, and V and the iron core. We use the continuity of the tangential
component of the magnetic field and handle the boundary condition by introducing a
piecewise function as follows:

∂AIV
∂r

∣∣∣∣
r=R4

= f1(θ) =


∂AI I,j

∂r

∣∣∣
r=R4

θ ∈ [θj, θj + β1]

∂AI I I,k
∂r

∣∣∣
r=R4

θ ∈ [θk, θk + β2]

0 elsewhere

(21)

∂AIV
∂r

∣∣∣∣
r=R5

= f2(θ) =

{
∂AV,l

∂r

∣∣∣
r=R5

+ µ0Mθ,l θ ∈ [θl , θl + γ]

0 elsewhere
(22)
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where AIV is the MVP within Region IV, Mθ,l is the tangential magnetization of the lth PM
within Region V, θl is the initial angle of the lth PM within Region V, and γ is the angle of
the lth PM within Region V.

We take the boundary conditions in (21) and (22) into consideration, so the general
solution of MVP and the corresponding Fourier series coefficient in Region IV can be
written as:

AIV(r, θ) = AIV
0

+
∞
∑

n4=1

(
AIV

n4
R4
n4

Pn4 (r,R5)

En4 (R4,R5)
+ BIV

n4
R5
n4

Pn4 (r,R4)

En4 (R5,R4)

)
· cos(nθ)

+
∞
∑

n4=1

(
CIV

n4
R4
n4

Pn4 (r,R5)

En4 (R4,R5)
+ DIV

n4
R5
n4

Pn4 (r,R4)

En4 (R5,R4)

)
· sin(nθ)

(23)

where

AIV
n4

=
1
π

2π∫
0

f1(θ) cos(n4θ)dθ ; CIV
n4

=
1
π

2π∫
0

f1(θ) sin(n4θ)dθ (24)

BIV
n4

=
1
π

2π∫
0

f2(θ) cos(n4θ)dθ ; DIV
n4

=
1
π

2π∫
0

f2(θ) sin(n4θ)dθ (25)

3.1.5. Region V

Subsequently, for the lth slot in Region V, its two lateral sides are adjacent to the iron
core, and the lower and upper sides are adjacent to Region IV and Region VI, respectively.
Hence, its boundary conditions can be written as follows:

∂AV,l

∂θ

∣∣∣∣
θ=θl

= 0 ;
∂AV,l

∂θ

∣∣∣∣
θ=θl+γ

= 0 with r ∈ [R5, R6] (26)

AV,l(R5, θ) = AIV(R5, θ)
θ ∈ [θl , θl + γ]

;
AV,l(R6, θ) = AVI(R6, θ)

θ ∈ [θl , θl + γ]
(27)

where AV,l is the MVP of the lth PM within Region V and θl is the initial angle of lth PM
within Region V.

Combing the boundary conditions in (26) and (27), the general solution of the MVP
and the corresponding Fourier series coefficient in Region V can be obtained as:

AV,l(r, θ) = Al
0 + Bl

0 ln r − µ0Mθ,lr

+
∞
∑

n5=1

(
Al

n5

En5π/γ(r,R6)

En5π/γ(R5,R6)
− Bl

n5

En5π/γ(r,R5)

En5π/γ(R5,R6)

)
· cos

(
n5π

γ (θ − θl)
) (28)

where

Al
0 + Bl

0 ln R5 =
1
γ

θl+γ∫
θl

AIV(R5, θ)dθ (29)

Al
0 + Bl

0 ln R6 =
1
γ

θl+γ∫
θl

AVI(R6, θ)dθ (30)

Al
n5

=
2
γ

θl+γ∫
θl

AIV(R5, θ) cos
(

n5π

γ
(θ − θl)

)
dθ (31)
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Bl
n5

=
2
γ

θl+γ∫
θl

AVI(R6, θ) cos
(

n5π

γ
(θ − θl)

)
dθ (32)

3.1.6. Region VI

Similar to the boundary conditions in Region IV, Region VI is adjacent to Region V
and VII. We can write the boundary conditions for Region VI using the piecewise function
as follows:

∂AVI
∂r

∣∣∣∣
r=R6

= g1(θ) =

{
∂AV,l

∂r

∣∣∣
r=R6

+ µ0Mθ,l θ ∈ [θl , θl + γ]

0 elsewhere
(33)

∂AVI
∂r

∣∣∣∣
r=R7

= g2(θ) =

{
∂AVII,m

∂r

∣∣∣
r=R7

θ ∈ [θm, θm + δ]

0 elsewhere
(34)

where AVI is the MVP within Region VI, AVII,m is the MVP of the mth slot within Region
VII, θm is the initial angle of mth slot within Region VII and δ is the angle of mth slot within
Region VII.

Taking into account the boundary conditions (33) and (34), the general solution of
MVP and the corresponding Fourier series coefficient in Region VI can be calculated as:

AVI(r, θ) = AVI
0 +

∞
∑

n6=1

(
AVI

n6
R6
n6

Pn6 (r,R7)

En6 (R4,R5)
+ BVI

n6
R7
n6

Pn6 (r,R6)

En6 (R7,R6)

)
· cos(nθ)

+
∞
∑

n6=1

(
CVI

n6
R6
n6

Pn6 (r,R7)

En6 (R4,R5)
+ DVI

n6
R7
n6

Pn6 (r,R6)

En6 (R7,R6)

)
· sin(nθ)

(35)

where

AVI
n6

=
1
π

2π∫
0

g1(θ) cos(n6θ)dθ ; CVI
n6

=
1
π

2π∫
0

g1(θ) sin(n6θ)dθ (36)

BVI
n6

=
1
π

2π∫
0

g2(θ) cos(n6θ)dθ ; DVI
n6

=
1
π

2π∫
0

g2(θ) sin(n6θ)dθ (37)

3.1.7. Region VII

Finally, the three sides of the mth slot within Region VII are connected to the iron
core, and the remaining lower side is adjacent to Region VI. Therefore, the corresponding
boundary conditions can be arranged as:

∂AVII,m
∂θ

∣∣∣
θm

= 0
∂AVII,m

∂θ

∣∣∣
θm+δ

= 0
, r ∈ [R7, R8] ;

∂AVII,m
∂r

∣∣∣
r=R8

= 0

θ ∈ [θm, θm + δ]
(38)

where
AVII,m(R7, θ) = AVI(R7, θ) with θ ∈ [θm, θm + δ] (39)

Considering the boundary conditions (38) and (39) together, the general solution of
MVP and the corresponding Fourier series coefficient in Region VI can be written as:

AVII,m(r, θ) = Am
0 + 1

2 µ0 Jm

(
R2

8 ln r − 1
2 r2
)

+
∞
∑

n7=1
Am

n7

Pn7π/δ(r,R8)

Pn7π/δ(R7,R8)
cos
( n7π

δ (θ − θm)
) (40)
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where

Am
n7

=
2
δ

θm+δ∫
θm

AVI(R7, θ) cos
(n7π

δ
(θ − θm)

)
dθ (41)

The unknown Fourier series coefficients in the MVP expression and the unknown
integral functions are deduced in detail in Appendices B and C, respectively. Ultimately,
by combining all the Fourier series coefficient expressions of MVPs within the machine
domain, we can obtain a system of linear equations with a unique solution. The Fourier
series coefficients can be obtained by solving the system of linear equations in a numerical
computing software, for instance, MATLAB R2022b. Subsequently, the magnetic flux
density B in all these regions can be acquired according to:

Br =
1
r

∂Az

∂θ
and Bθ = −∂Az

∂r
(42)

where Br and Bθ are the radial and tangential components of magnetic flux density, respectively.

3.2. Postprocessing Electromagnetic Parameters Calculation

The output torque on the rotor of DSSTVM Tr should be the sum of electromagnetic
torques on the inner air gap and outer air gap, namely Tinner_gap and Touter_gap. Then, the
electromagnetic torque on the air gap can be calculated by using the Maxwell stress tensor,
which can be given as follows:

Tinner_gap =
LR2

in
µ0

∫ 2π

0
BIV,r(Rin, θ)BIV,θ(Rin, θ)dθ (43)

Touter_gap =
LR2

out
µ0

∫ 2π

0
BVI,r(Rout, θ)BVI,θ(Rout, θ)dθ (44)

Tr = Tinner_gap + Touter_gap (45)

where Rin and Rout are the radii in the middle of the inner air gap and outer air gap.
As for the flux linkage of each coil, it can be calculated as the area integral of MVP

within the slot region. Then, the phase flux can be obtained as the product of the slot-
connecting matrix and the flux linkage vector. The back electromotive force (EMF) can be
acquired as the derivative of the phase flux with respect to time. The detailed deduction
process can be referred to [19].

4. Finite Element Analysis Validation

The DSSTVM simulation model is constructed via FEA to verify the effectiveness
of the proposed SDM, and the structural parameters of the DSSTVM model are referred
to in Table 1. The DSSTVM’s main performance indicators are average electromagnetic
torque, electromagnetic torque ripple rate, efficiency, loss, etc. The above indicators will
determine the DSSTVM’s output performance under different operating conditions and
application scenarios. In the aspect of magnetic flux density distribution, the analytical
model would provide detailed insights into how the magnetic flux density is distributed
across the machine. This helps to identify areas of high flux density, potential magnetic flux
leakage, and regions where saturation might occur. According to Maxwell stress tensor
method in (43) and (44), the magnetic flux density distribution in the airgap is essential for
the calculation of electromagnetic torque. Understanding the magnetic flux distribution
is crucial for optimizing the design to maximize the efficiency and torque capability of
the machine, as well as for reducing torque ripple and ensuring smooth operation. In this
article, to evaluate the accuracy of the proposed method, the calculation results based on
the proposed method are compared with FEA.

The no-load and on-load magnetic flux density and flux line distributions calculated
by FEA are depicted in Figure 3a and Figure 3b, respectively. The no-load magnetic flux
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density distribution comparison between SDM and FEA in the inner and outer air gaps are
illustrated in Figure 4a and Figure 4b, respectively. The harmonic spectrum of the air gap
magnetic flux density in the middle of the inner air gap and outer air gap under no-load
condition between SDM and FEA are illustrated in Figure 5a and Figure 5b, respectively.
The rated load magnetic flux density distribution comparison between SDM and FEA in
the inner and outer air gaps are illustrated in Figure 6a and Figure 6b, respectively. The
harmonic spectrum of the air gap magnetic flux density in the middle of the inner air gap
and outer air gap under rated load condition between SDM and FEA are illustrated in
Figure 7a and Figure 7b, respectively. It can be observed that the proposed SDM has good
agreement with that of FEA in terms of the magnetic flux densities and harmonic spectrum
in inner and outer air gaps.
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Figure 3. Magnetic field distribution of the studied DSSTVM calculated by the FEA. (a) No-load 
condition; (b) On-load condition. 

Figure 3. Magnetic field distribution of the studied DSSTVM calculated by the FEA. (a) No-load
condition; (b) On-load condition.
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Figure 4. No-load magnetic flux density distribution of the studied DSSTVM. (a) Radial and tangential
component in the middle of the inner air gap; (b) Radial and tangential component in the middle of
the outer air gap.
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Figure 5. No-load magnetic flux density distribution of the studied DSSTVM. (a) Harmonic spectrum
of the radial component in the middle of the inner air gap; (b) Harmonic spectrum of the radial
component in the middle of the outer air gap.
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Figure 6. Rated load magnetic flux density distribution of the studied DSSTVM. (a) Radial and
tangential component in the middle of the inner air gap; (b) Radial and tangential component in the
middle of the outer air gap.
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Figure 7. Rated load magnetic flux density distribution of the studied DSSTVM. (a) Harmonic
spectrum of the radial component in the middle of the inner air gap; (b) Harmonic spectrum of the
radial component in the middle of the outer air gap.

One prominent advantage of using DSSTVM is the reduction in flux leakage, so the
output torque and power factor of the machines can be greatly improved. To minimize the
flux leakage of the spoke-type PMs on the rotor, one can determine the optimal shift angle
between the inner and outer stators via the parameter-sweeping method, as depicted in
Figure 1. This can also be achieved by using the proposed SDM, and Figure 8a illustrates
the variation in the output torque and power factor with the variation in shift angle from 0
to 30 degrees, calculated by both SDM and FEA.
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Figure 8. Torque and power factor optimization of the studied DSSTVM. (a) Torque and power factor
change with the variation in shift angle; (b) No-load back EMF waveforms.

No-load back EMF is one essential parameter in motor design, it is influenced by the
motor’s topology, the PM arrangement, etc. No-load back EMF can impact the control strat-
egy in motor the operation. Understanding its waveform helps in designing appropriate
topologies and control algorithms to achieve optimal performance. In addition, torque is
another critical performance indicator for DSSTVM. The analytical model would provide
the torque characteristics of the DSSTVM, including the average torque, torque ripple, and
the relationship between torque and current. It helps to understand the impact of design
parameters on average torque and torque ripple. Therefore, analyzing the output torque
helps in optimizing the motor design for desired load conditions and ensuring that the
motor generates the necessary performance for its intended application.
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Therefore, the DSSTVM’s no-load back EMF waveforms with different sets of windings
operating can be obtained by using FEA and SDM, as can be seen in Figure 8b. The harmonic
spectrum of the no-load back EMF waveforms in the inner stator and outer stator between
SDM and FEA are illustrated in Figure 9a and Figure 9b, respectively. The DSSTVM’s
output torques with different sets of windings operating can be obtained by using FEA
and SDM, as can be seen in Figure 10a. The rated load torque harmonic spectrum of the
DSSTVM in mode 1 (the inner and outer parts of DSSTVM operate simultaneously to
generate the torque), mode 2 (the inner part of DSSTVM operates to generate the torque),
and mode 3 (the outer part of DSSTVM operate to generate the torque) between SDM and
FEA are illustrated in Figure 10b, Figure 10c and Figure 10d, respectively.
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Figure 9. Harmonic spectrum of no-load back EMF waveforms of the studied DSSTVM. (a) Inner
stator; (b) Outer stator.
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Figure 10. Rated load torque and harmonic spectrum of the studied DSSTVM. (a) Torque wave-forms
of three different modes (mode 1, mode 2 and model 3); (b) Harmonic spectrum of the torque wave-
form of mode 1; (c) Harmonic spectrum of the torque wave-form of mode 2; (d) Harmonic spectrum
of the torque wave-form of mode 3.

In terms of the amplitude of the radial and tangential magnetic flux density in the
middle of the inner air gap and outer air gap, compared with the permanent magnet
synchronous motors (PMSMs), DSSTVM has a higher magnetic flux density because of the
magnetic field modulation. As a result, according to the Maxwell stress tensor, the higher
magnetic flux density in the airgap generates higher electromagnetic torque. Therefore, in
terms of the rated load torque, in one aspect, because of the amplitude of the radial and
tangential magnetic flux density in the middle of the inner air gap and outer air gap, com-
pared with the PMSMs, DSSTVM has a higher electromagnetic torque. In another aspect,
the double-stator characteristic makes the DSSTVM able to generate the electromagnetic
torque from the inner and outer airgap simultaneously or separately, which makes the
DSSTVM have higher electromagnetic torque density and wider application scenarios.
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However, a slight deviation between the two approaches can be observed, where the
values of SDM are smaller. This is due to the maximum harmonic limit of the SDM, and
the error can be smaller if the calculated maximum harmonic number increases. However,
the computation time increases along with the rise in the calculated maximum harmonic
number, so we should make a trade-off for different application scenarios. As for the
computation time, it takes the SDM 29 s for a single step, while it takes FEA 47 s. Thus,
the computation time of SDM is only 62% of that of FEA, proving that the SDM is prior
to being applied to the initial design stage to determine the slot-pole combinations and
parameters’ ranges to be optimized for DSSTVM as well as other double-stator machines.

5. Conclusions

This paper presents a high-fidelity analytical method, namely the subdomain method,
for calculating the magnetic field distribution and the related electromagnetic parameters
in DSSTVM. The magnetic flux density distribution, back EMF, and output torque of the
DSSTVM are computed by both the SDM and FEA. Compared to FEA, the proposed
SDM can save computation time while maintaining accuracy. The deduction process
completes the SDM for double-stator machines with various structures as well as slot-
pole combinations. This analytical method can be applied for topology investigation and
optimization for double-stator machines.
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Abbreviations

R1 The inner radius of the inner stator slot
R2 Inner radius of opening slot type 1
R3 Inner radius of opening slot type 2
R4 The outer radius of the inner stator
R5 The inner radius of the rotor
R6 The outer radius of the rotor
R7 The inner radius of the outer stator
R8 The inner radius of the outer stator yoke
N Turns number
L Stack length
α The angle of the ith slot within Region I
β1 The angle of the jth slot within Region II (slot-opening type 1)
β2 The angle of the kth slot in Region III (slot-opening type 2)
γ The angle of the lth PM within Region V
δ The angle of the mth slot within Region VII
Pr Pole-pair number of rotor’s permanent magnets (PMs)
Pw Pole-pair numbers of the inner and outer stators’ windings
Z Slot numbers of the inner and outer stators
Jz Current density
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AI,i MVP of the ith slot in Region I
AI I,j MVP of the jth slot within Region II
AI I I,k MVP of the kth slot within Region III
AIV MVP within Region IV
AV,l MVP of the lth slot within Region V
AVI MVP within Region VI
AVII,m MVP of the mth slot within Region VII
θi The initial angle of the ith slot in Region I
θj The initial angle of the jth slot within Region II
θk The initial angle of the kth slot within Region III
Mθ,l Tangential magnetization of the lth PM within Region V
θl The initial angle of the lth PM within Region V
θm The initial angle of the mth slot within Region VII

Appendix A

By applying the method of separation of variables, the complementary solution to
(2) is deducted as follows. Considering various materials’ properties, the magnetic vector
potential (MVP) Az in the polar coordinates is:

∂Az

∂r2 +
1
r

∂Az

∂r
+

1
r2

∂Az

∂θ2 = −µ0

r
(

∂(r · Mθ)

∂r
− ∂Mr

∂θ
)− µ0 Jz (A1)

The homogeneous form of (A1) is Laplace’s equation:

∂Az

∂r2 +
1
r

∂Az

∂r
+

1
r2

∂Az

∂θ2 = 0 (A2)

After the separation of variables, Az(r, θ) can be written as:

Az(r, θ) = R(r)Θ(θ) (A3)

After bringing (A3) back into (A2):

r
R(r)

(
r · d2R(r)

dr2 +
dR(r)

dr
) = − 1

Θ(θ)

d2Θ(θ)

dθ2 = λ (A4)

According to the ordinary differential equation theory, when λ = 0, the solution of
R(r) and Θ(θ) in (A4) are as follows:

R(r) = A0 + B0 ln r, Θ(θ) = C0θ + D0 (A5)

When λ = n2 (n is the positive integer), the solutions of R(r) and Θ(θ) in (A4) are
as follows:

R(r) = Anrn + Bnr−n, Θ(θ) = Cn cos nθ + Dn sin nθ (A6)

When λ = −n2 (n is the positive integer), the solutions of R(r) and Θ(θ) in (A4) are
as follows:

R(r) = En sin(n ln r) + Fn cos(n ln r), Θ(θ) = Gnenθ + Hne−nθ (A7)

Considering λ = 0, λ = n2 and λ = −n2, as well as n with different values, the
complementary solution to (A1) can be written as:

Az(r, θ) = (A0 + B0 ln r)(C0θ + D0)

+
∞
∑

n=1
(Anrn + Bnr−n)(Cn cos nθ + Dn sin nθ)

+
∞
∑

n=1
[En sin(n ln r) + Fn cos(n ln r)](Gnenθ + Hne−nθ)

(A8)
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Considering the periodic boundary condition Az(r, θ)|θ=0 = Az(r, θ)|θ=2π for ∀r, we
obtain C0 = 0, Gn = 0 and Hn = 0. After merging (A0 + B0 ln r)D0 as A0 + B0 ln r, (A8)
can be simplified as:

Az(r, θ) = (A0 + B0 ln r) +
∞

∑
n=1

(
Anrn + Bnr−n)(Cn cos nθ + Dn sin nθ) (A9)

Considering Az(r, θ) is finite when r = 0, we then obtain B0 = 0. Therefore, (A9) can
be further simplified as:

Az(r, θ) = A0 +
∞

∑
n=1

(
Anrn + Bnr−n)(Cn cos nθ + Dn sin nθ) (A10)

Taking Region VI as an example, in Region VI, magnetic vector potential (MVP) is:

AVI(r, θ) = AVI
0 +

∞

∑
n=1

(AVI
n6

rn6 + BVI
n6

r−n6)(CVI
n6

cos n6θ + DVI
n6

sin n6θ) (A11)

Then we can rewrite the form of AVI(r, θ) with the values of AVI
n6

, BVI
n6

, CVI
n6

and DVI
n6

change (as AVI
n6

, BVI
n6

, CVI
n6

and DVI
n6

are the unknown coefficients so they can be redetermined
after the expression of AVI(r, θ) changes and the value of AVI(r, θ) keep unchanged):

AVI(r, θ) = AVI
0 +

∞
∑

n6=1

(
AVI

n6
rn6 + BVI

n6
r−n6

)
· cos(n6θ)

+
∞
∑

n6=1

(
CVI

n6
rn6 + DVI

n6
r−n6

)
· sin(n6θ)

(A12)

Alternatively, the following form:

AVI(r, θ) = AVI
0 +

∞
∑

n6=1

(
AVI

n6

(
r

R7

)n6
+ BVI

n6

(
r

R6

)−n6
)
· cos(n6θ)

+
∞
∑

n6=1

(
CVI

n6

(
r

R7

)n6
+ DVI

n6

(
r

R6

)−n6
)
· sin(n6θ)

(A13)

After the mathematical deduction, we obtain the following equations (notice that AVI
n6

,
BVI

n6
, CVI

n6
and DVI

n6
change after the deduction; however, they are the unknown coefficients

so we can solve them with the proper value while AVI(r, θ) keeping unchanged:

AVI(r, θ) = AVI
0 +

∞
∑

n6=1

( (
AVI

n6
R6
n6

(
1

R7

)n6−BVI
n6

R7
n6

(
1

R6

)n6
)

(
R6
R7

)n6−
(

R7
R6

)n6 rn6 +

(
AVI

n6
R6
n6

(
R7
1

)n6−BVI
n6

R7
n6

(
R6
1

)n6
)

(
R6
R7

)n6−
(

R7
R6

)n6 r−n6

)
· cos(n6θ)

+
∞
∑

n6=1

( (
CVI

n6
R6
n6

(
1

R7

)n6−DVI
n6

R7
n6

(
1

R6

)n6
)

(
R6
R7

)n6−
(

R7
R6

)n6 rn6 +

(
CVI

n6
R6
n6

(
R7
1

)n6−DVI
n6

R7
n6

(
R6
1

)n6
)

(
R6
R7

)n6−
(

R7
R6

)n6 r−n6

)
· sin(n6θ)

(A14)

Therefore, we get:

AVI(r, θ) = AVI
0 +

∞
∑

n6=1

 AVI
n6

R6
n6

(
1

R7

)n6 rn6(
R6
R7

)n6−
(

R7
R6

)n6 − BVI
n6

R7
n6

(
1

R6

)n6 rn6(
R6
R7

)n6−
(

R7
R6

)n6

+AVI
n6

R6
n6

R7
n6 r−n6(

R6
R7

)n6−
(

R7
R6

)n6 − BVI
n6

R7
n6

R6
n6 r−n6(

R6
R7

)n6−
(

R7
R6

)n6

 · cos(n6θ)

+
∞
∑

n6=1

 CVI
n6

R6
n6

(
1

R7

)n6 rn6(
R6
R7

)n6−
(

R7
R6

)n6 − DVI
n6

R7
n6

(
1

R6

)n6 rn6(
R6
R7

)n6−
(

R7
R6

)n6

+CVI
n6

R6
n6

R7
n6 r−n6(

R6
R7

)n6−
(

R7
R6

)n6 − DVI
n6

R7
n6

R6
n6 r−n6(

R6
R7

)n6−
(

R7
R6

)n6

 · sin(n6θ)

(A15)

Consequently,
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AVI(r, θ) = AVI
0 +

∞
∑

n6=1


AVI

n6
R6
n6

(
r

R7

)n6(
R6
R7

)n6−
(

R7
R6

)n6 + AVI
n6

R6
n6

(
R7
r

)n6(
R6
R7

)n6−
(

R7
R6

)n6

−BVI
n6

R7
n6

(
r

R6

)n6(
R6
R7

)n6−
(

R7
R6

)n6 − BVI
n6

R7
n6

(
R6
r

)n6(
R6
R7

)n6−
(

R7
R6

)n6

 · cos(n6θ)

+
∞
∑

n6=1


CVI

n6
R6
n6

(
r

R7

)n6(
R6
R7

)n6−
(

R7
R6

)n6 + CVI
n6

R6
n6

(
R7
r

)n6(
R6
R7

)n6−
(

R7
R6

)n6

−DVI
n6

R7
n6

(
r

R6

)n6(
R6
R7

)n6−
(

R7
R6

)n6 − DVI
n6

R7
n6

(
R6
r

)n6(
R6
R7

)n6−
(

R7
R6

)n6

 · sin(n6θ)

(A16)

After a similar terms’ combination, we get:

AVI(r, θ) = AVI
0 +

∞
∑

n6=1

(
AVI

n6
R6
n6

(
r

R7

)n6
+
(

R7
r

)n6(
R6
R7

)n6−
(

R7
R6

)n6 + BVI
n6

R7
n6

(
r

R6

)n6
+
(

R6
r

)n6(
R7
R6

)n6−
(

R6
R7

)n6

)
· cos(n6θ)

+
∞
∑

n6=1

(
CVI

n6
R6
n6

(
r

R7

)n6
+
(

R7
r

)n6(
R6
R7

)n6−
(

R7
R6

)n6 + DVI
n6

R7
n6

(
r

R6

)n6
+
(

R6
r

)n6(
R7
R6

)n6−
(

R6
R7

)n6

)
· sin(n6θ)

(A17)

The relationship between Pw(u, v) and Ew(u, v) is listed for further simplification:

Pw(u, v) =
(u

v

)w
+
( v

u

)w
, Ew(u, v) =

(u
v

)w
−
( v

u

)w
(A18)

∂Pw(u, v)
∂u

= Ew(u, v),
∂Ew(u, v)

∂u
= Pw(u, v) (A19)

Because of the relationship between Pw(u, v) and Ew(u, v), it is easy to obtain the
derivative in complicated expressions when the expression needs the derivative (when
utilizing the boundary conditions), therefore, we obtain the form of AVI(r, θ), containing
Pw(u, v) and Ew(u, v) for simplification:

AVI(r, θ) = AVI
0 +

∞
∑

n6=1

(
AVI

n6
R6
n6

Pn6 (r,R7)

En6 (R6,R7)
+ BVI

n6
R7
n6

Pn6 (r,R6)

En6 (R7,R6)

)
· cos(n6θ)

+
∞
∑

n6=1

(
CVI

n6
R6
n6

Pn6 (r,R7)

En6 (R6,R7)
+ DVI

n6
R7
n6

Pn6 (r,R6)

En6 (R7,R6)

)
· sin(n6θ)

(A20)

After utilizing boundary conditions (33) and (34), we get:

∂AVI
∂r

∣∣∣
r=R6

=
∞
∑

n6=1

(
AVI

n6
R6
n6

En6 (R6,R7)

En6 (R6,R7)
+ BVI

n6
R7
n6

En6 (R6,R6)

En6 (R7,R6)

)
· cos(n6θ)

+
∞
∑

n6=1

(
CVI

n6
R6
n6

En6 (R6,R7)

En6 (R6,R7)
+ DVI

n6
R7
n6

En6 (R6,R6)

En6 (R7,R6)

)
· sin(n6θ) = g1(θ)

(A21)

According to:

Pw(u, u) =
(u

u

)w
+
(u

u

)w
= 2 (A22)

Ew(u, u) =
(u

u

)w
−
(u

u

)w
= 0 (A23)

En6(R6, R7)

En6(R6, R7)
= 1, En6(R6, R6) = 0 (A24)

Therefore, we get:

∂AVI
∂r

∣∣∣∣
r=R6

=
∞

∑
n6=1

(
AVI

n6

R6

n6

)
· cos(n6θ) +

∞

∑
n6=1

(
CVI

n6

R6

n6

)
· sin(n6θ) = g1(θ) (A25)
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Similarly, according to:

En6(R7, R6)

En6(R7, R6)
= 1, En6(R7, R7) = 0 (A26)

Then we get:

∂AVI
∂r

∣∣∣∣
r=R7

=
∞

∑
n6=1

(
BVI

n6

R7

n6

)
· cos(n6θ) +

∞

∑
n6=1

(
DVI

n6

R7

n6

)
· sin(n6θ) = g2(θ) (A27)

According to a generalized Fourier series expansion of (A25) and (A27), we obtain the
following equations:

AVI
n6

=
1
π

2π∫
0

∂AVI
∂r

∣∣∣∣
r=R6

cos(n6θ)dθ ; CVI
n6

=
1
π

2π∫
0

∂AVI
∂r

∣∣∣∣
r=R6

sin(n6θ)dθ (A28)

BVI
n6

=
1
π

2π∫
0

∂AVI
∂r

∣∣∣∣
r=R7

cos(n6θ)dθ ; DVI
n6

=
1
π

2π∫
0

∂AVI
∂r

∣∣∣∣
r=R7

sin(n6θ)dθ (A29)

Finally, after simplification, we obtain the following equations:

AVI
n6

=
1
π

2π∫
0

g1(θ) cos(n6θ)dθ ; CVI
n6

=
1
π

2π∫
0

g1(θ) sin(n6θ)dθ (A30)

BVI
n6

=
1
π

2π∫
0

g2(θ) cos(n6θ)dθ ; DVI
n6

=
1
π

2π∫
0

g2(θ) sin(n6θ)dθ (A31)

Appendix B

The unknown Fourier series coefficients in the MVP expression of each subdomain
need to be deduced and calculated for consequent Fourier series coefficient matrices
solution. The detailed Fourier series coefficients in the MVP expression of each subdomain
can be calculated via the Fourier expansion in each subdomain boundary and applying the
adjacent subdomain MVP values or derivative information. Therefore, the detailed Fourier
series coefficients in each subdomain of DSVMs can be calculated as follows.

First of all, according to the definition of (4) and (5), the relationship between Pw(u, v)
and Ew(u, v) is described as follows for later clarity and simplicity in the partial derivation:

∂Pw(u, v)
∂u

= Ew(u, v) (A32)

∂Ew(u, v)
∂u

= Pw(u, v) (A33)

In Region I, considering the boundary condition of Region I and Region II, after
substituting (12) into (9), we get:

Ai
n1

=
4Bj

0
n1πR2

sin( n1πβ1
2α ) cos( n1π

2 )

+
∞
∑

n2=1
(Aj

n2

Pn2π/β1
(R2,R4)

En2π/β1
(R2,R4)

− Bj
n2

2
En2π/β1

(R2,R4)
) · 2n2π

αβ1R2
· F(n1, n2)

(A34)
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In Region II, considering the boundary condition of Region I and Region II, after
substituting (8) into (15), considering the boundary condition of Region II and Region IV,
after substituting (23) into (16), we get:

Aj
n2 =

∞
∑

n1=1
(Ai

n1
2αR2

n1πβ1

Pn1π/α(R2,R1)

En1π/α(R2,R1)

− 2µ0 Jin
β1((n1π/α)2−4)

( 2α
n1π

R2
1·2−R2

2Pn1π/α(R2,R1)

En1π/α(R2,R1)
+ R2

2) · F(n1, n2)
(A35)

Bj
n2 =

∞
∑

n4=1
(AIV

n4
2R4
n4β1

Pn4 (R4,R5)

En4 (R4,R5)
+ BIV

n4
2R5
n4β1

2
En4 (R5,R4)

) · fa(n2, n4, j)

+
∞
∑

n4=1
(CIV

n4
2R4
n4β1

Pn4 (R4,R5)

En4 (R4,R5)
+ DIV

n4
2R5
n4β1

2
En4 (R5,R4)

) · ga(n2, n4, j)
(A36)

In Region III, considering the boundary condition of Region III and Region IV, after
substituting (23) into (20), we get:

Ak
n3

=
∞
∑

n4=1
(AIV

n4
2R4
n4β1

Pn4 (R4,R5)

En4 (R4,R5)
+ BIV

n
2R5
n4β1

2
En4 (R5,R4)

) · ft(n3, n4, k)

+
∞
∑

n4=1
(AIV

n4
2R4
n4β1

Pn4 (R4,R5)

En4 (R4,R5)
+ BIV

n
2R5
n4β1

2
En4 (R5,R4)

) · gt(n3, n4, k)
(A37)

In Region IV, considering the boundary condition of Region IV, Region II, and Region
III, after substituting (12), (19) and (21) into (24), considering the boundary condition of
Region IV and Region V, after substituting (22) and (28) into (25), we get:

AIV
n4

=
Pi
∑

j=1

Bj
0

πR4
· rj(n4, j)+

Pi
∑

j=1

∞
∑

n2=1
Aj

n2
n2

β1R4
2

En2π/β1
(R2,R4)

· fa(n2, n4, j)

−
Pi
∑

j=1

∞
∑

n2=1
Bj

n2
n2

β1R4

Pn2π/β1
(R4,R2)

En2π/β1
(R2,R4)

· fa(n2, n4, j)

+
Pi
∑

k=1

∞
∑

n3=1
Ak

n3
n3

β2R4

En3π/β2
(R4,R3)

Pn3π/β2
(R3,R4)

· ft(n3, n4, k)

(A38)

CIV
n4

=
Pi
∑

j=1

Bj
0

πR4
· sj(n4, j)+

Pi
∑

j=1

∞
∑

n2=1
Aj

n2
n2

β1R4
2

En2π/β1
(R2,R4)

· ga(n2, n4, j)

−
Pi
∑

j=1

∞
∑

n2=1
Bj

n2
n2

β1R4

Pn2π/β1
(R4,R2)

En2π/β1
(R2,R4)

· ga(n2, n4, j)

+
Pi
∑

k=1

∞
∑

n3=1
Ak

n3
n3

β2R4

En3π/β2
(R4,R3)

Pn3π/β2
(R3,R4)

· gt(n3, n4, k)

(A39)

BIV
n4

=
Q
∑

l=1

Bl
0

πR5
· r f (n4, l) +

Q
∑

l=1

∞
∑

n5=1
Al

n5
n5

γR5

Pn5π/γ(R5,R6)

En5π/γ(R5,R6)
· f f (n5, n4, l)

−
Q
∑

l=1

∞
∑

n5=1
Bl

n5
n5

γR5
2

En5π/γ(R5,R6)
· f f (n5, n4, l)

(A40)

DIV
n4

=
Q
∑

l=1

Bl
0

πR5
· s f (n4, l) +

Q
∑

l=1

∞
∑

n5=1
Al

n5
n5

γR5

Pn5π/γ(R5,R6)

En5π/γ(R5,R6)
· g f (n5, n4, l)

−
Q
∑

l=1

∞
∑

n5=1
Bl

n5
n5

γR5
2

En5π/γ(R5,R6)
· g f (n5, n4, l)

(A41)
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In Region V, considering the boundary condition of Region V and Region IV, after
substituting (23) into (29) and (31), considering the boundary condition of Region V and
Region VI, after substituting (35) into (30) and (32), we get:

Al
n5

=
∞
∑

n4=1
(AIV

n4
2R4
n4γ

2
En4 (R4,R5)

+ BIV
n4

2R5
n4γ

Pn4 (R5,R4)

En4 (R5,R4)
) · f f (n5, n4, l)

+
∞
∑

n4=1
(CIV

n4
2R4
n4γ

2
En4 (R4,R5)

+ DIV
n4

2R5
n4γ

Pn4 (R5,R4)

En4 (R5,R4)
) · g f (n5, n4, l)

(A42)

Bl
n5

=
∞
∑

n6=1
(AVI

n6
2R6
n6γ

Pn6 (R6,R7)

En6 (R6,R7)
+ BVI

n6
2R7
n6γ

2
En6 (R7,R6)

) · f f (n5, n6, l)

+
∞
∑

n6=1
(CVI

n6
2R6
n6γ

Pn6 (R6,R7)

En6 (R6,R7)
+ DVI

n6
2R7
n6γ

2
En6 (R7,R6)

) · g f (n5, n6, l)
(A43)

Al
0 +Bl

0 ln R5 − µ0Mθ,l R5 =

AIV
0 +

∞
∑

n4=1
(AIV

n4
R4

n4γ
2

En4 (R4,R5)
+ BIV

n4
R5

n4γ

Pn4 (R5,R4)

En4 (R5,R4)
) · r f (n4, l)

+
∞
∑

n4=1
(CIV

n4
R4

n4γ
2

En4 (R4,R5)
+ DIV

n4
R5

n4γ

Pn4 (R5,R4)

En4 (R5,R4)
) · s f (n4, l)

(A44)

Al
0 +Bl

0 ln R6 − µ0Mθ,l R6 =

AVI
0 +

∞
∑

n6=1
(AVI

n6
R6

n6γ

Pn6 (R6,R7)

En6 (R6,R7)
+ BVI

n6
R7

n6γ
2

En6 (R7,R6)
) · r f (n6, l)

+
∞
∑

n6=1
(CVI

n6
R6

n6γ

Pn6 (R6,R7)

En6 (R6,R7)
+ DVI

n6
R7

n6γ
2

En6 (R7,R6)
) · s f (n6, l)

(A45)

In Region VI, considering the boundary condition of Region VI and Region V, after
substituting (28) and (33) into (36), considering the boundary condition of Region VI and
Region VII, after substituting (34) and (40) into (37), we get:

AVI
n6

=
Q
∑

l=1

Bl
0

πR6
· r f (n6, l) +

Q
∑

l=1

∞
∑

n5=1
Al

n5
n5

γR6
2

En5π/γ(R5,R6)
· f f (n5, n6, l)

−
Q
∑

l=1

∞
∑

n5=1
Bl

n5
n5

γR6

Pn5π/γ(R6,R5)

En5π/γ(R5,R6)
· f f (n5, n6, l)

(A46)

CVI
n6

=
Q
∑

l=1

Bl
0

πR6
· s f (n6, l) +

Q
∑

l=1

∞
∑

n5=1
Al

n5
n5

γR6
2

En5π/γ(R5,R6)
· g f (n5, n6, l)

−
Q
∑

l=1

∞
∑

n5=1
Bl

n5
n5

γR6

Pn5π/γ(R6,R5)

En5π/γ(R5,R6)
· g f (n5, n6, l)

(A47)

BVI
n6

=
Po
∑

m=1

µ0 Jm
2π (

R2
8

R7
− R7) · rs(n6, m)

+
Po
∑

m=1

∞
∑

n7=1
Am

n7
n7

δR7

En7π/δ(R7,R8)

Pn7π/δ(R7,R8)
· fs(n7, n6, m)

(A48)

DVI
n6

=
Po
∑

m=1

µ0 Jm
2π (

R2
8

R7
− R7) · ss(n6, m)

+
Po
∑

m=1

∞
∑

n7=1
Am

n7
n7

δR7

En7π/δ(R7,R8)

Pn7π/δ(R7,R8)
· gs(n7, n6, m)

(A49)

In Region VII, considering the boundary condition of Region VI and Region VII, after
substituting (35) into (41), we get:

Am
n7

=
∞
∑

n6=1
(AVI

n6
2R6
n6δ

2
En(R6,R7)

+ BVI
n6

2R7
n6δ

Pn(R7,R6)
En(R7,R6)

) fs(n7, n6, m)

+
∞
∑

n6=1
(CVI

n6
2R6
n6δ

2
En(R6,R7)

+ DVI
n6

2R7
n6δ

Pn(R7,R6)
En(R7,R6)

)gs(n7, n6, m)
(A50)
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Appendix C

The integral functions fa(n2, n4, j), ga(n2, n4, j), ft(n3, n4, k), gt(n3, n4, k), f f (n5, n4, l),
g f (n5, n4, l), f f (n5, n6, l), g f (n5, n6, l), fs(n7, n6, m), gs(n7, n6, m), rj(n4, j), sj(n4, j), r f (n4, l),
s f (n4, l), rs(n6, m), ss(n6, m) and F(n1, n2) are expressed as follows for consequent Fourier
series coefficients matrices solution:

fa(n2, n4, j) =
∫ θj+β1

θj

cos(n4θ) cos
(

n2π

β1
(θ − θj)

)
dθ (A51)

ga(n2, n4, j) =
∫ θj+β1

θj

sin(n4θ) cos
(

n2π

β1
(θ − θj)

)
dθ (A52)

ft(n3, n4, k) =
∫ θk+β2

θk

cos(n4θ) cos
(

n3π

β2
(θ − θk)

)
dθ (A53)

gt(n3, n4, k) =
∫ θk+β2

θk

sin(n4θ) cos
(

n3π

β2
(θ − θk)

)
dθ (A54)

f f (n5, n4, l) =
∫ θl+γ

θl

cos(n4θ) cos
(

n5π

γ
(θ − θl)

)
dθ (A55)

g f (n5, n4, l) =
∫ θl+γ

θl

sin(n4θ) cos
(

n5π

γ
(θ − θl)

)
dθ (A56)

f f (n5, n6, l) =
∫ θl+γ

θl

cos(n6θ) cos
(

n5π

γ
(θ − θl)

)
dθ (A57)

g f (n5, n6, l) =
∫ θl+γ

θl

sin(n6θ) cos
(

n5π

γ
(θ − θl)

)
dθ (A58)

fs(n7, n6, m) =
∫ θm+δ

θm
cos(n6θ) cos

(n7π

δ
(θ − θm)

)
dθ (A59)

gs(n7, n6, m) =
∫ θm+δ

θm
sin(n6θ) cos

(n7π

δ
(θ − θm)

)
dθ (A60)

rj(n4, j) =
∫ θj+β1

θj

cos(n4θ)dθ =
1
n
[
sin
(
n4(θj + β1)

)
− sin(n4θj)

]
(A61)

sj(n4, j) =
∫ θj+β1

θj

sin(n4θ)dθ =
1
n
[
− cos

(
n4(θj + β1)

)
+ cos(n4θj)

]
(A62)

r f (n4, l) =
∫ θl+γ

θl

cos(n4θ)dθ =
1
n
[sin(n4(θl + γ))− sin(n4θl)] (A63)

s f (n4, l) =
∫ θl+γ

θl

sin(n4θ)dθ =
1
n
[− cos(n4(θl + γ)) + cos(n4θl)] (A64)

r f (n6, l) =
∫ θl+γ

θl

cos(n6θ)dθ =
1
n
[sin(n6(θl + γ))− sin(n6θl)] (A65)

s f (n6, l) =
∫ θl+γ

θl

sin(n6θ)dθ =
1
n
[− cos(n6(θl + γ)) + cos(n6θl)] (A66)

rs(n6, m) =
∫ θm+δ

θm
cos(n6θ)dθ =

1
n
[sin(n6(θm + δ))− sin(n6θm)] (A67)

ss(n6, m) =
∫ θm+δ

θm
sin(n6θ)dθ =

1
n
[− cos(n6(θm + δ)) + cos(n6θm)] (A68)

F(n1, n2) =
∫ θj+β1

θj

cos
(n1π

α
(θ − θi)

)
cos
(

n2π

β1

(
θ − θj

))
dθ (A69)
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Then, fa(n2, n4, j), ga(n2, n4, j), ft(n3, n4, k), gt(n3, n4, k), f f (n5, n4, l), g f (n5, n4, l),
fs(n7, n6, m) and gs(n7, n6, m) can be further simplified as:

fa(n2, n4, j) =


n2

4β1
2
[
sin(n4θj)+(−1)n2+1 sin(n4(θj+β1))

]
n2

2π2−n2
4β1

2 , n2π ̸= n4β1

2n4β1 cos(n4θj)−sin(n4θj)+sin(n4(θj+β1))
4n4

, n2π = n4β1

(A70)

ga(n2, n4, j) =


n2

4β1
2[− cos(n4θj)+(−1)n2 cos(n4(θj+β1))]

n2
2π2−n2

4β1
2 , n2π ̸= n4β1

2n4β1 sin(n4θj)+cos(n4θj)−cos(n4(θj+β1))
4n4

, n2π = n4β1

(A71)

ft(n3, n4, k) =


n2

4β1
2
[
sin(n4θk)+(−1)n3+1 sin(n4(θk+β2))

]
n2

3π2−n2
4β1

2 , n3π ̸= n4β2

2n4β2 cos(n4θk)−sin(n4θk)+sin(n4(θk+β2))
4n4

, n3π = n4β2

(A72)

gt(n3, n4, k) =


n2

4β2
2[− cos(n4θk)+(−1)n3 cos(n4(θk+β2))]

n2
3π2−n2

4β2
2 , n3π ̸= n4β2

2n4β2 sin(n4θk)+cos(n4θk)−cos(n4(θk+β2))
4n4

, n3π = n4β2

(A73)

f f (n5, n4, l) =


n2

4γ2
[
sin(n4θl)+(−1)n5+1 sin(n4(θl+γ))

]
n2

5π2−n2
4γ2 , n5π ̸= n4γ

2n4γ cos(n4θl)−sin(n4θl)+sin(n4(θl+γ))
4n4

, n5π = n4γ

(A74)

g f (n5, n4, l) =


n2

4γ2[− cos(n4θl)+(−1)n5 cos(n4(θl+γ))]
n2

5π2−n2
4γ2 , n5π ̸= n4γ

2n4γ sin(n4θl)+cos(n4θl)−cos(n4(θl+γ))
4n4

, n5π = n4γ
(A75)

f f (n5, n6, l) =


n2

6γ2
[
sin(n6θl)+(−1)n5+1 sin(n6(θl+γ))

]
n2

5π2−n2
6γ2 , n5π ̸= n6γ

2n6γ cos(n6θl)−sin(n6θl)+sin(n6(θl+γ))
4n6

, n5π = n6γ

(A76)

g f (n5, n6, l) =


n2

6γ2[− cos(n6θl)+(−1)n5 cos(n6(θl+γ))]
n2

5π2−n2
6γ2 , n5π ̸= n6γ

2n6γ sin(n6θl)+cos(n6θl)−cos(n6(θl+γ))
4n6

, n5π = n6γ
(A77)

fs(n7, n6, m) =


n2

6δ2
[
sin(n6θm)+(−1)n7+1 sin(n6(θm+δ))

]
n2

7π2−n2
6δ2 , n7π ̸= n6δ

2n6δ cos(n6θm)−sin(n6θm)+sin(n6(θm+δ))
4n6

, n7π = n6δ

(A78)

gs(n7, n6, m) =


n2

6δ2[− cos(n6θm)+(−1)n7 cos(n6(θm+δ))]
n2

7π2−n2
6δ2 , n7π ̸= n6δ

2n6δ sin(n6θm)+cos(n6θm)−cos(n6(θm+δ))
4n6

, n7π = n6δ
(A79)

F(n1, n2) can be further simplified as:

F(n1, n2) =


n1π

α

[
(−1)n2 sin

(
n1π(α+β1)

2α

)
−sin

(
n1π(α−β1)

2α

)]
(

n1π
α )

2−
(

n2π
β1

)2 , n1π
α ̸= n2π

β1

β1
2 cos

(
n2π
2β1

(β1 − α)
)

, n1π
α = n2π

β1

(A80)
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