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Abstract: This article describes the study and digital implementation of a system onboard a TMS
3208F28335 ® DSP for vector control of the bearing motor speed with four poles split winding
with 250 W of power. Smart techniques: ANFIS and Neural Networks were investigated and
computationally implemented to evaluate the bearing motor performance under the following
conditions: operating as an estimator of uncertain parameters and as a speed controller. Therefore,
the MATLAB program and its toolbox were used for the simulations and the parameter adjustments
involving the structure ANFIS (Adaptive-Network-Based Fuzzy Inference System) and simulations
with the Neural Network. The simulated results showed a good performance for the two techniques
applied differently: the estimator and a speed controller using both a model of the induction motor
operating as a bearing motor. The experimental part for velocity vector control uses three control
loops: current, radial position, and speed, where the configurations of the peripherals, that is, the
interfaces or drivers for driving the bearing motor.

Keywords: bearingless; DSP; induction motor; radial position control

1. Introduction

Victor in [1] analyzed the feasibility of using a conventional induction machine as a
split-winding bearingless motor. He performed position and current control of the machine;
however, he observed that radial position control was not satisfactory for speeds below the
rated limit. In recent years, Ref. [2] studied the replacement of PID controllers for radial
position control with controllers based on fuzzy logic. Noting the strong nonlinear and
parameter-varying characteristics of induction motor bearings, he analyzed the contribution
of Fuzzy controllers on transient and permanent regime performance. In order to reduce
the number of equipment needed for machine control, Ref. [3] optimized the structure of
the motor bearing by proposing a new way to connect the coils in the machine stator. In [4],
the machine’s performance operation with a conventional state estimator and a neural state
estimator was compared.

Speed control operating with the bearing motor was studied by [5,6]. The Artificial
Neural Networks (ANN) technique was chosen. The ANFIS technique was investigated and
studied by [7–9]. The adaptive neuro-fuzzy in motor studied by [10,11]. The speed control
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operating with the bearing motor was evaluated by comparing the implementation of classic
PI control with an artificial intelligence technique. Thus, the Artificial Neural Networks
(ANN) technique was chosen to replace the classic PI control technique. The first step in
implementing ANN was choosing the data set, the ANN input data are the mechanical
speed and the mechanical speed error. The ANN output data is the torque current.

This work aimed to study and implement the artificial intelligence technique applied
to vector speed control for the split wound type bearing motor based on the induction
motor. The aim was to investigate and simulate the intelligent ANFIS techniques and
Neural Networks to evaluate the performance of the motor-bearing in the following con-
ditions: operating as an estimator and as a speed controller. In the experimental part,
the TMS3208F28335 DSP was used to integrate the control algorithm with the current,
position, and speed interfaces, by composing a cascade system. The intelligent technique
implemented was the Neural Network, which acted as a speed controller. The position
and mechanical speed results were compared with the PI speed controller and the Neural
Controller. The control algorithm implemented in the TMS320F28335 DSP was developed
in ANSI C programming language. The motor-bearing system is located in the Computer
and Automation Engineering Laboratory (LECA) at UFRN.

On the other hand, we have the following articles. In [12], it is presented that crack is
a common fault of rotor systems. The research on crack fault detection methods is mainly
divided into numerical and experimental studies. In [13], the article classifies the dynamic
response of rolling bearings in terms of radial internal clearance values. The value of the
radial internal clearance in rolling-element bearings cannot be described in a deterministic
manner, which shows the challenge of its detection through the analysis of the bearing’s
dynamics. In [14], it is presented that traditional machine learning prediction methods
usually only predict input parameters through a single model, so the problem of low
prediction accuracy is common.

The article describes the implementation details of controllers that provide the oper-
ation of the bearing motor. The system is made up of current, radial rotor position, and
speed, which operate in a cascade. Control loop implementations started with the loop
from the innermost (fastest) control to the outermost (slowest) loop, following the sequence:
current control, position control, and speed control. Speed and position controllers are
responsible for the generation of reference currents for current control. Other articles
dealing with the topic of Bearingless Induction Motor are listed below [15–20].

The article has the following sections: In Section 1, the introduction is presented. In
Section 2, simulations of the techniques of Artificial Intelligence are presented. In Section 3,
the design and analysis of the ANFIS System is presented. In Section 4, neural controller
design and analysis are presented. In Section 5, the Experimental Arrangement is presented.
In Section 6, the control structure in the bearing motor cascade is presented. In Section 7,
position control is presented. In Section 8, radial forces generation is presented. In Section 9,
experimental results are presented. Finally, in Section 10, it is presented conclusions.

2. Simulations of the Techniques of Artificial Intelligence

This section introduces vector modeling of the induction machine working as a bearing
motor. The characteristics have detailed the design of the Neuro-Fuzzy Estimator and the
Neural Controller. The results showed a good performance for the two applied techniques:
as an estimator and as a speed controller, both of them are models of the induction motor
operating as a bearing motor.

The evaluation of artificial intelligence techniques uses the diagram of blocks of
Figure 1. The neural controller replaced the green block represented by the Proportional-
Integral, and the estimator conventional represented by the orange block by ANFIS.
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Figure 1. Block diagram of the proposed simulated system.

The block diagram in Figure 1 presents the system’s complete structure adopted in
the computer simulation stage. The modeling described in the next section and the other
topics describe the main parts, requirements, and restrictions for the system to function as
a bearing motor (blue block).

2.1. Three-Phase Induction Bearing Motor with Coil Divided

The proper operation of a bearingless machine requires control of the position, rotation,
and torque of the rotor shaft. Table 1 presents some parameters obtained through tests
performed in the laboratory [1] and adopted in this work for the simulations and obtaining
the results.

Table 1. Motor Parameters and Characteristics.

Symbols Description Values

Pnom Rated power 3.70 kW
Wmec Rated Speed 1715 RPM
Tnom Rated voltage 380 V

Np Pole Pair Number 2
R1 Stator Resistance 1.182 Ω
R2 Rotor Resistance 1.42 Ω
J Inertia moment 0.00995 kg·m2

Ls Stator Inductance 6.56 mH
Lr Rotor Inductance 6.56 mH
Lm Magnetization Inductance 0.14 H
r f e Core loss 891.2 Ω
g0 Gap size 0.25 mm

The machine’s structure adopted as a reference in this work has three phases, four poles,
and utilizes the squirrel cage rotor; the coils are connected in series to form a phase group, and
each phase group has two diametrically opposite coils, according to Figure 2. Figure 2 shows
the distribution of the coils in the stator and the currents in each half group of the winding for
the bearing motor used in the research. Figure 2 shows the stator winding distribution, where
there is a 120◦ phase shift angle between each phase group axis. Figure 2 below describes the
unbalance of the currents for the position control. In order to reduce the system’s complexity,
it was considered that the rotor be centered for the simulations. Note that ia1 is the stator
current, and i′a1 represents the rotor current.
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Figure 2. Stator coil layout.

2.2. Description of Artificial Intelligence Techniques Applied to the Bearing Motor

The implementation of artificial intelligence techniques took into account consideration
of some criteria for the simulation. Use MATLAB for the implementation of the proposed
system in Figure 1.

2.3. ANFIS Estimator

The conventional estimator adopted in the simulations was compared with the ANFIS
estimator, and the training process using a 60-s training time interval, and variations of
parameters were imposed considering the following criteria:

• Successive ascending and descending steps were applied between 0 and 2000 rpm
(reference speed ranges);

• Variation of rotor time constant (every 2 s, so random values ranging from 0–20%
concerning the nominal value of the constant);

• Every 5 s, increasing and decreasing variations were applied load of 0.05 N·m (load
torque variation); This criterion was based in [21].

2.4. Neural Controller

The Neural Controller replaces the PI Speed controller in Figure 1. The data collection
for training the neural network followed some criteria:

• The training process used a training time interval 60 s;
• Successive ascending and descending steps were applied between 600 and 1900 rpm

(random variations of reference speeds);

3. Design and Analysis of the ANFIS System

The structures adopted in the Neuro-Fuzzy estimator were based on two estimators,
one for estimating the magnetizing current and the other for estimating the rotor flux. The
ANFIS 1 estimator uses the following inputs: the direct field current iSd and the delayed
magnetizing current, and as output, the magnetization current. The ANFIS 2 uses the
following inputs: mechanical velocity quadrature current iSq angular velocity as output
estimated after discretization dp̂.

In order to find the best configuration, it was performed several training with different
parameters to obtain better criteria for the simulations according to Tables 2 and 3.
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Table 2. ANFIS 1 Parameters.

Pertinence Functions Epoach Training Error Validation Error

2 50 0.0558002 0.00813261
3 150 0.0488926 0.00815185
3 300 0.0409925 0.01109080
5 500 0.00175787 0.00781050

Table 3. ANFIS 2 Parameters.

Pertinence Functions Epoach Training Error Validation Error

2 50 0.00406290 0.00489893
3 150 0.00533958 0.7491140
3 300 0.00448118 0.3522810
5 400 0.00359959 0.3302490

The criteria adopted in both estimators were 300 times for training and zero-tolerance error.
Figure 3A illustrates the Fuzzy surface obtained as a result of quadrature and magne-

tization current training. It is deduced that the linear result obtained is due to the centered
rotor. Figure 3B illustrates the Fuzzy nonlinear surface obtained due to speed training
mechanics and quadrature current.
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Figure 3. (A)—Fuzzy Sugeno Surface—ANFIS 1 and (B)—ANFIS 2.

Figure 4 illustrates the behavior before and after training to adjust the memberships:
iSq and imR the curves [blue, green and red] represent the rules generated by ANFIS and
{in1mf1, in1mf2 and in1mf3} are the memberships generated by ANFIS 1 and by ANFIS 2
are {in2mf1, in2mf2 and in2mf3}.
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It is observed that after the end of the training, the pertinence functions of Figure 5
were adjusted for each input of estimator 1 of Figure 3A. With the result of the training of
the ANFIS 2 estimator, the membership settings for the entries were obtained. Figure 5
illustrates the behavior before and after mechanical speed training.

ANFIS 2: Before Training - ωmec(k)

ANFIS 2: After Training - ωmec(k)

ANFIS 1: Before Training - isq(k)

ANFIS 2: After Training - isq(k)
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Figure 5. (A) Pertinences before training and after –ωmec(k); (B) Pertinences before training and
after iSq(k).

Figure 5A shows the cancellation of membership already in Figure 5B there was
no cancellation of membership, but a distribution of the same. These elimination and
distribution results are pertinent to the Neuro-Fuzzy training.

Results of Simulations with the ANFIS Estimator

The simulations were run in the range of 0 to 20 s. The result shown in Figure 6
shows the mechanical speed of the motor simulated subject to the following reference
changes 680, 1800, and 900 rpm, and then a perturbation at the instant 10 s is applied. The
disturbance was an application of a load torque with a nominal value of 5.4 N·m.
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Figure 6. Comparative result of mechanical speed with estimators.

Figure 7 shows the behavior of the electrical torque in the conditions imposed in the
simulation with conventional estimators and with the Neuro-Fuzzy estimator.
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Figure 7. Electrical torque response operating under simulation conditions.

Figure 8 shows the behavior of the angular position with a zoom in an operating range
of 0 to 0.2 s, which is observed in these results from the ρ(k) timing for the estimators.

Time (s)
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Figure 8. Angular position result of the rotor flux.

4. Neural Controller Design and Analysis

The neural structure used the three inputs: mechanical speed—wmec(k), error(k)
current error; and the previous error (k-1) and as an output torque reference (nMre f ) for the
torque controller. The process of training was carried out in offline mode, and its collection
used 12, 000 points for the input and output pairs, with a mechanical speed variation
of 600 to 2000 rpm, randomly. Table 4 presents the parameters structures of the Neural
Network, in which the convergence of the training process occurred in 841 epochs.

The topology in Table 4 was chosen after several performance tests with a differ-
ent number of layers and neurons per layer, the algorithm of chosen training was the
Levenberg–Marquardt. Figure 9 shows the error curve obtained with network training neural.
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Table 4. Neural Network Parameters.

Network Architecture Multilayer Perceptron

Training type Supervised-offline
Layers number 3

Input layer neurons 3
1st hidden layer neurons 10

Output layer neurons 1
Training algorithm Levenberg–Marquardt backpropagation

Learning rate 5 × 10−2

Epochs number 841
Training error 9.4197 × 10−7

Hidden layer activation function Hyperbolic tangent
Output layer activation function Linear

Best Validation Performance is 9.4197x10 at epoch 841
-7

847 Epochs

M
e
a
n

 S
q

u
a
re

d
 E

rr
o

r 
(m

se
)

Figure 9. Mean squared error for training (9.4197 × 10−7) with 847 epochs.

Figure 10 shows the performance of training, validation, and assessed tests resulting
from the training.

(A) (B) (C)

Figure 10. Results of training (A); validation (B); and Neural Network tests (C).
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Figure 10 shows the R parameter at the top. This parameter indicates the relationship
between the output and the target, varying between 0 and 1. The closer to 1, the better the
prediction. After training, the weights were adjusted, and the neural network simulation
replaced the PI control in Figure 1.

Results Neural Network Simulations

The simulations were run from 0 to 10 s. The results shown in Figure 11 show the
mechanical speed of the motor simulated subject to the following reference changes: 1200,
1800, and 1500 rpm.
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Reference Mechanical Speed
Mechanical Speed - PI Control
Mechanical Speed - Neural Control

Figure 11. Comparative result of the mechanical speed with the controllers: neural and PI.

Figure 12 shows the behavior of the angular position with a zoom-in operating range
from 0 to 0.4 s. It is observed in these results that the ρ(k) timing for the estimators.

Rotor flow angular position - Neural Control
Rotor flow angular position - PI Control
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Figure 12. Angular position result of the rotor flux with the neural controller and PI of velocity.
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5. Experimental Arrangement

The 3.7 kVA three-phase induction motor received modifications to operate a bearing
motor; for example: the configuration of the double star coils and the removal of one of the
bearings from one end of the rotor shaft. This last modification caused problems in the work
of [1], according to which the problem of eccentricities of the motor-bearing shaft caused
when there is displacement of the rotor made it difficult to adjust the position controller
gains. The orbits were designed by rotating the shaft manually and then translating it
through the periphery of the air gap. According to [1], after installing the self-aligning
bearing, the shaft started to produce several orbits when peripherally displaced. Figure 13
shows three possible orbits designed by moving the shaft peripherally in the housing box
of the top bearing.

Figure 13. Motor-bearing shaft eccentricities.

After replacing DSP 2812 with DSP 28335, the empirical tuning of the Position PD
controller was a difficult task. In order to correct the imbalance, the induction motor was
disassembled, and the rotor shaft composed of the bearings and the disc was positioned in
the lathe to perform roughing on the disc. In order to increase accuracy, the clock was used
in thinning.

However, the eccentricity problem persisted, decreasing only the number of orbits.
With the correction of the unbalance of the shaft in the lathe, the number of orbits went
from three to two. This phenomenon made it difficult to tune in to the position controller.
The solution found was the replacement of the conventional induction motor modified by
the prototype of the bearing motor used, which was located in the Laboratory of Computer
Engineering and Automation (LECA) at UFRN.

The bearing motor is a conventional induction machine adapted to operate without its
mechanical bearings, having its radial positioning controlled by magnetic fields. The data
used as parameters for the control of the machine were from the Table 5.

Table 5. Motor prototype parameters.

Parameters Values

Rated power 1 Hp
Frequency 60 Hz

Poles numbers 4
Rated voltage 220/380 V
Rated current 3.02/1.75 A
Empty current 1.90 A
No load power 160.00 W

Resistance 7.38 Ohms
Stator Resistance per Phase 0.73 Ohms
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After the replacement of the motor, it was necessary to configure the connection of the
electric motor. For this, the coils and they were respective phases, because, the stator coils
suffered some changes, they were divided in half as a strategy to carry out of control. In
Figure 14, the location and identification of the groups of coils.

Phase Coils
Identification

Phase 
Coils
Identi-
fication

Figure 14. Coverless bearing motor with identification of the coil groups.

Based on the experiments, Figure 15 shows the arrangement of connections of these
windings for operation as a bearing-less machine of the split coiled.

In order to facilitate the identification of phases and coil groups for name the X and Y
axes for position control, it was necessary to perform two experiments with the aid of a
compass. It is possible to check the compass orientation indicating the Y direction, shown
in the Figure 16.

Ib1

Ib = Ib1 + Ib2

7 1

Ib2Ia1

Ia = Ia1 + Ia2
3 9

Ia1 Ic1

Ic = Ic1 + Ic2

5

2

11

Ic2

8

10 46 12

Figure 15. Motor-bearing winding connection arrangement.

The results of Figure 16 identified each coil group according to the sequence of
Figure 15. For this, each group of coils was excited with continuous tensions.

However, it was necessary to adjust the position and speed of the related peripheral
to allow effective control under the conditions imposed on the bearing motor. These
modifications are presented in the following sections.

5.1. Radial Position Sensors

The radial position control for a bearing motor consists of making the rotor float; that
is, without mechanical contact with the stator. Another advantage identified in replacing
the bearing motor was the increase in the air gap, which went from 0.3 mm to 0.5 mm,
which allows a larger range for empirical tuning of position control.
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Figure 16. Bearing motor winding connection arrangement. The result identified each coil group
according to the sequence of Figure 15.

5.2. Rotation Sensors

A rotating machine, when subjected to a torque on the shaft, in addition to needing
more current in the coils, it also undergoes a variation in rotation. Thus, it is essential
to know the rotation in real-time and the currents in the coils to implement a control
machine rotation. In order to measure the rotation on the axis of the bearing motor, an
encoder consisting of a disc was adopted uniformly perforated, a receiving transistor, and
a light-transmitting LED structured infrared.

Among the peripherals that make up the bearing motor, such as those that were used
in [1].

5.3. Complete System

The modulation of current in frequency inverters is performed through signals from
the DSP control system. The current produced generates both torque and radial forces from
rotor positioning. The mechatronic system, including each of the elements composed by
the system and other components such as interfaces, sensors, and command devices, can
be seen in Figure 17.

Sensor Position
interfaces

Bearingless
Motor

IGBT's Inverter
Sensor Current
Interfaces

DSP Processor

Figure 17. Mechatronic system with interfaces and the bearing motor.
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This section dealt with the details of the changes made to the interfaces with the
bearing motor. Basically, there were changes in the position and velocity sensors, and
after adjustments, the system was able to implement the control structure and obtain the
experimental results, which are exposed in the following section.

6. Control Structure in Bearing Motor Cascade

The following text describes the implementation details of the controllers that provide
the operation of the bearing motor. The complete system comprises the current, position,
and speed controllers, which operate in a cascade. The implementations of the control loops
were started with the loop. from the innermost (fast) control to the outermost (slower) loop,
following the sequence: current control, position control, and speed control. The speed and
position controllers generate reference currents for current control. So after the action of
controlling the currents of each coil is applied to the motor-bearing windings, the scalar
PWM outputs are generated for the two three-phase inverters.

Current Control

The high performance in the drive of electrical machines depends mainly of the control
technology implemented, being employed control techniques with current feedback in all
applications. These techniques require fast response, high accuracy, and a performance
high level. Current sensors, as well as other sensors used in the machine are important for
the control in real-time, can impose changes necessary for the correct functioning of the
machine. Current controllers must be of the Proportional-Integrative type (PI), they are
simple to implement and manage to eliminate errors in regime [1]. The structure used for
the control of current in this work was based on the module implemented by Texas (C28x
Solar Library [22]). This module has the following characteristics: programmed output
saturation; adjustment of independent weights on actions proportional and derivative;
reset in anti-windup integrator; and a filter Programmable for a derivative action. However,
the derivative action was annulled for this control, acting only on the proportional and
integral actions.

The equation of the PID controller before saturation is described as Equation (1):

v1(k) = Kp[up(k) + ui(k) + ud(k)] (1)

Each term can be written as follows: Proportional term:

up(k) = Krr(k)− y(k) (2)

Integral term:

ui(k) = ui(k − 1)Ki[r(k)− y(k)] (3)

Derivative term with filter:

ud(k) = Kd[c2ui(k − 1) + c1e(k) + c1e(k − 1)] (4)

Finally, the output with saturation is defined:

u(k) =


Umax : v1(k) > Umax
Umin : v1(k) < Umin

v1(k) : Umin < v1(k) < Umax

(5)

In these, r(k) a reference; y(k) a control variable; ud(k) term derivative; ui(k) integra-
tive term; up(k) proportional term; Kr, the weight referring to reference; Kp the proportional
gain; Kd the derivative gain; c1 the derivative filter coefficient 1; c2 the coefficient of deriva-
tive filter 2; Umax, the maximum saturation limit; Umin, minimum saturation limit.
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The control laws of Equations (1)–(5) were implemented in DSP 28335. The implemen-
tation is obtained from Texas Instruments, [22]. Six PI controllers operate in a closed loop
inside the DSP interrupt to control the bearing motor current.

7. Position Control

For the implementation of position control, you must take into consideration the study
by [1,21]. These works demonstrate the rotor positioning model and identify that the model is
unstable in open mesh due to the presence of two poles, one in each semi-plane. The solution
found for the system to become stable was the implementation of the Proportional-Derivative
(PD) controller, which adds a zero which is positioned to attract the place of the closed-loop
roots to the left half-plane. The control law implemented for position control was based on [1].

8. Radial Forces Generation

Signals uα, uβ come from the position control. Then, they undergo a rotational trans-
formation to the static orthogonal system and transform into ux, uy and lastly there is a
coordinate transformation biphasic to triphasic, resulting in ua, ub uc, observed, that the
controller signals ua, ub uc, after the transformations, they have added to the phase current
references or subtracted in each half group of coils from phases A, B, and C, respectively, to
control the restoring forces of the rotor position, (Equation (6)).

I∗1 = I∗a + ua

I∗2 = I∗a − ua

I∗3 = I∗b + ub (6)

I∗4 = I∗b − ub

I∗5 = I∗c + uc

I∗6 = I∗c − uc

In these equations, I∗a , I∗b , and I∗c , are the imposed phase reference currents and I∗1 , I∗2 ,
I∗3 , I∗4 , I∗5 , I∗6 , are the reference currents for position control. Due to the nonlinearity of the
system, the tuning of the controllers becomes difficult to obtain; however, the parameters
of the controllers were determined empirically.

Vector Speed Control

The speed controller used is a PI (Proportional-Integral) with anti-windup, the feature
that interrupts the integration process when output has already reached a maximum satu-
ration value [23]. For the implementation of velocity vector control; initially, the structure
of control of Figure 18 using flow estimator. The big advantage of this structure using this
estimator is the presence of a small number of equations, minimizing the computational
effort [24].
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The flux estimator used in [24] is given by:

λ̂est = Lmisd (7)

In this, hatλest, Lm the estimated flux; isd the mutual inductance.; isd the field current.
Equation (7) is calculated from the field current isd and the inductance mutual Lm. Thus,
the calculation of the torque current (isq) obtained from the Equation (8).

nMre f =
PLm

Lr
λrisq (8)

here, nMre f reference torque; Lr the inductance of the rotor; λr, the flux reference rotor; and
P, the number of pole pairs. However, this structure was chosen for the following reasons:
the difficulty of tuning in empirically the control loops, which consumed more time, and
the fact of not having the necessary machine parameters to be used in Equations (7) and (8).

However, it was thought to obtain the parameters from laboratory tests, which were
discarded due to the following disadvantages: A delay in the digital implementation of
the control structure may be a physical problem with the engine, generating more time
for its solution or maintenance. Therefore, the control system implemented for the vector
control of speed of Figure 19 took into account two simplifications: impose a reference
field current to not implement flow control and eliminate the current torque calculation,
causing the control output go straight into Park, and Clarke’s inverse transforms as torque
investigation will not be taken into account. The structure of Figure 19 has three loops,
the outermost being the Proportional-integral (PI) speed control, which controls the rotor
shaft speed from the sensed feedback and whose output is the torque current isqre f the
Proportional-Derivative Integral (PID) controller for the positions referring to the x and y
coordinates of the rotor, since, in practice, the added integral action should decrease the
regime error. Position control is classified as a regulator, unlike the current control system,
which is classified as a follower. Therefore, the last control loop is the current one, the
innermost one, and quick response, with PI controllers for the six stator windings.
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Figure 19. Bearing motor cascade control diagram.

This section allowed us to deduce the simplified control diagram and function for
implementing velocity vector control. The choice is to discuss the current position and
speed controllers that helped to define the chosen strategy. The next section presents the
experimental results of each step of the cascade control loop of the bearing motor.

9. Experimental Results

The experimental results were obtained with the digital implementation of the control
system in the motor-bearing using the DSP 28335. An artificial intelligence approach
was implemented in the results of speed vector control. In addition, a comparison of the
Proportional-integral velocity vector control with the neural controller.



Energies 2024, 17, 1029 16 of 28

9.1. Stator Currents

To validate the digital implementation of the current control, some experiments with
the centralized rotor with the current PI control. The procedure followed the block diagram
sequence in Figure 20, based on the block structure of Figure 19.
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Figure 20. Motor-bearing current control.

Some experiments were carried out to validate the performance of the current PI con-
troller. The first one was the response to several steps in the reference imposed on coil i1 accord-
ing to Figure 21. The PI controller parameters of current Kp = 200 and Ki = 1.464844× 10−6

were empirically adjusted for obtaining the results and other experiments.
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Figure 21. Response to the reference change in coil 1.

For this experiment, continuous currents were imposed with reference changes over
1 s interval of execution. Another result obtained was the current of sinusoidal reference,
and we alternated it at a frequency of 60 Hz and with an amplitude equal to 1.5 according
to Figure 22.

The experiments were carried out by changing the frequency and the reference range.
Figure 23 shows the experiment obtained when the engine works at 15 Hz frequency with
equal reference amplitude (Imax) to 0.8 A.

To evaluate the behavior of the bearingless machine operating as a induction and activating
the six coils, it was necessary to perform two procedures: (1) fix the rotor shaft in the center so
that it does not influence the dynamics of the experiment and operate with the rotor centered;
(2) generate six streams of 120◦ offset references to generate the rotating field Equation (9).
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Figure 23. Lagged currents at 15 Hz frequency and 0.8 A amplitude.

i∗1 = Imax ∗ sin(wt + 0)

i∗2 = Imax ∗ sin(wt + 0)

i∗3 = Imax ∗ sin(wt − 2π

3
) (9)

i∗4 = Imax ∗ sin(wt − 2π

3
)

i∗5 = Imax ∗ sin(wt +
2π

3
)

i∗6 = Imax ∗ sin(wt +
2π

3
)
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9.2. Radial Rotor Position

The results presented below were obtained with the control Proportional-Derivative-
Integrative (PID) from some experiments. The results used the block diagram strategy of
Figure 24 based on Figure 19.
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Figure 24. Cascade position control with motor-bearing current control.

After some empirical adjustments on the controller parameters, the gains obtained were:
Kpx = 0.0005, Kdx = 0.028, Kix = 1 × 10−8, Ky = 0.0005, Kdx = 0.06, Kpy = 1× 10−8. An
experiment was carried out with the controls of position acting independently, evaluating
the behaviors of the X-axis and Y-axis. Figure 25 shows the response to a step variation for
the position control along the X-axis.

Time (s)

X
 a

xi
s 

(m
m

)

Reference Position
Sensed Position

Figure 25. Position control results for the X axis.

Figure 26 shows the response to a step change for the control of position along the Y axis.
The results were collected in a steady state. The experiment performed operated at the

frequency of 60 Hz according to Figure 27. The spot in the center of the figures represents the posi-
tions that the rotor has assumed in a given moment: the oscilloscope is in trace persistence mode.

In order to illustrate the dynamics of cascading control, the results considered an equal
time window for the position controllers and the current operating at a frequency of 60 Hz.
Figures 28–30 show the results of the cascading current and position controllers accordingly
with the block diagram of Figure 24. The graphic of Figure 28A shows the reference currents,
that is, the imposed currents I∗a , I∗b , and I∗c for control of position, collected at an interval of
0.08 s.
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Figure 26. Position control results for the Y axis.

Figure 27. Position control results with a rotor scatter area for activation at 60 Hz.

The graph in Figure 28B, identified by the subtitles Ref1, Ref2 and Ref3, represents the
composition of the reference currents I∗a , I∗b , and I∗c with the signs from position controllers
u∗

a , u∗
b , and u∗

c . Finally, the graph in Figure 28C represents the equivalent sensed currents
in each phase. Figures 29 and 30 show the responses of the X and Y positions with their
respective reading errors associated and control signals. There is a small change in the
behavior of the sensed currents in Figure 28 at times close to 0.02 s, for example. This
change is due to the control adjustment of the position of Figures 29 and 30 and observed
in the control signals for the X and Y positions.
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Figure 30. (A) Y position; (B) controller error; and (C) control signals.

9.3. Speed Control

The speed control operating with the bearing motor was evaluated by comparing
the implementation of classic PI control with an artificial intelligence technique. The
technique chosen was the Artificial Neural Networks (RNA) to replace the classic PI control.
The ANFIS technique was investigated. However, due to the computational cost of its
implementation, it was discarded.

The first step in implementing the ANN was choosing the data set for training and val-
idation. The inputs are the mechanical speed (Wmec) the mechanical speed error ((Errorw))
and the output is the current (Isqre f ). The input and output data pairs are used to adjust the
internal parameters of ANN according to [25]. The RNA was configured fully connected.
The database was developed with 20,200 samples, of which 70% of the data were used in
training and 30% for validation. The training process was carried out in offline mode, and
its collection used the input data with a variety of mechanical speeds randomly from 1%
to 5% overrated speed 1800 rpm. Table 6 presents the structural parameters of the Neural
Network, in which the convergence of the training process occurred in 104 epochs.

Table 6. New Neural Network Parameters.

New Network Architecture New Multilayer Perceptron

Type of training Supervised-offline
Number of layers 3

Input layer neurons 2
1st hidden layer neurons 10

Output layer neurons 1
Training algorithm Levenberg–Marquardt backpropagation

Learning rate 5 × 10−2

Epoch number 104
Training error 1.3909 × 10−5

Hidden layer activation function Hyperbolic tangent
Output layer activation function Linear
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The training algorithm chosen was the Levenberg–Marquardt, used in the Matlab
toolbox for better accuracy; the topology Table 6 was chosen after several performance tests
with a different number of layers and neurons per layer. The final choice led to considering
the digital implementation and evaluating the processing time of the DSP. The more layers
and neurons, the longer the processing time increases. Thus, the implemented structure
analyzed the computational cost. Figure 31 shows the training performances, validation,
and the evaluated test resulting from the training.
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Figure 31 shows the R parameter at the top. This parameter indicates the relationship
between the output and target, varying between 0 and 1. The more close to 1, the better the
prediction. Figure 32 shows the training graph with the Mean Square Error (MSE).

Figure 31. Result of training, validation, and testing of the Neural Network.

Figure 31 shows the R parameter at the top. This parameter indicates the relationship
between the output and target, varying between 0 and 1. The more close to 1, the better the
prediction. Figure 32 shows the training graph with the Mean Square Error (MSE).

After training, the weights and carried out two experiments to evaluate the functioning of
the bearing motor operating with PI speed control with gains Kpw = 0.01 and kpi = 7.5× 10−5

and with the neural structure. The two case studies used the same RNA structure implemented.
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Figure 32. Mean squared error for training (1.3909 × 10−5) with 104 epochs.

9.3.1. Case Study I—Ramp

The first experiment presents the system’s behavior when being powered from rest to
a rated speed of 1800 rpm. Figure 33 shows the mechanical velocity dynamics and the X
and Y positions, respectively, in the function of time operating with the two controllers.
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Figure 33. Mechanical speeds and X and Y positions for step speed reference constant.

The legends of the graphs in the experiments present, respectively, the references and
the responses with the PI control and with control identified by the colors green, blue, and
red. Figure 34 shows the control signal behavior for the implemented controllers.
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Figure 34. PI and neural control signals for step speed reference.

Figure 34 shows that the control signals are limited due to the motor constraints on the am-
plitude of 0.6 A, that is, a constraint on the speed control signal for bearing motor operation.
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9.3.2. Case Study II—Step Variation

The second experiment presents the system behavior operating at the nominal speed of
1800 rpm with a variation of 5%, that is, operating at 1710 rpm and 1890 rpm. Figure 35 shows
the behavior of the mechanical speed and the X and Y positions referring to the rotor position.
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Figure 35. Mechanical speed and X and Y positions for step speed reference.

In this case, the presence of overshoots in the performance of the The PI controller was
identified with dashed circles, which did not occur with the neural controller. This behavior
can be seen in Figure 35 because there were higher amplitudes in the PI control signal
compared to the neural control. Despite the variations of the control signal in Figure 36,
it can be seen that the position control performed well because the X and Y signs did not
suffer variation.

PI Controller signal 
Neural Controller signal

C
on

tr
ol

 s
ig

n
al

 (
A
)

Time (s)

Figure 36. Control signals for step speed reference.
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Figure 37 shows the errors of the controllers being acted on by the PI and neural
controllers. There is also a difference in amplitude between the controllers due to the effect
shown in Figure 35; the responses are also different.
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Figure 37. Control error signals for step speed reference.

Thus, even with variations or changes in references in the speed control, Figure 38
shows the dispersion of XY signals concentrated, as these variations did not disturb the
position control.
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Figure 38. Radial positioning diagrams for step speed reference.

A model DT-2234B digital tachometer was used to validate and check the mechanical
speed of the rotor operating at 1800 RPM and using the PI and neural controllers. Figure 39
shows the mechanical speed results under regime permanent in Figure 39A working with
the PI controller and Figure 39B with the controller neural.
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(A) (B)
Figure 39. Mechanical velocity measurement (A) PI control and (B) neural control.

10. Conclusions

The purpose of this article was to present the study and implementation of artificial
intelligence techniques for motor-bearing speed control with a split coil. ANFIS Smart
Techniques and Neural Networks were investigated and computationally implemented
for the evaluation of the motor-bearing performance. The simulated results showed a
good performance for the two techniques: as an estimator and as a speed controller,
using both an induction motor model operating as a bearing motor. The experimental
implementation required adjustments in the interfaces of position, in the speed sensor, and
in the replacement of the DSP TMS 3220F2812 by the DSP TMS 3220F28335, moving from
fixed-point floating-point implementation. With the implementation of the motor-bearing
system and the analysis of obtained results, some conclusions were possible: the use of
DSP 28335 helped in the implementation of the cascade control; the tuning of the current,
position, and speed controller, in the experimental results implemented in the DSP F28335,
was carried out empirically through the trial and error method, whose adjustment is
difficult and laborious; current control results were investigated with DC and AC currents,
validating the controller tuning in the bearing motor; the position control result has been
implemented and tuned to the frequency of 60 Hz, but it presented the best results at
the frequencies of 15 Hz, 30 Hz and 45 Hz; the speed control operating conditions were
synchronized with the position control, so the motor-bearing system operated properly
with current control; the operation of cascaded meshes requires a synchronism between
the position control and the speed control because, if it does not occur, the controllers will
not achieve stabilization; the speed PI controller had overshoots, and the neural controller
system did not present them, demonstrating the ability to learn and generalization of
Neural Networks.
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