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Abstract: Multiple-point geostatistics (MPS) has more advantages than two-point geostatistics in
reproducing the continuity of geobodies in subsurface reservoir modeling. For fluvial reservoir
modeling, the more continuous a channel, the more consistent it is with geological knowledge in
general, and fluvial continuity is also of paramount importance when simulating fluid flow. Based on
the pixel-based MPS algorithm Snesim, this study proposes a method that utilizes multiple search
trees (MSTs) to enhance simulation continuity in 2D fluvial reservoir modeling. The objective of the
MST method is to capture complete data events from a training image (TI), which aims to achieve
enhanced continuity in fluvial reservoir sublayer modeling. By resorting to search neighborhoods
based on their proximity to the central node of the data template, multiple data templates that
correspond to the MSTs will be generated. Here, four data templates were generated by arranging
the relative search neighborhood coordinates in ascending and descending order with respect to
the central node. Parallel computing was tried for the construction of the search trees. This work
calculated the conditional probability distribution function (CPDF) of the simulating nodes by
averaging the CPDFs derived from the MSTs, and double retrieval was employed to filter out the
search trees that possessed an inaccurate local CPDF for the simulating nodes. In addition, the
connected component labeling (CCL) method was introduced to evaluate the simulation continuity in
MPS. The results indicated that the MST method can enhance the simulation continuity of the Snesim
algorithm by reproducing the fine connectivity of channel facies in 2D fluvial reservoir modeling.

Keywords: multipoint geostatistical modeling; Snesim; search tree; conditional probability distribution
function; simulation continuity

1. Introduction

Although there are advanced detection technologies such as seismic and well log
analyses [1–3], the observation of subsurface geology remains challenging. Using geology
data, researchers established geology models primarily based on the statistical method,
which produced geostatistics. Traditional geostatistics is known as two-point geostatistics
based on variogram algorithms, but the inability of the sequential Gaussian simulation and
sequential indicator simulation (Sisim) to characterize complex geological structures and
continuity reflects the limitations of traditional geostatistics [4–6]. Later, TI-based MPS was
proposed as a solution to this challenge.

Guardiano and Srivastava [7] presented the first MPS algorithm, ENESIM, which
captured patterns from a TI and derived probability distributions for the unknown nodes
to be simulated. Using the ENESIM algorithm, the simulations of dune morphology, pore
geometry, and fracture geometry were all accurately carried out. Due to rescanning of the
TI for the simulating nodes, the ENESIM algorithm based on brute force is computationally
intensive. Strebelle [8] presented the single normal equation simulation (Snesim) algorithm,
which utilizes a search tree to store the CPDF inferred from a TI and requires only a
moderate memory capacity for a single scan of the TI. In addition, the implementation
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of multiple grids conserves memory and CPU time. For the first time ever, the Snesim
algorithm enabled the practical implementation of MPS for real reservoirs [9,10].

MPS has gained prominence in stochastic geological modeling following the proposal
of the Snesim algorithm. Some MPS algorithms are based on patterns, like SIMPAT [10],
FILTERSIM [11], DISPAT [12], and CIQ [13], while others are based on pixels, like DS [14],
GOSIM [15], PCTO-SIM [16], and ASR3DRCS [17]. Liu [18] performed comprehensive
sensitivity analyses on significant input parameters, thereby providing more in-depth
guidance for understanding the Snesim algorithm. Bastante et al. [19] noted that Snesim
produced simulations with a higher degree of connectivity between points than Sisim,
which was more apparent when working with nonpoint supports. Regarding complex
TIs, Boucher [20] proposed the search tree partitioning method, which made TI selection
more flexible and accelerated the simulations. Hajizadeh et al. [21] reconstructed 3D
pore space from a 2D TI using Snesim, which reproduced long-range connectivity and
captured the characteristics of anisotropy in both horizontal and vertical dimensions. Then,
Wu et al. [22] reconstructed 3D pore space from a 3D TI using Snesim, which was consistent
with the X-ray computed tomography-scanned model. Huang et al. [23] accelerated the
node-level simulation of Snesim by utilizing the GPU many-core architecture and parallel
operation, while Cui et al. [24] designed and implemented a hybrid parallel framework
that later successfully resolved a large-scale and high-resolution simulation with the DS
method. Strebelle and Cavelius [25] enhanced Snesim by adding intermediate sub-grids
and devising a new data template, allowing the user to resolve memory and performance
issues. Combining pre-stack seismic inversion, Bayesian classification, and Snesim, Babu
et al. [26] constructed an enhanced lithofacies model that reproduced the continuity of
lithofacies with reliability.

For conditional simulations involving relatively dense datasets, MPS proves more
favorable than two-point geostatistics and object-based modeling in simulating channel con-
tinuity [27]. Generally, pattern-based algorithms excel in reproducing simulation continuity
compared to pixel-based algorithms [11,28], whereas pixel-based algorithms outperform
pattern-based algorithms in honoring conditional data [25,29]. Taking into account condi-
tional data in practice, this study focuses on increasing simulation continuity by employing
the first practical MPS method, i.e., the pixel-based Snesim algorithm. The more continuous
a channel is, the better it aligns with general geological knowledge [30]. Moreover, channel
continuity is crucial for fluid flow simulation applications [31]. The simulation implemen-
tation of Snesim is dependent on parameter settings such as template size, multiple-grid
number, etc. Wang et al. [32] investigated parameter optimization to determine the optimal
number of search template nodes in Snesim based on a GLCM [33,34] and the deep learning
method [35], which provided the most reasonable parameter to build the most continuous
channel facies. This study presents a novel approach for determining the Snesim simu-
lation parameters; however, it does not enhance the Snesim algorithm itself. In a recent
study, Babu et al. [26] suggested using Snesim to characterize lithofacies to enhance the
representation of geological facies continuity in meandering fluvial sandstone reservoirs.
The reported seven groups of comparisons showed that in one or two small places, the sim-
ulation continuity of the Snesim realizations was slightly better than Bayesian classification.
This approach integrated pre-stack seismic inversion, Bayesian classification, and Snesim
and was a workflow for practical applications rather than an improvement of the Snesim
algorithm. Shahraeeni [31] presented a robust algorithmic framework for generating con-
tinuous channels based on Snesim. During the simulation procedure, it monitored for
dead-end pixels causing channels to be terminated. If dead-end pixels occurred or were an-
ticipated, retrace would be performed. Clearly, this method of constant retracing increases
the computing requirements significantly. Kumar and Srinivasan [36] developed the InDA-
MPS approach, primarily based on InDA-Snesim, to enhance channel continuity through
the incorporation of secondary production data. The selection of the production data poses
a critical challenge due to the time-varying nature of the involved variables, such as fluid
flow rates and wellhead values. It is increasingly clear that generative adversarial networks
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(GANs) can substantially aid in geological modeling [37,38]. Recently, Zheng et al. [39]
employed GANs to estimate hydraulic conductivity in non-Gaussian groundwater fields
using a training image. This approach demonstrated the high efficiency of GANs in pro-
ducing geological models compared to Snesim. However, there is a notable issue, as GANs
tend to replicate the training image without taking conditional data into account.

Work to improve the simulation continuity of Snesim is still ongoing. In order to
improve channel continuity in fluvial reservoir sublayer modeling, this study proposes
a method for enhancing the simulation continuity of the Snesim algorithm using MSTs.
The MST method provides an advantage by enhancing the accuracy of the local CPDFs.
Firstly, this paper introduces the MST method, subsequently utilizing it to compare the
simulation outcomes with those achieved using the original Snesim algorithm, through
both theoretical and practical simulations. Parallel computing was tested for search tree
construction during the simulations. Additionally, this study explores double retrieving for
enhancing the precision of the local CPDFs and evaluates simulation continuity using CCL
analysis. Finally, a summary of this work is provided, along with future research topics.

2. Methodology Based on Multiple Search Trees

Strebelle [8] proposed the Snesim algorithm because two-point geostatistical simu-
lation could not reproduce the different shapes and sizes of complex geological bodies.
Figure 1 depicts the flowchart of the Snesim algorithm. According to the flowchart, the
Snesim algorithm will be reviewed briefly here, based on several important factors. A TI is
an a priori geological mode that reflects the actual subsurface reservoir characteristics. A
data template is a collection of ordered nodes used to scan a TI, and every replicate found
in the TI is referred to as a data event. The search tree is a dynamic data structure that
facilitates the retrieval of all data events. The TI, data template, and data event are essential
in the establishment of a search tree, depicted in Figure 2. Liu [18] provided a more detailed
description of the input parameters for Snesim. The utilization of a search tree is funda-
mental to the implementation of the Snesim algorithm based on Monte Carlo sampling. A
search tree precisely implements the dynamic storage of data events, significantly saving
computing time and decreasing the memory demand. In fact, the establishment of a search
tree is intricately linked to the characteristics of the data template, specifically, its size and
sequence settings. Notably, the size of the data template determines the levels of the search
tree, whereas the sequence of the data template determines the expansion order of the
search tree. Based on the information provided in Figure 2, a search tree can be uniquely
determined when both the size and the sequence are known. In this paper, the search tree
in the original Snesim algorithm is referred to as a single tree.

Observations indicated that the data events collected by a single tree are not extensive
enough to fully capture the geological–spatial relationship. According to Figure 2, as the
search tree expands from the root node (level 0) to level 1, the first child node corresponds
to No. 1 in the data template sequence. Similarly, when the search tree further expands
from level 1 to level 2, the second child node corresponds to No. 2 in the sequence. Clearly,
the growth of the search tree disregards the fact that every child node is equivalent, as the
distance between the search neighborhoods and the central node u is identical in the data
template. In other words, the four nodes have the same spatial relationship to the root
node. This growth mode results in the loss of several data events when only one single
tree is considered. Boucher [20] also noted that the majority of data events are insufficient.
Figure 3 illustrates the data events not captured at level 1 of the search tree in Figure 2.
Each data event is accompanied by a number, indicating the quantity of missed occurrences.
In the original Snesim algorithm, Strebelle [8] derived the probability for the simulating
node whose CPDF cannot be inferred directly from the data events by combining CPDFs,
as shown in Figure 4. Here, each data event is accompanied by a number, indicating the
quantity of observed occurrences. The probability, P(u = green|2 = green) = 1/3 can be
deduced from the combination of CPDFs by expanding the neighboring nodes around the
simulating node in the absence of specific data events. However, if the sequence of the
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data template in Figure 2 makes an equivalent transformation by exchanging node 1 and
node 2, the CPDF can be directly inferred from the data events in the new search tree as
P(u = green|1 = green) = 2/5, which is not equal to the value (1/3) obtained with the CPDF
combination approach in the original Snesim algorithm.
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Figure 4. CPDF combination approach by expanding the neighboring nodes.

By repositioning the equivalent nodes within the data template, the generation of
diverse yet equivalent data events is facilitated. In fact, for the determined size of the data
template depicted in Figure 2, a total of 4! = 24 search trees are required to exhaustively
retrieve all data events through the sequence transformation of the data template, which
can be easily counted using permutations and combinations in mathematics. According to
Figure 5, there are 21 nodes in the data template (including the central point u) where the
neighbors of each cluster connected with a circle share the same distance from the central
point u. The number of search neighborhoods is properly organized as N1 = N2 = N3 = 4
(equivalent nodes 1–4 constituting N1; equivalent nodes 5–8 constituting N2; equivalent
nodes 9–12 constituting N3) and N4 = 8 (equivalent nodes 13–20 constituting N4). Theo-
retically, a total of 4! × 4! × 4! × 8! = 557,383,680 search trees are required to collect all
the data events. Starting from the center and going outward, the number of equivalent
nodes N1, N2, . . ., Nn is ordered based on the distances between the search neighborhoods
and the central point u in the data template. From the theoretical calculation, Formula (1)
can be used to ascertain the total number of search trees by scanning the TI independently
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using equivalent data templates. The mathematical analysis described above forms the
foundation of the MST method.

Nt =
n

∏
i=1

Ni! (1)
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Figure 5. Search neighborhood clustering.

The MST method can improve the exhaustive retrieval of data events from TI scans
using equivalent templates, resulting in more accurate geostatistical simulations. To achieve
better simulation continuity of geobodies in the original Snesim algorithm, it is customary
to use a larger data template or a multiple-grid approach [40]. However, as the size of
the data template increases, the computation of the CPDF from the search tree becomes
more time-consuming, and additional memory is required to construct the search tree [25].
From the perspective of geological–spatial relationships, it is evident that the spatial
correlation diminishes as the distance between the conditional nodes and the simulating
node increases, which is analogous to the effect of the lag distance in variogram analysis.
Therefore, selecting a large data template without specific criteria will introduce extra
geological constraints into the simulation without any spatial correlation, while using
multiple grids (more than four) will cause the same issue as choosing a large data template.
This study introduces the MST method to enhance simulation continuity in 2D space. Due
to the potentially large number of Nt, as indicated in Formula (1), it is impractical to create
many trees to collect all data events. In this work, four search trees were employed in the
MST method.

Hansen used the i and j indices in the open source code mGstat (https://github.
com/cultpenguin/mGstat, accessed on 4 August 2015) to locate the search neighbor-
hoods (Figure 6a) relative to the central point u in the data template. For example, (1, 1)
is located at the ‘+1’ position relative to u in both the x and y directions, while (1, 1),
(1, −1), (−1, 1), and (−1, −1) have the same distance to u. Here, the indices i and j are
arranged in ascending and descending order using permutations and combinations. To
provide a clearer understanding, i↑&j↑, i↑&j↓, i↓&j↑, and i↓&j↓ are utilized to sort the
search neighborhood sequence based on the distance d (Appendix A Equation (A1)). This
approach facilitates the establishment of a manageable number of search trees. The imple-
mentation of this function is displayed in Appendix A Listing A1. This simplified approach
can generate four equivalent data templates (Figure 6b–e), which correspond to four search
trees. This study calculated the CPDF of the simulating nodes by averaging the CPDFs
derived from the four search trees, as depicted in formula (2) and Figure 7. The following
sections will present a series of tests conducted on multiple (Nt ≤ 4, referring to Section 4.1)
search trees, enhancing the simulation continuity of geobodies.

cpdfavg =

[
Nt

∑
i=1

cpdfi

]
/Nt (2)

https://github.com/cultpenguin/mGstat
https://github.com/cultpenguin/mGstat
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3. Results
3.1. Unconditional Simulation

Figure 8 depicts the TI used in this study, which consists of 125 × 125 = 15,625 pixels
and characterizes a horizontal 2D section of a fluvial reservoir containing sand-filled
channels against a mudstone background. Here, the sand/mud ratio was set to 0.38 for
the simulation. The data template contained 81 nodes. The simulation was performed
on the finest grid to easily identify the effect that MSTs had on enhancing the simulation
continuity of the Snesim algorithm. The simulation work area measured 60 × 60 pixels.
The parameter settings, including TI, data template, and so on, were consistent between
the MST method and the original Snesim.

Figure 9 illustrates the unconditional simulation realizations of the Snesim algorithm,
including the realizations of four search trees and a single tree. The implementation of
the MST method (Figure 9a) enhanced the channel continuity in three regions (A, B, and
C) compared to the single-tree simulation implementation (Figure 9b). By calculating the
experimental variograms of the x and y directions as depicted in Figure 10, the spatial vari-
ability of the simulated results was quantitatively compared. The experimental variograms
of the simulated realizations produced by both the MST and the original Snesim algorithm
exhibited similar trends as the TI. For the most part, furthermore, they closely coincided in
both the x and the y directions, as the MST method primarily restored specific local regions
of the sand channel.
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3.2. Conditional Simulation

Figure 11a shows the produced and sampled conditioning data, showing a small
portion of the produced geobody on the left and some of the sampling points generated by
a random algorithm on the right. Other parameter settings were the same as those in the
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unconditional simulation. Figure 11b,c illustrates the conditional simulation realizations.
The implementation of the MST method was found to enhance the channel continuity
in a specific region A compared to the implementation of a single tree. The simulation
continuity of the MST method was superior to that of the original Snesim algorithm after
several runs. The experimental variograms in the x and y directions, depicted in Figure 12,
also exhibited a similar pattern.
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3.3. Practical Simulation

The preceding Sections 3.1 and 3.2 described the theoretical tests for the MST method;
the Ng33 sublayer at one well site in the Zhongyi District of the Gudao oilfield served as
an example for the practical geological simulation test. Near the well, the Ng33 sublayer
covers nearly 4 km2 in the study area, characterized by a meandering channel. The point
bar, natural levee, and crevasse splay are distributed along the margin of the meandering
channel. There are 85 wells in the Ng33 sublayer, which has an average sediment thickness
of 7.1 m. From a geological perspective, the sublayer is characterized as a high-quality
reservoir with an average porosity of 35.2% and a permeability of 12,173 mD. An analysis
of the well data revealed that the point bar exhibited a greater thickness of sand compared
to the channel, while the crevasse splay displayed a slightly thicker sand body than the
natural levee. The thickness of the sand body exhibited significant variation across three
distinct levels. To derive the overall sand body distribution within the control range of the
channel, the point bar, natural levee, and crevasse splay were incorporated into the channel
to construct the predominant sand body distribution.

Figure 13 depicts the TI selected for reservoir modeling, which is a stationary mean-
dering channel with high curvature and a sand/mud ratio of approximately 1.0. As shown
in Figure 14, the conditioning data were obtained from seismic data, core, logging, and
virtual wells. Both the MST method and the original Snesim algorithm were utilized to
simulate the distribution of facies in the Ng33 sublayer using the same parameter settings.
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On the X-axis (from 6.0 km to 7.9 km) and Y-axis (from 3.0 km to 4.9 km), the Ng33 sublayer
was divided into 99 and 94 pixelated grids, respectively. The data template sequentially
incorporated multiple grids (G = 3) with 14, 22, and 25 nodes. Figure 15(A(a),A(b)) depicts
the simulation realizations, and Figure 15(B(a),B(b)) depicts the smoothed outcomes. Based
on the simulation results, it was evident that the MST realization (Figure 15(B(a))) success-
fully restored region M when compared to the original Snesim realization (Figure 15(B(b))).
Both were more closely aligned with the meandering fluvial pattern than the realization
presented in the Sisim simulation (Figure 15(B(c))). The experimental variograms in the x
and y directions are displayed in Figure 16, also exhibiting a similar pattern, as discussed
earlier in the Sections 3.1 and 3.2. Practice has demonstrated that the MST method better
depicts the distribution of sand bodies in the Ng33 sublayer of the Gudao oilfield.
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All the simulations were conducted on a laptop equipped with an Intel® CoreTM

i5-1035G1 CPU operating at 1.00 GHz, and 8 GB of RAM. The workflows and algorithms
were implemented using the MATLAB R2023b programming language. The computation
time and RAM consumption for each simulation are presented in Table 1. Based on the data
presented in Table 1, it can be observed that the non-parallel MST method required a search
tree construction time that was more than four times greater than that of the original Snesim
algorithm in the unconditional simulation. This occurrence is not surprising because the
MST method proposed in this study referred to four distinct search trees, in addition to
handling some additional processing. To reduce the computation time, the parallel MST
method utilizing four cores was employed, resulting in a moderate decrease in the pro-
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cessing time. However, it is possible that due to the relatively small size of the tasks, the
overhead associated with initiating and managing the parallel pool may surpass the actual
computation time of the tasks themselves. Consequently, parallelization did not yield
significant performance improvements in this context. In both conditional simulation and
practical simulation, the results were like those observed in the unconditional simulation.
For the search tree construction procedure, both the non-parallel and the parallel MST
methods necessitated greater RAM allocations than the original Snesim algorithm, with
the parallel MST method, in particular, requiring significantly larger RAM. This increased
RAM demand can be attributed to factors such as data duplication, overheads from man-
aging multiple threads, and the need for synchronization mechanisms. Although parallel
computing effectively reduces the execution time by utilizing multiple processors, it comes
with a trade-off of heightened memory usage to accommodate the infrastructure needed
for a parallel execution.

Table 1. Computation time and RAM usage of both theoretical and practical simulation tests.

Test Search Tree Construction Time
(s)

RAM (Random-Access Memory)
(MB)

Unconditional simulation
(non-parallel MST/parallel

MST/original Snesim)
28.5/15.7/5.3 2675/4028/1711

Conditional simulation
(non-parallel MST/parallel

MST/original Snesim)
29.1/15.8/5.4 2667/4106/1169

Practical simulation
(non-parallel MST/parallel

MST/original Snesim)
7.7/4.4/1.8 1255/2870/1030

4. Discussion
4.1. Double Retrieving for Improving the Accuracy of Local CPDFs

The test results displayed above illustrate not only theoretical but also practical sim-
ulation implementations of the MST method. The method for enhancing the simulation
continuity of the Snesim algorithm by utilizing MSTs is based on local CPDF precision.
Strebelle [8] made considerable effort to implement a reasonable local CPDF in his For-
tran 90 code. In addition to the multiple-grid approach, Strebelle simulated nodes whose
CPDF could not be inferred directly from the search tree by using a combination of CPDFs
(Figure 4) and dropping the farthest distant datum. When using the MST method to model
geological bodies, if the local CPDF at each unsampled node is derived from more than
one search tree simply by jointly averaging (Figure 7), the potential export of extraneous
information poses a challenge. Consequently, this study employed a compromise strategy
called double retrieving. Initially, the search trees containing the most conditioning data
for the simulating node was retrieved from the four search trees, which was followed by an
additional retrieval of the retrieved search trees. Finally, the number of search trees used
for the simulation could be less than 4, which is why Nt ≤ 4 is stated in Section 2.

The benefit of a double retrieval lies in the ability to effectively filter out search trees
that possess inaccurate local CPDFs for the simulating nodes. Figure 17 illustrates the
frequency of nodes simulated by the MST method after the double retrieval process. For
the unconditional simulation in Section 3.1 and the conditional simulation in Section 3.2,
the four search trees were retrieved for most of the simulated nodes, and from two to four
search trees accounted for over 70% of the simulated nodes. Even though two search trees
accounted for most of the nodes simulated in the practical simulation of the Ng33 sublayer,
from two to four search trees still accounted for 71.7% of the total number of simulated
nodes. The double retrieval approach significantly enhanced the precision of local CPDFs
when simulating nodes.
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4.2. Assessing Simulation Continuity with CCL

The aforementioned test results (Figures 9, 11 and 15) were based on comparing a
single pair of simulation realizations. To further facilitate a comprehensive comparison, a
total of 600 pairs of realizations for each type of test were executed. The fluvial reservoir
consisted of two facies, with 0 representing the mudstone background, and 1 representing
sand-filled channels. Connected component labeling (CCL) has been widely used in image
processing and computer vision, particularly for 2D binary images [41–43]. CCL is a
technique for labeling each distinct connected component in a binary image with a unique
identifier. The input and output using CCL are depicted in Figure 18.
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Figure 18. CCL operation (the green color signifies a mudstone background, yellow indicates
sand-filled channels, and red numbers mark labels for identifying each distinct channel).

CCL could be used to precisely identify all the distinct sand-filled channels. As for
pairs of realizations, the fewer the distinct sand-filled channels, the better the simulation
continuity. For a quantitative comparison between the three types of tests conducted using
the MST method and the original Snesim, the CCL algorithm was utilized to analyze
600 pairs of realizations in each type to precisely identify the frequency of unique sand-
filled channels. Figure 19a–c depicts the frequency of distinct sand-filled channels for three
types of tests using the MST method and the original Snesim. As observed in Figure 19, the
three types of simulation realizations using the MST method were distributed to the left of
the original Snesim implementation. Table 2 displays the most important distributional
characteristics, indicating that the mean of the CCL numbers in the three types of simulation
realizations using the MST method was lower than that of the original Snesim algorithm.
The results demonstrated that the realizations by the MST method in both theoretical
and practical simulations had a higher level of continuity than those obtained with the
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original Snesim algorithm. As mentioned previously, to compare the MST method with the
original Snesim algorithm, a total of 600 pairs of realizations were executed for each type
of test. The average experimental variograms for both the MST method and the original
Snesim algorithm in theoretical and practical tests are displayed in Figure 20. Figure 21
illustrates the integration of the average experimental variograms obtained from both the
MST method and the original Snesim algorithm, combined with that of the TI, in a single
graph. The experimental variograms of the realizations calculated from both the MST
method and the original Snesim algorithm exhibited similar trends to that of the TI in
each type of simulation, highlighting that the MST method primarily restored specific local
regions of the sand channels compared to the original Snesim algorithm.
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Table 2. CCL distribution characteristics of the theoretical and practical tests.

Test
Distribution Characteristics

Range 1 Mean 2 Std 3 N 4

Unconditional simulation
(MST/original Snesim) [3–16]/[2–16] 8.82/9.04 2.49/2.56 600/600

Conditional simulation
(MST/original Snesim) [2–14]/[1–16] 8.35/8.42 2.04/2.01 600/600

Practical simulation
(MST/original Snesim) [1–9]/[1–17] 3.44/4.62 1.70/2.21 600/600

1 The numerical interval of the distribution of distinct sand-filled channels. 2 The mean of the probability
distribution. 3 The standard deviation of the probability distribution. 4 The number of simulation realizations.
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for the unconditional simulation in the x direction, (a2) MST method for the unconditional simulation
in the y direction, (b1) original Snesim algorithm for the unconditional simulation in the x direction,
(b2) original Snesim algorithm for the unconditional simulation in the y direction, (c1–d2) series of
conditional simulations, (e1–f2) series of practical simulations.
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simulation in the x direction, (f) practical simulation in the y direction.
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5. Conclusions

The idea of using MSTs to enhance the simulation continuity of the Snesim algo-
rithm was based on a mathematical analysis of data events collected from a TI. It was
demonstrated that the MST method could enhance the simulation continuity of the Snesim
algorithm by reproducing the fine connectivity of channel facies in 2D fluvial reservoir
modeling. To assess the feasibility of implementing a tree-based computing system, four
search trees were created by sorting the search neighborhoods according to their proximity
to the central node of the data template. The local CPDF of the simulating node was
determined by taking the averages of the CPDFs derived from the MSTs. Both theoretical
tests of unconditional and conditional simulations, as well as the practical simulation test of
the Ng33 sublayer, confirmed the effectiveness of the MST method in enhancing simulation
continuity in 2D fluvial reservoir modeling. Considering the precision of the local CPDF
at each unsampled node, a compromise strategy called double retrieving was adopted.
The number of search trees retrieved for the simulating nodes was reduced to some extent,
further enhancing the accuracy of the CPDF. The CCL method was introduced to evaluate
the simulation continuity of the theoretical and practical tests by the MST method and the
original Snesim algorithm, demonstrating the robust capability of the MST method.

The utilization of MSTs was shown to enhance the simulation continuity of geobodies
by restoring specific local regions of the sand channels compared to the original Snesim
algorithm. However, it is essential to acknowledge that this method is susceptible to speed
and memory constraints. Parallel computing was deployed for the construction of the
search trees. However, due to the relatively small size of the tasks, alongside issues such as
data duplication, thread overheads, and the necessity for synchronization mechanisms, this
approach did not result in substantial performance enhancements in this particular context.
In the future, the MST method will be utilized for performing both multiple-categories
facies modeling and 3D facies modeling.

Author Contributions: Conceptualization, C.Z. and W.D.; methodology, C.Z.; software, C.Z.; valida-
tion, C.Z., W.D. and S.L.; formal analysis, L.W.; investigation, Y.L.; resources, W.D.; data curation,
S.Y.; writing—original draft preparation, C.Z.; writing—review and editing, S.L.; visualization, S.Y.;
supervision, Y.H.; project administration, Y.H.; funding acquisition, C.Z. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the China Scholarship Council, grant number 202308510303.

Data Availability Statement: The data presented in this study are openly available in GitHub at the
link: https://github.com/ZhouChuanyou/MPS_Snesim, accessed on 17 February 2024.

Acknowledgments: The authors would like to express their gratitude to the editors and reviewers
for their valuable comments and insights. The corresponding author extends great appreciation to
the China Scholarship Council for supporting visiting study in the UK.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Here, i↑&j↑, i↑&j↓, i↓&j↑, and i↓&j↓ were used to sort the search neighborhood se-
quence according to the distance d in Equation (A1) in ascending and descending order
using permutations and combinations. The letter d represents the Euler distance. The i and
j indices are relative coordinates (∆x & ∆y) of search neighborhoods relative to the central
node of the data template. Listing A1 illustrates the implementation of this function.

d = (∆x)2 + (∆y)2 (A1)

This simplified approach can generate four equivalent data templates that correspond
to four search trees. The local conditional probability distribution function (CPDF) of
the simulating node is accurately derived from the data events of the four search trees.

https://github.com/ZhouChuanyou/MPS_Snesim
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The MST method has the advantage of increasing the precision of local CPDFs, which
contributes to simulation continuity.

Listing A1: Search neighborhood sorting.

1. % d: the distance between search
2. % neighborhood and the central node u
3. d = sqrt(i.ˆ2 + j.ˆ2);
4. ad = {‘ascend’, ’descend’};
5. c = 1;
6. % sort the search neighborhood
7. for i = 1: size(ad,2)
8. for j = 1: size(ad,2)
9. sort_data{c} = sortrows([d(:), i(:), j(:)], [1,2,3], {‘ascend’, ad{i},ad{j}});
10. c = c + 1;
11. end
12. end
13. % 4 data templates/the base of 4 trees
14. for i = 1: size(sort_data,2)
15. % n_cd: the number of conditional data
16. template{i} = [sort_data{i}(2:(n_cd+1), 2: end)];
17. end
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