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Abstract: Modular multilevel converters (MMCs) are susceptible to subsynchronous oscillations
(SSOs) caused by impedance interactions in the power line. Current research into the stability of
MMCs focuses mainly on voltage feed-forward control, while the effect of current feed-forward
control is neglected. This paper proposes a current feed-forward compensation method based on
impedance reshaping for standalone MMCs. Initially, an impedance model was developed to identify
the stability risks caused by the interaction between the MMC and power line impedance. The pro-
posed method feeds the current compensation signal into the modulation circuit, thereby improving
the control signal and suppressing the impedance interaction between the MMC and the power line.
The analysis of the harmonic state space (HSS) method verifies that the proposed approach effectively
reduces the negative damping region in the frequency band where the SSO is located. Additionally,
the impedance frequency scanning method confirms the accuracy of impedance modeling. Using the
MATLAB/Simulink platform and StarSim HIL hardware-in-the-loop experimental platform, the SSO
phenomenon of the MMC is simulated, and the results show that the proposed method can effectively
suppress harmonic currents during SSO, which verifies the accuracy of the stability analysis and the
feasibility of the proposed method.

Keywords: modular multilevel converter; subsynchronous oscillation; harmonic state space; stability;
feed-forward control

1. Introduction

Modular multilevel converters are extensively utilized in high-voltage direct current
(HVDC) transmission systems owing to their modularity [1,2], extensibility [3,4], and
favorable output performance [5–7]. Two operational modes are identified for MMC-
HVDC projects: grid-connected mode and standalone mode [8,9]. In the grid-connected
mode, active and reactive power control outer loops primarily govern MMC operations.
Conversely, the standalone mode operations of MMC-HVDC projects are directed by
controlling the AC voltage and frequency.

However, when interfacing with the impedance of the power line, MMCs tend to
exhibit oscillatory behavior [10–12]. Recent commissions of MMC-HVDC projects have
highlighted relevant stability issues. For instance, a 1500 Hz resonance was detected during
AC side charging in the Zhangbei MMC-HVDC project in China [13], the Borwin2 project
in Germany encountered a 451 Hz resonance during the supply of offshore wind power via
MMC-HVDC [14], and a 42.5 Hz subsynchronous oscillation transpired in the Zhoushan
multiterminal project in China when the operating mode transitioned from grid-connected
to standalone during line maintenance shutdown [15]. The increase in the capacity and
number of MMC-HVDC projects considerably increases the impact of these engineering
projects on power quality. In milder scenarios, these mishaps may degrade grid power
quality, while in severe instances, they may necessitate project shutdowns [16,17].
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Addressing the power oscillation predicament in MMC-HVDC is critical for ensuring
smooth operation and facilitating future expansions of MMC technology. An initial step
toward alleviating power oscillation risks involves establishing a stability impedance model
for the MMC system. Impedance modeling methodologies for MMC systems span two
domains: time and frequency domain modeling. Time domain modeling primarily employs
a dynamic phaser based on Park transform [18], which is applied across various frequencies
to obtain the corresponding frequency components. However, the complexity of expressing
Park transform increases considerably with the inclusion of high-order harmonics owing
to its reliance on trigonometric functions. Frequency domain modeling predominantly
encompasses multiharmonic modeling. J. Lyu proposed a novel MMC system method em-
ploying the HSS [19]. HSS methodology, which leverages Toeplitz matrices, simplifies the
extension to all harmonic orders and elucidates harmonic interrelationships. Furthermore,
the matrix-centric modeling approach of HSS provides a clearer expression compared with
time domain modeling, facilitates computation, and renders a clear physical interpretation.
Consequently, this study adopts the HSS method for impedance modeling.

Following impedance modeling, stability enhancement methods can be employed in
system areas identified with oscillation risk to mitigate it. Three primary methods exist
to enhance the stability of the MMC system: control parameter optimization, additional
passive damping, and additional active damping [19–26]. Control parameters are opti-
mized using an impedance stability criterion that evaluates the magnitude and phase of
the MMC system and the corresponding single-input single-output system on the Bode
plot to determine appropriate control parameters for oscillation mitigation. In [19,20],
proportional-integral control parameters are designed based on whether the impedance
of the MMC system and the wind farm adhere to the stability criterion. However, if
operational environment alterations occur, the stabilization region deduced from this
method may become ineffective. Additional passive damping encompasses the inclusion
of extra passive devices and harmonic injection. The deployment of additional passive
devices results in considerable power losses, rendering this method infrequently utilized
in engineering practices [21,22]. In [23], transient harmonic injection disrupts the original
in-system characteristic coupling, consequently modifying the MMC impedance damping
response in the low-frequency range and destabilizing the MMC system. Additional active
damping involves the introduction of a corresponding feedback relationship in the original
control circuit. By adjusting the feedback, the amplitude and phase of the impedance
react correspondingly, thereby altering the impedance characteristics [24–27]. In [24], a
feed-forward voltage branch incorporating active damping based on the round function is
discussed, which curtails overcurrent during fault scenarios, enhancing MMC operation
stability. In [25], a comparison of three different orders of active feed-forward voltage
damping is presented, along with the design of active damping controllers to suppress
high-frequency oscillations as a function of gain and cutoff frequency. In [26], a phase
compensation method was introduced in active damping control to suppress oscillations.
In [27], active damping control is improved by combining a high-pass filter with a low-pass
filter.

However, existing studies [24–27] have focused on active damping controllers with
voltage feed-forward. Given the diverse effects of different feed-forward control loops on
stability, it is crucial to explore the impact of loops beyond voltage on stability. Hence,
this study investigates the effect of current feed-forward on stability enhancement. The
stability of standalone operating MMC systems is investigated. The results reveal that in a
closed-loop voltage scenario, the MMC system is susceptible to SSO issues. A large low-
frequency harmonic current at SSO is also observed. To suppress this harmonic current, an
impedance reshaping method using feed-forward current compensation is proposed, and
corresponding design guidelines are given. Related experiments show that the proposed
method mitigates SSOs.

The remainder of this paper is organized as follows: Section 2 reviews the modeling
of MMC systems using the HSS approach. Section 3 introduces an impedance reshaping
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method to mitigate SSOs, accompanied by design guidelines. Section 4 provides a case
study of MMC, substantiated by simulation verification. Section 5 presents the validation
of the proposed strategy’s effectiveness using a hardware-in-the-loop platform. Section 6
presents the conclusions of this study.

2. An HSS-Based Approach to MMC Impedance Modeling
2.1. Average MMC Topology

As can be seen from Figure 1, the MMC topology consists of upper and lower arms,
each of which is connected in series with N half-bridge submodules SMy(1~N), an arm
resistor Rf, and an arm inductor Lf. Up,j(j = a, b, c) and Un,j(j = a, b, c) represent the voltages
of the series-connected half-bridge submodules of the upper and lower arms. ip,j(j = a, b, c)
and in,j(j = a, b, c) represent the currents flowing through the upper and lower arms. Udc
and idc represent the voltages and currents flowing through the DC side of the MMC.
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Figure 1. Standalone MMC exact model topology. Figure 1. Standalone MMC exact model topology.

Resistor Ro and inductor Lo are used to simulate the load on the AC side of the MMC.
The number of three-phase upper and lower arm submodules for MMCs in HVDC

transmission projects is often very high, making the detailed model difficult to construct.
Therefore, it is essential to address the difficulty in modeling by using the average value
model [28] presented in Figure 2.
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For analysis purposes, define io,j(j = a, b, c) as the AC side output current with the
expression io,j = in,j − ip,j(j = a, b, c); define icir,j (j = a, b, c) as the circulating current with
the expression icir,j = (in,j − ip,j)/2 (j = a, b, c). Define Carm(Carm = C/N) as the equivalent
submodule capacitance of N half-bridge submodules SMy(1~N) after the MMC uses the
average model.

Based on the above definitions, the Kirchhoff voltage and current equations for the
circuit shown in Figure 2 are established to obtain the MMC time domain model equations:

Udc
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cp + R f ip + L f
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dt
(1)
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cn + R f in + L f
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(2)

where uΣ cx(x = p, n) and nx(x = p, n) represent the cumulative value of the submodule
capacitance voltages of the upper and lower arms of the MMC and the superimposed value
of the submodule control signals.

The internal dynamic characteristics of the MMC after using the average value model
can be expressed as follows:
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The derivation of Equations (1) and (2) leads to the MMC equivalent differential mode
circuit (DM) and common mode circuit (CM):

U∆

2
− Uo = L∆

dio
dt

+ R∆io (5)

Udc − UΣ = LΣ
dicir
dt

+ RΣicir (6)

where U∆ = (Un − Up)/2, U∑ = (Un + Up), L∆ = Lf/2, R∆ = Rf/2, L∑ = 2Lf, R∑ = 2Rf.
Based on Equations (5) and (6), Figure 3 illustrates that the MMC topology’s control

circuit is related to the DM and CM voltages. Therefore, the control of the MMC is
equivalent to the control of DM voltage and CM voltage. The DM voltage is reflected in the
output voltage Uo, and the CM voltage is reflected in the circulating current icir. Therefore,
the MMC only needs to control Uo and icir to realize the stable operation of the circuit. For
controlling Uo and icir, a proportional resonance controller (PR) is employed.
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This paper focuses on the SSOs caused by the outer loop. Therefore, the current inner
loop is not considered [29]. The transfer function of the proportional resonant controller
that regulates Uo and icir is shown as:

Gdm(s) = KPdm +
2KRdmωvs

s2 + 2ωvs + ω2
0

(7)

Gcm(s) = KPcm +
2KRcmωcs

s2 + 2ωcs + (2ω0)2 (8)

where KPdm and KPcm are proportional resonance controller proportional gains, KRdm and
KRcm are proportional resonance controller proportional partial resonance gains, ωv and ωc
are proportional resonance controller proportional partial resonance bandwidths, and ω0 is
the fundamental frequency angular frequency.

2.2. HSS Impedance Modeling of MMC

Equations (3)–(6) provide the basic MMC circuit equations. In contrast to the TL-VSC,
the MMC topology exhibits intricate internal dynamics. This is evident in the submodule
capacitance of the MMC topology, in which the submodule capacitance voltages interact
with the harmonics in the circuit, resulting in a more intricate analysis. The HSS method-
ology was selected for the stability modeling to comprehensively consider the internal
dynamics of the MMC system. Refer to Appendix A for the modeling procedure.

Figure 4 shows the block diagram of the modulation signal of the MMC control circuit
controlled by the voltage control loop and the circuit current suppression control (CCSC)
loop, from which the relationship between the modulation signals of the upper and lower
arms and the control loop can be deduced:‹mp

(
s + jhω0

)
= Gdm

(
s + jhω0

)
ũa + Gcm

(
s + jhω0

)
ĩcir‹mn

(
s + jhω0

)
= −Gdm

(
s + jhω0

)
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(
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(9)
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It should be noted that both u∗
a and i∗a are fixed reference values that are unaffected by

small signal disturbances, hence implying that both u∗
a and i∗a are zero.

By substituting Equation (9) into Equation (A15), the AC side impedance Z0(s) can be
obtained. For clarity in what follows, it is defined that the open-loop impedance Z0_ic(s) is
the AC side impedance solely present in CCSC, while the closed-loop impedance Z0_close(s)
is the AC side impedance present both in CCSC and voltage control.

The impedance of the MMC can be calculated using Equation (A23) and the circuit
parameters detailed in Appendix B.

Figure 5 shows that the MMC impedance phase diagram under open-loop control
remains in the range of ±90◦ with no negative damping characteristics, and the system
is stable. In contrast, the MMC impedance phase diagram extends beyond ±90◦ under
closed-loop control, indicating negative damping characteristics and risk of oscillation. At
14 Hz, the MMC intersects the power line impedance with a phase difference of over 180◦,
pointing towards a possibility of SSOs in the system. For the sake of clarity, this point will
henceforth be referred to as the risk point.

The analysis of the figure above illustrates that the introduction of closed-loop control
leads to negative damping characteristics, which in turn makes the MMC system unstable.
As noted in the introduction, controller parameters affect stability. Therefore, it is necessary
to investigate whether the negative damping characteristics, which cause instability in the
MMC system, are due to the inappropriate selection of controller parameters.

Figure 6 compares the impedance plots of the MMC system voltage loop parameters
KPdm and KRdm for different control parameters. As illustrated in Figure 6a, changing the
control parameter KPdm has little effect on improving the negative damping characteristics
of the MMC system. Figure 6b shows that increasing the parameter KRdm does not change
the negative damping characteristics of the MMC system and even creates new risk points
in the low-frequency range. In addition, if the KRdm parameter is excessively small, the
impedance map under voltage control evolves into the open-loop impedance map. It can
be concluded that if the KRdm parameter is too small, the control becomes ineffective, which
falls outside the scope of this paper.
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The analysis above shows that the negative damping characteristics of the MMC
system are caused by the use of closed-loop control. Furthermore, systems using only PR
control pose a risk of SSOs.

3. Proposed Method for Improving the Stability of MMCS Based on Impedance Reshaping

To confirm the risk of SSOs in the MMC system caused by negative damping char-
acteristics, the current output io spectrum was simulated, and is presented in Figure 7,
by the MATLAB/Simulink platform. The harmonic analysis reveals that when circuit
control is switched from open-loop to closed-loop control, the system displays harmonics
at both 17 Hz and 83 Hz frequencies due to mirror coupling [30]. The oscillation frequency
coincides closely with the risk point frequency shown in Figure 5, confirming the accuracy
of the impedance modeling.
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To mitigate the low-frequency harmonic and prevent SSOs, this paper suggests a feed-
forward current compensation method to enhance the stability of the MMC system. Figure 8
shows the control block diagram of the proposed feed-forward current compensation. In
Figure 8, the left side is the control block diagram of the MMC system, and the right side is
the simplified plant diagram of the MMC system. This paper aims to improve the stability
of the MMC system by implementing a feed-forward control compensation path between
the output current io and the control circuit. This path suppresses harmonic currents in
the output current, reshapes the impedance, and achieves harmonic suppression in the
control loop.
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The magnitude of the output current is obtained by subtracting the upper and lower
arms U∆ and multiplying by the differential mode resistor R∆ and differential mode
inductor L∆, as illustrated in Figure 8, to obtain the output voltage ua. To output the
harmonic current back to the voltage modulation signal in the modulation circuit, the
current must first be converted into a voltage form. This process can be achieved through a
PD controller (transfer function GPD = kp + kd s).

In engineering applications, the use of PD controllers may result in high-frequency
noise amplification. To address this issue, a first-order filter is added to adjust the poles,
which works at attenuating the high-frequency noise of the differential link [31]. The value
for ω is often empirically set at 100.

The transfer function of the feed-forward control loop can be obtained and expressed
based on the analysis provided above.

Figure 9 displays the Bode plot of GPD, Gfeed, and Gfilter. A comparison between GPD
and Gfeed reveals that the addition of a low-pass filter effectively limits the high-frequency
gain of GPD to the range of Gfeed, preventing the amplification of high-frequency signals
by the transfer function. A comparison between Gfeed and Gfilter shows that the phase of
Gfeed always precedes that of Gfilter, which is crucial to the effectiveness of the proposed
feed-forward current method. Gfilter exhibits a decaying frequency response as frequency
increases, while Gfeed maintains a consistent gain across frequencies.

G f eed(s) = kp + kds
N

s + N
(10)

G f ilter(s) = kp + kd
N

s + N
(11)
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The modulation function of the proposed method using feed-forward current com-
pensation can be obtained, as shown in Figures 4 and 8.‹mp

(
s + jhω0

)
= Gvd

(
s + jhω0

)
ũa + Gic

(
s + jhω0

)
ĩcir + G f eed

(
s + jhω0

)
ĩo‹mn

(
s + jhω0

)
= − Gvd

(
s + jhω0

)
ũa + Gic

(
s + jhω0

)
ĩcir − G f eed

(
s + jhω0

)
ĩo

(12)

By substituting the modulation function (12) into Equation (A15), the impedance after
compensation using the feed-forward current is obtained. This is defined as Zo_proposed
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(s). To achieve harmonic suppression in the control loop, the design criterion for the
feed-forward compensation path is used. The values of the parameters kp and kd are then
designed concerning the differential mode resistance R∆ and differential mode inductance
L∆, which are associated with the output current io.

The parameters kp and kd are related in the following way:

kp

kd
=

R∆

L∆
(13)

The criterion for negative damping stability is also defined in Figure 5, which aids in
designing the parameters of this system:

Re[Z0(s)] > 0 (14)

To satisfy the negative damping stability criterion, the value of kp is obtained by
iteratively calculating kp, using the design criterion shown in Equations (13) and (14). The
calculated kp value is then substituted into the simulation, with a reference to IEEE standard
THD of not more than 5%, which is the main reference for the current power quality [32].
Figure 10 presents the specific iterative flowchart.
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The MMC system’s improved impedance can be acquired by replacing the obtained kp
and kd parameters in Equations (A20) and (A23).

Figure 11 shows the MMC system impedance before and after using the feed-forward
current compensation method proposed in this paper with the improved voltage loop PIR
controller proposed in the literature [33]. From Figure 11, it can be seen that although both
the method proposed in this paper and the PIR controller can suppress oscillations, the
PIR controller still has a negative damping region in the mid-frequency region, while the
method proposed in this paper can eliminate the negative damping region.
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4. Case Study and Simulation Verifications
4.1. MMC Impedance Verification

To verify the accuracy of the theoretical analysis and the performance of the proposed
impedance reshaping technique for the feed-forward current compensation of the MMC
system, an MMC system was constructed on the MATLAB/Simulink platform for time
domain simulation. The MMC system uses an exact model, and the parameter table is
listed in Appendix B. To compare the effectiveness of the proposed feed-forward current
compensation control, the consistent voltage loop parameters from the literature [33] are
selected for verification of the proposed method. Table 1 lists the voltage loop circuit
parameters.

Table 1. MMC output voltage regulator parameters.

Case Study KPdm KRdm

Case I 5 × 10−7 7.5 × 10−4

Case II 5 × 10−7 1.5 × 10−4

Figure 12 shows the impedance Bode plots for voltage control and current feed-
forward control. The symbol ‘x’ denotes the measured impedance at various frequencies,
used to verify the theoretical impedance model.

Figure 12 shows that the scanning impedance results agree with the theoretical calcula-
tions. Specifically, Figure 12a shows that Zo_close(s) intersects the grid impedance magnitude
with a phase difference greater than 180◦, and that the system is unstable.

4.2. Feed-Forward Current Compensation Control under the Control of Different Voltage
Controller Parameters

However, Zo_proposed (s) possesses the negative damping feature, which is removed
through feed-forward current compensation control to attain stability. Figure 12b shows
that the MMC intersects with the magnitude of the grid impedance, and that the phase
margin is small. Simultaneously, the MMC system exhibits negative damping properties
and may become unstable. The ensuing section verifies the aforementioned instability via
simulation.
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4.2. Feed-Forward Current Compensation Control under the Control of Different Voltage Con-
troller Parameters 

However, Zo_proposed (s) possesses the negative damping feature, which is removed 
through feed-forward current compensation control to attain stability. Figure 12b shows 
that the MMC intersects with the magnitude of the grid impedance, and that the phase 
margin is small. Simultaneously, the MMC system exhibits negative damping properties 
and may become unstable. The ensuing section verifies the aforementioned instability via 
simulation. 

Figure 13a shows the time domain simulation results of the MMC system operating 
with the parameters given in Case I of Table 1. Figure 13b,c show the output current wave-
forms of the MMC system before and after using the feed-forward current compensation 
control. The disappearance of the 17 Hz harmonic and its corresponding mirror fre-
quency, resulting in the 83 Hz harmonic, and effective suppression of the harmonics in 
the circuit can be observed in Figure 13 after the application of the feed-forward method. 
The results shown in Figure 12a demonstrate the stability of the MMC system after em-
ploying the feed-forward method. 

Figure 12. Impedance scan verification: (a) Case I parameters; (b) Case II parameters.

Figure 13a shows the time domain simulation results of the MMC system operating
with the parameters given in Case I of Table 1. Figure 13b,c show the output current wave-
forms of the MMC system before and after using the feed-forward current compensation
control. The disappearance of the 17 Hz harmonic and its corresponding mirror frequency,
resulting in the 83 Hz harmonic, and effective suppression of the harmonics in the circuit
can be observed in Figure 13 after the application of the feed-forward method. The results
shown in Figure 12a demonstrate the stability of the MMC system after employing the
feed-forward method.
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5. Experimental Verification 
For further verification of the proposed feed-forward current compensation method, 

a hardware-in-the-loop experimental platform was constructed for the MMC system with 
a standalone grid, as illustrated in Figure 15. The MMC system uses an average model, 
and the parameter table is included in Appendix B. The experimental platform comprises 
the host computer StarSim HIL Advanced 5.0.0.0, StarSim real-time simulator, input/out-
put connection, and an oscilloscope. 

Figure 13. Simulation results obtained for Case I: (a) time domain waveform; (b) enlarged oscillatory
waveform; (c) enlarged stable waveform.

The simulation results for the MMC system operating with the parameters from Case
II, as specified in Table 1, are shown in Figure 14. The system exhibits low harmonic content
due to the presence of negative attenuation characteristics. The feed-forward current
compensation control method effectively suppresses harmonics in the circuit. This finding
is consistent with the results shown in Figure 12b, which indicate that the proposed method
stabilizes the MMC system and eliminates negative damping characteristics.
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Figure 14. Simulation results obtained for Case II: (a) time domain waveform; (b) enlarged oscillatory
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5. Experimental Verification

For further verification of the proposed feed-forward current compensation method, a
hardware-in-the-loop experimental platform was constructed for the MMC system with a
standalone grid, as illustrated in Figure 15. The MMC system uses an average model, and
the parameter table is included in Appendix B. The experimental platform comprises the
host computer StarSim HIL Advanced 5.0.0.0, StarSim real-time simulator, input/output
connection, and an oscilloscope.
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output current quality, resulting in a total harmonic distortion of 46.2%, as depicted in 
Figure 17b. The use of the feed-forward current compensation method eliminates the SSO 
in the circuit after 2 s. Consequently, the current frequency in the circuit is governed by 
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Before 2 s, the circuit with parameters from Case I in Table 1 exhibits the SSO, as
demonstrated in Figure 16a. Harmonic currents within the oscillation are mainly at 16 Hz,
with the maximum current magnitude reaching 961 A. As depicted in Figure 16, these
harmonic currents lead to a 193.5% total harmonic distortion (THD) and degrade the quality
of the output current. The use of the feed-forward current compensation method mitigates
the SSO phenomenon in the circuit beyond 2 s.
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oscillating waveform; (c) enlarged view of stabilized waveform.

As seen in Figure 16, the current in the circuit is mainly at the fundamental frequency,
with a THD value of 3.7%. The SSO is observed in the circuit with the parameters of Case II
in Table 1 before 2 s, as illustrated in Figure 17a. During the oscillation, the 16 Hz harmonic
currents prevail, reaching a maximum value of 296 A, causing a deterioration in the output
current quality, resulting in a total harmonic distortion of 46.2%, as depicted in Figure 17b.
The use of the feed-forward current compensation method eliminates the SSO in the circuit
after 2 s. Consequently, the current frequency in the circuit is governed by the fundamental
frequency, resulting in a total harmonic distortion of 2.4%, as depicted in Figure 17c.
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The differences between the experimental results obtained using the StarSim hardware-
in-the-loop platform and those obtained using the MATLAB/Simulink platform can be
attributed to two main reasons. Firstly, the MMC models used on the two platforms are
different, indicating a certain level of inaccuracy in the average value model. Secondly, the
time step used on each platform differs; the StarSim HIL hardware-in-the-loop platform
uses a simulation step size of 100 us, while the MATLAB/Simulink platform is set to 10 us.

Table 2 lists the similarities and differences between the methodology proposed in this
paper and other references.

Table 2. Comparative analysis of stability methods.

Refs. Oscillation
Frequency Type Suppression Method Feed-Forward

Method

[24] High Frequency Second-order damping
controller, round controller Voltage feed-forward

[25] High Frequency
First-order low pass filter,
second-order, third-order

band pass filter
Voltage feed-forward

[26] High Frequency Amplitude attenuation /

[27] Medium and high
frequency

Combination of low-pass
and high-pass filters Voltage feed-forward

[33] Low Frequency PIR controller /

Proposed Low Frequency Improved PD controller Current feed-forward

6. Conclusions

In this study, a novel stability enhancement method based on impedance reshaping is
proposed for standalone MMC control systems. Initially, the stability of MMC controllers
using open- and closed-loop control was compared using the HSS method. Our model
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identifies the negative damping region within the MMC during voltage control. The
mutual coupling between the impedance of the MMC and the power line within this region
induces SSO. Subsequently, we propose a damping method using a current feed-forward
compensation impedance reshaping method based on the presence of 16 Hz harmonic
currents at SSO. This damping method is based on an improved proportional–derivative
controller, where the harmonic currents are fed back to the modulation signal to nullify the
harmonic currents in the output current. The impedance map results demonstrate that the
proposed method effectively eliminates the negative damping region and mitigates the
SSO. Finally, this study corroborates the validity of the theoretical analysis through time
domain simulation and hardware-in-the-loop experiments, establishing a sound basis for
the proposed stability enhancement technique.
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Abbreviations

Abbreviations Full Name
MMC modular multilevel converter
SSO subsynchronous oscillation
HSS harmonic state space
HVDC high-voltage direct current
SM submodule
DM differential mode
CM common mode
CCSC circuit current suppression control
THD total harmonic distortion

Appendix A. HSS Modeling

To start with, by the principle of small signal analysis, we linearize the set of nonlinear
differential equations that describe the basic circuit equations (Equations (3)–(6)) at the
operating point:

Equations (Equations (3)–(6)) at the operating point:

dĩo

dt
= −

R f

L f
ĩo −

mp

L f
ũΣ

cp +
mn

L f
ũΣ

cn −
2

L f
Uo −

UΣ
cp

L f
‹mp +

UΣ
cn

L f
‹mn (A1)

dĩcir
dt

= −
R f

L f
ĩcir −

mp

2L f
ũΣ

cp −
mn

2L f
ũΣ

cn −
1

2L f
‹Udc −

UΣ
cp

2L f
‹mp −

UΣ
cn

2L f
‹mn (A2)
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dũΣ
cp

dt
=

1
Carm

mp ĩcir −
1

2Carm
mp ĩo +

1
Carm

Icir‹mp −
1

2Carm
Io‹mp (A3)

dũΣ
cn

dt
=

1
Carm

mn ĩcir +
1

2Carm
mn ĩo +

1
Carm

Icir‹mn +
1

2Carm
Io‹mn (A4)

Writing Equations (A1)–(A4) into matrix form

.
x̃(t) = A(t)x̃(t) + B(t)ũ(t) + C(t)‹m(t) (A5)

A(t) =


− R f

L f
0 −mp

L f

mn
L f

0 − R f
L f

− mp
2L f

−mn
L f

− mp
2Carm

mp
Carm

0 0
mn

2Carm
mn

Carm
0 0

 (A6)

B(t) =


− 2

L f
0

0 − 1
2L f

0 0
0 0

 (A7)

C(t) =


−UΣ

cp
L f

UΣ
cn

L f

−UΣ
cp

2L f
−UΣ

cn
2L f

− Io
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Icir
Carm

Io
2Carm

Icir
Carm

 (A8)

x̃(t) = [̃io(t), ĩcir(t), ũΣ
cp(t), ũΣ

cn(t)]
T

(A9)

ũ(t) = [ũo(t), ũdc(t)]T (A10)‹m(t) = [‹mp(t),‹mn(t)]T (A11)

The time domain model is converted to the harmonic frequency domain using the
HSS method:

sx̃ = (AHSS − Q)x̃ + BHSSũ + CHSS‹m (A12)

x̃ =


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(
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)
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(
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(
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)
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)ò (A14)
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‹m =



M̃−h
...

M̃−1

M̃0

M̃1
...

M̃h


, M̃h =

ï‹mp
(
s + jhω0

)‹mn
(
s + jhω0

)ò (A15)

AHSS = Γ[A(t)] (A16)

BHSS = Γ[B(t)] (A17)

CHSS = Γ[C(t)] (A18)

Q = diag
[
−jhω0 · · · −jω0 j0 jω0 · · · jhω0

]
(A19)

Equation (A12) shows that a matrix containing the relationship between the state
variables and the input variables is constructed by the HSS method, and the corresponding
impedance values can be obtained by extracting the elements of the matrix corresponding
to the relationship.

By extracting the elements of the matrix between the state variables ĩ0 and the input
variables ũo, the corresponding AC side conductivity matrix elements can be obtained.

ĩ0 = YMMCũo

YMMC =



. . .
... . ..

Y0
(
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)
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(
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)
· · · Y1

(
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(
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)
· · ·

Y2
(
s − jω0

)
Y1(s) Y0

(
s + jω0

)
. ..

...
. . .


(A20)

ĩ0 =
î
· · · ĩ0

(
s − jω0

)
ĩ0(s) ĩ0

(
s + jω0

)
· · ·
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(A21)

ũo =
[
· · · ũo

(
s − jω0

)
ũo(s) ũo

(
s + jω0

)
· · ·

]
(A22)

Inverting Equation (A20) gives the AC side impedance matrix.

ZMMC = Y−1
MMC

=



. . .
... . ..

Z0
(
s − jω0

)
Z−1(s) Z−2

(
s + jω0

)
· · · Z1

(
s − jω0

)
Z0(s) Z−1

(
s + jω0

)
· · ·

Z2
(
s − jω0

)
Z1(s) Z0

(
s + jω0

)
. ..

...
. . .


(A23)

Appendix B. MMC Parameters

Symbol Description Value

Ugrms/kV RMS value of the ac output voltage 100
Udc/kV Dc side voltage 200
f 0/Hz Grid frequency 50
S0/kW Rated output power 100
Lf/mH Arm inductance 45
Rf/Ω Arm resistance 0.15
C/mF Capacitance of the submodule 33

N Number of the submodule in each arm 100
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Symbol Description Value

L0/mH Load impedance 318
KPdm Proportional gains 5 × 10−7

KRdm Resonance gains 7.5 × 10−4

ωv Resonance bandwidths π
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