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Abstract: This paper introduces a frequency-domain false data injection attack called Frequency
Spectrum Attack (FSA) and explores its effects on load forecasting and the energy management
system (EMS) in a microgrid. The FSA analyzes time-series signals in the frequency domain to
identify patterns in their frequency spectrum. It learns the distribution of dominant frequencies in
a dataset of healthy signals. Subsequently, it manipulates the amplitudes of dominant frequencies
within this healthy distribution, ensuring a stealthy attack against statistical analysis of the signal
spectrum. We evaluated the performance of FSA on LSTM, a state-of-the-art network for load
forecasting. The results show that FSA can triple the Mean Absolute Error (MAE) of predictions
compared to the normal case and increase it by 70% compared to noise injection attacks. Furthermore,
FSA indirectly enhances battery utilization in the EMS by 45%. We then proposed a detection method
that combines statistical analysis and machine-learning-based classification techniques with features.
The model effectively distinguishes FSA from healthy and noisy signals, achieving an accuracy of
98.7% and an F1-score of 98.1% on a load dataset, covering healthy, FSA, and noisy load data. Finally,
a countermeasure was introduced based on the statistical analysis of the frequency spectrum of
healthy signals to mitigate the impact of FSA. This countermeasure successfully reduces the MAE of
the attacked model from 0.135 to 0.053, validating its effectiveness in mitigating FSA.

Keywords: load forecasting; neural networks; microgrid; LSTM; energy management system;
cyber-attack

1. Introduction

Microgrids are localized power grids that can operate independently of the main
power grid. They are made up of renewable energy sources, storage, and demand-side
management technologies, which makes them more resilient, reliable, and flexible than
traditional power plants [1]. Within complex and ever-changing energy environments, the
significance of an energy management system (EMS) becomes paramount as it actively opti-
mizes the functioning and effectiveness of a microgrid. Load forecasting is an indispensable
component of an EMS. It empowers microgrids to plan ahead, enhance energy distribution,
manage energy resources, and maintain equilibrium between supply and demand sides.
Researchers have dedicated significant effort and attention to implementation of precise
load forecasting models. Load prediction utilizes three primary techniques: statistical
modeling, machine learning, and deep learning. Deep learning models are superior to
other techniques in predictions with high accuracy. Recent advances in computational capa-
bilities of computers have paved the way for deep learning to leverage big data and massive
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model architectures, resulting in significant improvements in load forecasting accuracy [2].
Due to their embedded memory units that store important temporal inputs, Recurrent
Neural Networks (RNNs) often outperform other deep learning architectures, such as Deep
Neural Networks (DNNs) and Convolutional Neural Networks (CNNs), when dealing with
time-series forecasting tasks [3]. The authors of [4] proposed a new method for short-term
load forecasting using a RNN. The proposed method, called MTS-RNN, combines macro-
and microinformation using continuous and discrete time series to generate multiple time
series (MTS). The MTS are then used to train the RNN model, which can learn sequential
information between continuous and discrete series. Nevertheless, RNNs may encounter
challenges in grasping long-term dependencies within data, stemming from vanishing and
exploding gradient problems. As a result, they may not be well-suited for tasks demanding
the representation of extended patterns, such as forecasting electrical load data. Long
Short-Term Memory (LSTM) networks are introduced to tackle this issue [5]. While neural
networks generally outperform other approaches in various tasks due to their remarkable
ability to address highly complex problems in prediction and image classification, their
stability under certain circumstances is still a subject of investigation in some studies [6].
Despite their excellent performance in output prediction, recent studies have revealed that
deep learning models are more vulnerable than other prediction methods to cyber-security
threats [7,8].

Recently, researchers have developed several cyber-attacks on deep learning prediction
models and investigated their impacts on the models’ performance. Adversarial attacks [9],
data integrity attacks [10], and false data injection attacks [11] are some examples of cyber-
attacks on machine learning and deep learning models.

Adversarial attacks are one type of malicious attempt to manipulate inputs to a
machine learning model in order to cause it to make incorrect predictions or otherwise
degrade the model performance. It is achieved by deliberately adding small perturbations
to the input data, which are often imperceptible to humans’ eyes but can cause the model
to misclassify the data [12]. Fast Gradient Sign Method (FGSM) [12] and Projected Gradient
Descent (PGD) [13] are two significant adversarial attacks. Although adversarial attacks
can leave serious degradation impacts in the performance of predictive models, they pose
some drawbacks for real-world applications. Crafting adversarial examples can cause
a high computational cost for adversaries, especially with respect to complex models
or large datasets [14]. In order to launch effective attacks, adversaries must have full
knowledge of the targeted model’s structure and trained parameters. However, this level of
access is often not feasible in real-world situations, making white-box attacks less practical.
Although some research has shown that crafted adversarial examples can be transferred
into unknown models, the transferability feature is not fully guaranteed [15]. False data
injection attacks (FDIAs) are a significant class of machine learning attacks where malicious
actors inject fabricated or manipulated data into the training dataset to compromise the
model’s accuracy and performance. Scaling, pulse, ramping, and random attacks are
some of the popular FDIAs in the power system load forecasting domain [16,17]. The
authors of [18] presented Scaling and Delay Attacks to compromise price information sent
to consumers from smart meters and studied their impact on the power system. A scaling
factor is introduced to falsify the advertised price on smart meters. The price signal is
also corrupted by the false timing information that sends the old price to customers. The
authors of [19] developed a detection procedure using sensitivity analysis to track the
Scaling and Delay Attack. They also proposed a countermeasure by designing a robust
control algorithm and detecting anomalies in the behavior of the system. Signal ramping
is another example of a FDIA. The ramp attack is generated by adding positive values
from a uniform random function to the true measurements. Studies have shown that
ramp attacks are capable of compromising the performance of power systems by reducing
frequency balance. Statistical and temporal characterization of the Area Control Error
(ACE), generator corrections based on frequency and tie line power flow measurements, is
a pivotal approach to detect and mitigate ramp attacks [16].
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Despite their simplicity and ease of implementation, the aforementioned FDIAs exhibit
limitations in terms of lack of diversity and vulnerability to defense techniques. Scaling
attacks commonly center on uniformly perturbing input features using a constant factor,
which restricts the diversity of the resulting adversarial examples. As a consequence, these
attacks may exhibit reduced efficacy against specific model architectures or data distribu-
tions. Various defense strategies, including adversarial training and input preprocessing,
can substantially reduce the potency of scaling attacks [20,21]. Consequently, models
fortified with these defenses are less susceptible to the impact of such attacks.

FDIAs in the literature are diagnosed through the employment of common statistical
and time-series analysis. Since FDIAs are implemented in the time domain, frequency-
domain analysis of the corrupted data can easily unveil the malicious activities on data.
This paper extends the Frequency Spectrum Attack (FSA), briefly introduced in [22]. It
enhances the attack’s stealthiness attribute by transforming time series into a frequency
domain, thereby reducing the chances of detection and mitigation by spectrum analysis.
The contributions of this paper are below:

1- The proposed FSA is extended that transforms the load data into the frequency domain
and manipulates the amplitudes of dominant frequencies while keeping them in the
statistical range of healthy amplitudes to not only cause a huge prediction error but
also enhance stealth of the proposed FSA.

2- FSA is tested on a deep LSTM model to investigate the effectiveness of FSA on the
state-of-the-art deep learning model for time-series forecasting. The impact of the
attacked LSTM on the EMS’s output of a microgrid is studied as well.

3- A detection method is proposed, which integrates statistical analysis of the crafted
attack and a machine-learning-based classification model to effectively detect the FSA
and distinguish it from healthy and noisy signals.

4- A countermeasure is introduced, based on statistical analysis of the frequency spec-
trum of healthy signals, to mitigate the impact of FSA on load forecasting.

This approach involves attacking the amplitudes of dominant frequencies of the
original data, carefully chosen within a defined range, instead of generating new frequencies
like delay or ramp attacks. As a result, the manipulated data remains undetectable through
an investigation of the frequency spectrum of compromised data.

2. Frequency Spectrum Attack
2.1. FSA Principles

In this paper, we introduce Frequency Spectrum Attack (FSA), a novel technique
performed in the frequency domain. Our approach revolves around investigating the
time-dependent behavior of data in the frequency domain through spectral analysis using
the Fast Fourier Transform (FFT) technique. By identifying and extracting dominant
frequencies with the highest significance, we strategically manipulate their amplitudes to
induce substantial, yet undetectable, changes in the original signal’s profile, yet leading
to significant signal degradation. Notably, we purposely avoided the manipulation of
frequencies, as they are susceptible to detection through spectral analysis tests by grid
operators. Our focus on amplitude manipulation ensures that the crafted attack remains
stealthy and evades detection, augmenting its potency in compromising the targeted system.
Figure 1 elucidates the simple principles of the proposed FSA on a time-series signal.

F1 and F2 in Figure 1 are the two dominant frequencies of this specific spectrum. The
frequency-attack block consists of three elements. First, the frequency spectrum of the
signal is obtained by performing FFT on the original data. In the next step, dominant
frequencies, Fis, are extracted and, depending on the adversary’s desire, amplitudes of
certain Fis, (YH

Fi
s), are manipulated. The superscript H refers to the healthy or original data.

Next, corrupted amplitudes (YFSA
Fi

s) are achieved by multiplication of YH
Fi

s and random
scaling factors (αis),YFSA

Fi
= αi ×YH

Fi
. The superscript FSA refers to the corrupted data. αis
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values are selected within specific ranges derived from statistical analysis of the frequency
spectrum of the healthy dataset.

Figure 1. The schematic of the proposed FSA operation.

Lastly, the fabricated time-series dataset is reconstructed by performing Inverse Fast
Fourier Transformation (IFFT) on the fabricated spectrum. The adversary must ensure
that the crafted attack remains undetectable and the constructed signal does not differ
significantly from the original signal. Otherwise, the attack will be trivial and easy to detect.
Therefore, the adversary must set some criteria on selection of YFi with the aid of statistical
analysis of the healthy dataset. In this case, the knowledge of the historical information and
the physical attributes of the signal/data can help in generating undetectable attacks. For
instance, the peak-to-peak amplitude of the attacked signal should not be much larger or
much smaller than the original one to draw grid operator attention. Similarly, depending on
the nature of the signal, some values are not permissible, e.g., a negative value for a current
signal. In this paper, we adopted the adversary’s perspective to assess the robustness of the
systems. In the next section, we used load time series to further elaborate FSA principles
on real-world data and test its performance on a LSTM model as state-of-the-art technology
in load forecasting.

2.2. LSTM-Based Load Forecasting

In this paper we applied the proposed FSA method to a load forecasting unit as
an EMS component in an islanded microgrid fully presented in our previous work [23].
The objective of this section is to examine the detrimental impact of a crafted FSA on the
performance of the power load forecasting unit. For this purpose, we employed LSTM
networks, an advanced machine learning technology, as the load forecasting unit to test
their resilience against the proposed attack technique.

The load dataset for training, testing, and validation was taken from The New York
Independent System Operator [24], from 1 January 2020 to 1 January 2021. A time interval
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of five minutes was utilized for recording the load data points. The dataset load demand for
a year is shown in Figure 2. The dataset is partitioned into three subsets: training, testing,
and validation sets. The training set comprises data from 1 January 2020 to 5 October
2020, totaling 80,000 data points. For the validation and test subsets, data from 6 October
2020 to 14 December 2020 (20,000 data points) and 15 December 2020 to 26 December 2020
(1500 data points) are respectively defined.

Figure 2. The one-year cleaned load profile [23].

To investigate the strength of the proposed attack, we utilized a deep LSTM network
that we presented in [23]. Figure 3 shows the architecture of the deep LSTM model in [23].
The model architecture consists of one input layer, followed by two hidden LSTM layers.
Additionally, two Dropout layers are inserted at the end of each LSTM layer to prevent
overfitting. Finally, a fully connected feed-forward dense layer is added at the end of the
second hidden layer. The performance of the trained LSTM model is evaluated using the
validation loss measure.

Figure 3. The architecture of the deep LSTM model [23].

Readers are encouraged to refer to [23] for more information about the model’s archi-
tecture and optimal hyperparameters. The input to the LSTM model consists of a four-day
load profile, comprising 1152 data points, while the output is a five-hour load predic-
tion in the future, encompassing 60 data points. Figure 4 displays a selection of random
DC-removed load profiles extracted from the original load dataset.
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Figure 4. Snapshot of a selection of random DC-removed load data samples.

3. FSA Implementation

As stated in Section 2.1, our objective is to maintain the attack’s stealthiness while
inflicting a substantial impact on the system’s performance. We need to manipulate YH

F1

and YH
F2

in a way that makes a stealthy attack. To achieve a stealthy attack, we initiate the
process by conducting Exploratory Data Analysis (EDA) on the healthy LSTM input data.
During this procedure, we thoroughly investigate the distributions YH

F1
and YH

F2
pertaining

to the healthy LSTM inputs. The distributions of normalized YH
F1

and YH
F2

are displayed in
Figure 5. For each LSTM batch, amplitudes are normalized using the maximum amplitude
in frequency spectrum of that batch.

Figure 5. Distribution of dominant frequencies’ amplitudes (YH
Fi

s) of healthy dataset.
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Now, if YFSA
Fi

falls within the healthy range of [Min(YH
Fi
), Max(YH

Fi
)] the crafted attack

will be considered statistically undetectable. Based on Figure 5, values of [Min(YH
F1
),

Max(YH
F1
)] and [Min(YH

F2
), Max(YH

F2
)] are [0.02, 0.11] and [0.01, 0.06], respectively. YFSA

Fi

falls within the healthy range of [Min(YH
Fi
), Max(YH

Fi
)].

In this section, we evaluate the effectiveness of the proposed FSA on the state-of-the-
art time-series forecasting technology, LSTM networks, using a real time-series dataset.
Algorithm 1 demonstrates the principles of FSA. First, we obtain [Min(YH

Fi
), Max(YH

Fi
)]

values where i = 1, 2, through an initialization process. Next, a variance range for cor-
rupted data is assumed: [Min(YFSA

Fi
), Max(YFSA

Fi
)], such that [Min(YFSA

Fi
), Max(YFSA

Fi
)] ∈

[Min(YH
Fi
), Max(YH

Fi
)]. This constraint guarantees the stealthiness of the FSA in frequency

spectrum analysis. Min(YFSA
Fi

) and Max(YFSA
Fi

) values are eventually optimized using a
Genetic Algorithm (GA) to achieve the FSA range that causes the maximum MAE in LSTM
prediction. The scaling factor variation range is selected as αI = [Max(YFSA

Fi
)/Min(YH

Fi
),

Min(YFSA
Fi

)/Max(YH
Fi
)]. Then, the healthy time-series data are transformed by FFT into

the frequency domain and the amplitude of the spectrum (YH
F ) is recorded. In the next

step, the healthy amplitude of the dominant frequency, YH
Fi

, is recorded. Subsequently, the
corrupted amplitude of the dominant frequency, YFSA

Fi
, is generated by multiplying YH

Fi

with a randomly selected value of αi from the αI range. If YFSA
Fi

does not fall within the
healthy range of YH

Fi
, a new random αi must be generated and the process continues until

the constraint is satisfied. As mentioned earlier, the first two dominant frequencies, F1 and
F2, are selected in this study. After GA optimization with all LSTM time-series batches,
optimized αI ranges for F1 and F2 become [0.9, 9] and [0.9, 8], respectively.

Algorithm 1 FSA Implementation

1: for number of Fis do ▷ i = 1, 2 in this study.
2: Initialization:
3: Obtain [Min(YH

Fi
), Max(YH

Fi
)]

4: Assume Min(YFSA
Fi

) and Max(YFSA
Fi

) such that: [Min(YFSA
Fi

), Max(YFSA
Fi

)] ∈
[Min(YH

Fi
), Max(YH

Fi
)]

5: Define αi range:

αI = [Max(YFSA
Fi

)/Min(YH
Fi
), Min(YFSA

Fi
)/Max(YH

Fi
)].

6: Get time-series: XH
t .

7: YH
F ← Amp(FFT(XH

t ))

8: Find YH
Fi

by sorting YH
F components.

9: Randomly select an αi from αI
10: YFSA

Fi
← αi ∗YH

Fi

11: while YFSA
Fi

/∈ [Min(YH
Fi
), Max(YH

Fi
)] do Go to line 9 again.

12: end while
13: end for
14: XFSA

t ← IFFT(YFSA
F )

Some examples of the FSA impact on the LSTM input are shown in Figure 6. As
Figure 6 illustrates, some features are noticeable from the proposed attack. Due to the
specific optimized αI achieved in this work, the fabricated data can be categorized into
three different types. The categories can be different depending on αI ranges: (a) higher
amplitude of F1 for the FSA signal compared to the healthy signal and similar F2 amplitudes,
YFSA

F1
> YH

F1
, YFSA

F2
≃ YH

F2
, (Figure 6a); (b) the approximately equal amplitudes of F1 and F2

in the FSA and healthy signals, YFSA
F1
≃ YH

F1
, YFSA

F2
≃ YH

F2
, (Figure 6b); (c) 3-higher amplitude

of F2 for the FSA signal compared to the healthy signal and the similar F1 amplitudes,



Energies 2024, 17, 868 8 of 19

YFSA
F2

> YH
F2

, YFSA
F1
≃ YH

F1
, (Figure 6c). Identifying this attack poses a formidable challenge

due to its intrinsic nondeterministic nature, setting it apart from other FDIA types like
scaling and ramping attacks.

Figure 6. Examples of the results of FSA on LSTM time-series inputs.

3.1. FSA Results on Load Prediction

The efficacy of FSA is assessed using a trained LSTM model with a test set of 400 input
batches. Each batch of healthy input data is subjected to the attack and then fed into the
LSTM model. Mean Absolute Error (MAE) per individual recording serves as an evaluative
metric for the LSTM model’s performance assessment. For a comprehensive grasp of FSA’s
impact, its performance is juxtaposed against scenarios of no attack and noise injection
attack. The noise injection attack (SNR = 6–20 dB) is applied to the same LSTM model with
the same dataset proposed in [25].

Table 1 presents a comprehensive performance comparison between the proposed
FSA and noise injection attack, an alternative FDIA attack. The MAE outcome attributable
to the noise injection attack, as documented in [25], is derived from the mean of MAEs
resulting from noise attacks at SNR levels of 6–20 dB. The superiority of the proposed FSA
manifests in two distinct facets. Firstly, the MAE induced by FSA surpasses the noise attack
MAE by approximately 70%. Secondly, while expounded in [25], the noise attack is easy
to detect through FFT and frequency spectrum analysis. However, the proposed FSA is
stealthy and cannot be detected through FFT or removed by filtering.

Table 1. The Frequency Spectrum Attack performance.

Scenario Mean Absolute Error (MAE) Per
Recording [MWatt]

No attack 0.046
Noise injection attack [25] 0.079

Our proposed FSA 0.135
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3.2. FSA Results on EMS and Microgrid

This section delves into the implications of FSA for an Energy Management System
(EMS) integrated with an islanded microgrid. The microgrid configuration for this case
study is depicted in Figure 7, illustrating its schematic model. The microgrid architecture
encompasses two generators, a battery storage unit, and connected loads to a common
AC Bus. The PV system is configured to generate a maximum of 600 kW. An MPPT unit
regulates the solar panel output to function at the desired voltage, ensuring the attainment
of maximum available power. An 8 MWh lithium-ion (Li-Ion) battery and a bi-directional
D2D converter are connected to the BESS to manage the battery’s charging/discharging
states. Within the inverter block of the battery, a droop controller with virtual inertia is
integrated, sourced from [26]. The virtual inertia proves valuable in situations of abrupt
voltage or frequency changes. This research operates based on the assumption of an
ideal microgrid, wherein controllers can adeptly trace and correct inputs, even when
facing sudden variations. As a result, the microgrid’s frequency remains consistently
stable, unaffected by the controllers’ input adjustments. Figuratively, the system layout,
incorporating the load forecaster, EMS, and islanded microgrid, under the FSA attack, is
illustrated in Figure 8.

Figure 7. Case study islanded microgrid.

Figure 8. The schematic of a microgrid EMS under Frequency Spectrum Attack.

The comprehensive descriptions of the EMS and the microgrid are meticulously
elaborated in [23]. The EMS operates with the purpose of optimizing battery usage within
the microgrid system. By determining the optimal points for the Battery Energy Storage
Systems (BESS) and Generator Sets (GenSets) for the battery’s inverter and generator
controllers, the EMS algorithm seeks to minimize battery utilization effectively. Employing
a mixed-integer linear optimization framework with nonlinear constraints, as expounded
in [23], the EMS is a sophisticated technique.
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The proposed optimization method calculates the 5 h power profiles for the battery
(PB) and generator (PGen) over the forthcoming 5 h, grounded in predictive power load
(PL) and solar energy (Ppv) production. Throughout this study, it is assumed that the solar
power profile remains constant across consecutive years. Consequently, if solar data from
a single year is at hand, solar power projection becomes unnecessary. The solar resource
data originates from the National Renewable Energy Laboratory (NREL) database, as
documented in [27].

The majority of cyber-attacks directed at power grids are aimed at the infrastructure
itself, with the intention of causing regional shutdowns or blackouts. These attacks inflict
substantial damage on the power system, often being swiftly detected and addressed.
However, there are situations in which adversaries opt to target the electricity market,
manipulating it to favor a specific market player over others. These security challenges
are analogous to scenarios encountered in the stock market. Analogous to how stock
prices of companies in the same industry often move in tandem due to shared market
conditions, the electricity market operates under similar principles. Changes in electricity
demand and supply can influence power flow and bidding, potentially favoring particular
power generation companies. Though not as overtly destructive as the aforementioned
cyber-attacks, these market-oriented attacks result in substantial financial losses within the
electricity market, amounting to millions of dollars. A discriminatory electricity market not
only skews the market against individual participants but can eventually lead to escalated
electricity rates. In this context, Figure 6 illustrates an example of a manipulated load profile
that escapes detection via conventional methods or power grid sensors and relays. Such
attacks underscore the necessity of innovative approaches to detect, isolate, and manage
unconventional attacks like FSA within emerging markets, including the electricity market.
This is crucial to ensure fair competition within competitive markets and to uphold the
integrity of future markets.

Figure 9 illustrates the impact of FSA on the EMS outputs. We observe harder fluc-
tuations in PGen under FSA than a no-attack normal condition. More importantly, the
average battery utilization (1/N ∑N

i=1 abs(PH or FSA
B ), where N is the LSTM input length)

has increased almost 45% under FSA compared to the healthy condition. As the goal of
the EMS system was to minimize the battery’s usage, the increment in battery utilization
caused by FSA deteriorates the EMS performance.

Figure 9. FSA results on PB and PGen.

Figure 10 depicts the frequency deviation in the case study model microgrid for a
healthy system and a system under FSA attack. It is shown that the attack has been managed
such that the generator does not go to the overload mode. Also, the load deviation is smooth
and there is no sudden deviation in demand, so the frequency relays wont take any action.
The generator control is set to maintain the frequency deviation of less than five percent for
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normal load deviation. It is shown that frequency deviation under FSA attack still remains
less than the standard threshold which is undetectable for frequency sensors.

Figure 10. Frequency deviations in case study microgrid.

4. FSA Detection

As we showed, the proposed FSA is a powerful and stealthy attack that can signifi-
cantly reduce the performance of the load prediction model. Thus, it is of great importance
to propose a detection method to accurately detect and isolate FSA attack. In this paper, we
examined machine learning classification techniques to propose an efficient classifier to
distinguish faulty load data from healthy data. To consider a more realistic and complicated
scenario, we assumed that noise attack may also occur. Thus, the model is trained with
three types of data including healthy, FSA, and noisy load data. This section is divided into
two parts: (a) An explanatory data analysis is conducted on a dataset including healthy,
FSA, and noisy load data to extract the useful features for the classification. (b) Based on
the selected features in the first part, an efficient classifier is presented by comparing three
machine learning classification models to detect and separate the FSA data from healthy
and noise-attack data.

4.1. Explanatory Data Analysis of FSA and Statistical Modeling

In this section, we investigated the relationships between the FSA, healthy, and noise-
attack inputs. Descriptive statistical measures such as mean, standard deviation (STD),
interquartile range (IQR), and kurtosis are employed to reveal remarkable information
about the dispersion of inputs in these datasets. Later, the significant statistical measures
are extracted and selected as features in the classification modeling. The one-year load
dataset is divided into 1648 batches of data, each includes 1152 records (4-day load data),
as LSTM inputs. Then, FSA and noise attack are applied to these batches. Figure 11 shows
the standard deviation distribution of FSA, noise-attack, and healthy LSTM input batches.

As Figure 11 illustrates, the STD distributions are right-skewed with high variability.
Reciprocal Square Root Transformation, (1/

√
X), is applied to LSTM inputs’ data to

normalize the skewness of the STDs’ distribution and stabilize its variability. Figure 12
depicts the distributions of the STDs after the inputs’ transformation. Figure 13, Figure 14,
and Figure 15 show the kurtosis, IQR/µ, and mean distributions, respectively.
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Figure 11. STD distribution of the healthy, FSA, and noise-attack inputs.

Figure 12. STD distribution of the healthy, FSA, and noise-attack transformed inputs.

Figure 13. Kurtosis.
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Figure 14. Interquartile range.

Figure 15. Mean.

Pearson correlation is a significant tool in data statistical analysis to measure the linear
association between two continuous variables. The Pearson correlation coefficient identifies
the intensity and direction of the relationship between the variables. This coefficient
operates on a scale from −1 to +1, where values closer to −1 or +1 signify a pronounced
negative or positive correlation, respectively. A correlation value of 0 implies the absence
of a linear relationship.

From Table 2, we observe that STD makes the strongest relationship with the outcome
(input label). As expected, some of these measures possess strong linear relationships such
as IQR and STD, STD and kurtosis. Next, we applied a multilevel logistic regression model
to uncover the relationships between the features and the LSTM input label. Multilevel
logistic regression is widely used to analyze binary/nonbinary or categorical dependent
variables. The Generalized Linear Model (GLM) from the Python Statsmodels library is
utilized to investigate the significance of each feature. LSTM input batches are labeled as
0, 1, and 2 representing the healthy, FSA, and noise-attack inputs, respectively. Table 3
presents the coefficient and statistical results of GLM regression, which include the standard
error, z-score, p-value, and 95% confidence intervals (CIs) based on hypothesis testing.
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Table 2. The correlation matrix for statistical measures.

STD Kurtosis IQR Mean Input Label

STD 1 0.825 0.931 0.049 0.961
Kurtosis 0.825 1 0.756 −0.009 0.795

IQR 0.931 0.756 1 −0.098 0.945
Mean 0.049 −0.009 −0.098 1 −0.001

Input label 0.961 0.795 0.945 −0.001 1

Table 3. Generalized Linear Model regression results.

Coefficient Standard z P > |z| [0.025–0.975]
Error @%95 CI

Intercept −0.6620 0.048 −13.750 0.000 (−0.756, −0.568)
STD 6.5243 0.139 46.902 0.000 (6.252, 6.797)

Kurtosis 0.0592 0.010 5.847 0.000 (0.039, 0.079)
IQR 3.5019 0.090 38.933 0.000 (3.326, 3.678)

Mean 0.1290 0.049 2.656 0.008 (0.034, 0.224)

Table 3 illustrates the significance of different statistical variables to the output variable
(LSTM input type). The results indicate that STD and kurtosis make the most and the least
significant relationships with the output variable, respectively.

4.2. ML-Based Attack Detection

In this section, we propose an accurate machine-learning-based attack detection
model with the help of the features extracted in the statistical modeling process. The
block diagram of the proposed machine learning-based attack detector is demonstrated
in Figure 16. One-year load data is split into 1648 time series each representing 4-day
load data (1152 recordings). FSA and noise attack are applied to the time series, and the
results are stacked together with healthy load data to generate a dataset for statistical
analysis. In the statistical analysis process, four statistical measures, STD, mean, kurto-
sis, and normalized IQR, are determined for each time series. The time-series statuses
are labeled as 0, 1, and 2 representing the healthy, FSA, and noise-attack inputs, respec-
tively, as the dataset’s labels. In the preprocessing part, the dataset is normalized using
MinMaxScaler from the Sklearn library, and split into train and test sets with a ratio of
0.2. To improve the performance and generalization ability of the classification model,
and to mitigate the chance of over-fitting, fivefold cross-validation is conducted. In sum-
mary, the original dataset is randomly divided into five subsets of roughly equal size,
with each subset called a fold. The model is trained on four of the folds, referred to as
the training set, while the remaining fold is used as the validation set to evaluate the
model’s performance. The performance metrics obtained in each iteration are averaged
to provide an overall assessment of the model’s performance. Then, the data are fed into
a classification model. Finally, the trained classifier is evaluated on an unseen testing set.
To find a high-performance model, a number of machine learning classifiers including
logistic regression, naive Bayes, and random forest classifiers are tested with five sets
of features’ combination. The five sets of features’ combination are: F1 = [STD, mean],
F2 = [STD, normalized IQR], F3 = [STD, mean, kurtosis], F4 = [STD, mean, normalized
IQR], and F5 = [STD, mean, normalized IQR, kurtosis]. Table 4 compares the performance
of the proposed classification models using different feature sets. To build a fair comparison
between the models and between the different feature sets, hyperparameters of random
forest models are tuned for each feature set to achieve the best results. The GridSearchCV
function from the Sklearn library is employed to achieve the best random forest results.
Hyperparameters are listed as Number of Trees (NT): [20, 50, 100], Maximum Depth (MD)
of each tree: [5, 10, 20], and criterion: [entropy, gini]. In Table 4, the first and the second
elements in round brackets are optimal NT and optimal MD, respectively. In this case, the
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random forest model with NT = 50, MD = 20, and the feature set of F4 gives the best overall
performance with accuracy and F1-score of 98.7% and 98.1%, respectively.

Figure 16. The block diagram of the machine-learning-based attack detection.

Table 4. Machine learning classification models’ performance with different feature sets.

ML Model Features Set F1-Score Acc

Logistic Regression F1 0.95 0.9676
Logistic Regression F2 0.97 0.98
Logistic Regression F3 0.954 0.968
Logistic Regression F4 0.97 0.98
Logistic Regression F5 0.972 0.981
Naive Bayes F1 0.96 0.973
Naive Bayes F2 0.973 0.982
Naive Bayes F3 0.961 0.974
Naive Bayes F4 0.973 0.982
Naive Bayes F5 0.975 0.983
Random Forest (50, 10) F1 0.957 0.97
Random Forest (50, 5) F2 0.973 0.982
Random Forest (50, 20) F3 0.963 0.975
Random Forest (50, 20) F4 0.981 0.987
Random Forest (50, 10) F5 0.978 0.985

5. FSA Defense

Adversarial detection against machine learning attacks is a hot research area aimed at
introducing techniques to identify and mitigate adversarial examples that can deceive or
deteriorate the performance of machine learning models. In this section, we introduce a
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robust statistical-based defense method to mitigate the harmful impact of FSA. First, we
utilize the machine-learning-based attack detection introduced in Section 4.2 to distinguish
healthy data from FSA data. Healthy data is directly fed into the LSTM forecaster, while the
detected FSA input enters a robust statistical-based defense unit to perform sanitation. The
defense unit replaces the amplitudes of F1 and F2 in the attacked spectrum with randomly
selected amplitudes of F1 and F2 from the healthy spectrum with a high likelihood of
occurrences.

Algorithm 2 presents a step-by-step explanation of the proposed defense method
against FSA and noise attack. First, LSTM time-series input data is fed into the defense
algorithm. The standard deviation, mean, and normalized IQR of data are obtained
through descriptive statistical analysis. In the next step, the extracted features are fed into
the optimal classifier, random forest (50, 20), for attack diagnosis. If the classifier detects
an FSA, the Fourier Transformer calculates YFSA

F1
and YFSA

F2
. Then, the defense algorithm

replaces the unknown YFSA
F1

and YFSA
F2

with randomly selected known YH
F1

and YH
F2

values
with a high likelihood of occurrence. Based on Central Limit Theory (CLT), by considering
a large sample size, we assume that YH

F1
and YH

F2
distributions are approximately normal.

In that case, the highest likelihood of occurrence belongs to mean value (µ). YH
F1

and
YH

F2
are drawn randomly from sets of (µH

F1
− α ∗ SEH

F1
, µH

F1
+ α ∗ SEH

F1
) and (µH

F2
− α ∗ SEH

F2
,

µH
F2
+ α ∗ SEH

F2
), respectively, where SE denotes the standard error of the original distribution

and α is a sampling coefficient. A smaller α denotes a tighter distribution. Finally, if the
classifier output is labeled as noise attack, the noise-cancellation model presented in [25]
will be applied. Otherwise, the input data remains unchanged and directly moves into
the LSTM network. To find the optimal range of sampling, α is tuned and MAEs of load
prediction of different α are compared to find the α that makes the minimum MAE. Table 5
elucidates the impact of different α on the proposed defense algorithm performance by
monitoring the MAE of the LSTM forecaster. Based on Table 5, Defense 3 is the optimal
defense model that minimizes the MAE of load prediction.

Table 5. Effect of sampling coefficient α on MAEPR.

Defense Model Sampling Range MAEPR

Defense 1 µ± SE 0.058
Defense 2 µ± 0.5 ∗ SE 0.054
Defense 3 µ ± 0.25 ∗ SE 0.053
Defense 4 µ± 0.15 ∗ SE 0.054

Algorithm 2 Defense Algorithm

1: Insert time-series input data.
2: Carry out descriptive statistical analysis to extract inputs for attack detection classifier.
3: Feed extracted features: STD, normalized IQR, mean into classifier.
4: Run optimal classifier. ▷ the output is either healthy, FSA, or noise-attack signals.
5: if FSA then
6: Take FFT of LSTM input.
7: Replace YFSA

F1
and YFSA

F2
by randomly selected YH

F1
and YH

F2
with high likelihood of

occurrence.
8: transform data input t-domain by IFFT.
9: else if Noise-attack then

10: Apply the noise cancellation technique introduced in [25].
11: else if Healthy then pass.
12: end if

Figure 17 shows the defense strategy impact on the EMS outputs, PB and PGen. The
results represent the role of the proposed defense method in battery utilization enhance-
ment. The PB output of the defended model fluctuates considerably less than the PB under
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FSA. The battery utilization has reduced by 23% and 60.5% compared to its values in
healthy and FSA conditions, respectively. It clearly shows the effectiveness of the proposed
defense algorithm as the goal of the EMS optimizer was to minimize the battery’s usage,
the defense strategy.

Figure 17. Defence results on PB and PGen.

6. Conclusions

In this paper we presented a black-box FSA and investigated its effects on load
forecasting and energy management within an islanded microgrid. FSA leveraged Fast
Fourier Transform to convert load data into the frequency domain, extracting crucial
patterns during the learning phase. By strategically manipulating specific frequencies’
amplitudes within a designated range, FSA maintained its stealthy nature and evaded
detection by statistical analysis methods. The evaluation of FSA’s effectiveness on a state-of-
the-art deep LSTM network for time-series forecasting revealed a threefold increase in the
MAE of load forecasting compared to normal conditions and a 70% increase compared to
noise-injection attacks. Moreover, FSA indirectly augmented battery utilization in the EMS
by 37.5%. Furthermore, the study demonstrated that FSA successfully eluded frequency
monitoring and control units within the microgrid, concealing frequency deviations. To
address FSA, a detection method was proposed, integrating statistical analysis and an
optimal machine-learning-based classification model with diverse features. This model
exhibited high accuracy (98.7%) and an F1-score of 98.1% in distinguishing FSA from
healthy and noisy signals on the test set encompassing various load data. Eventually, a
countermeasure was introduced, relying on statistical analysis of the frequency spectrum
of healthy datasets, effectively reducing the MAE of the model under FSA from 0.135 to
0.053. This demonstrated the countermeasure’s efficacy in mitigating the adverse impact of
FSA on load forecasting.
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Abbreviations
The following abbreviations are used in this manuscript:

FSA Frequency Spectrum Attack
FFT Fast Fourier Transformation
IFFT Inverse Fast Fourier Transformation
LSTM Long Short-Term Memory
MAE Mean Absolute Error
EMS Energy management system
RNN Recurrent Neural Network
DNN Deep Neural Network
CNN Convolutional Neural Network
MTS Multiple time series
FGSM Fast Gradient Sign Method
PGD Projected Gradient Descent
FDIA False data injection attack
ACE Area Control Error
EDA Exploratory Data Analysis
GA Genetic Algorithm
SNR Signal-to-noise ratio
NREL National Renewable Energy Laboratory
STD Standard deviation
IQR Interquartile range
GLM Generalized Linear Model
CI confidence interval
NT Number of Trees
MD Maximum Depth of each tree
CLT Central Limit Theory
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