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Abstract: Modular multilevel converters (MMCs) with integrated battery energy storage systems
(BESSs) are becoming crucial for modern power grids. This paper investigates the modeling and
control of a grid-connected MMC-BESS, with a specific emphasis on state-of-charge (SoC) balanc-
ing. Compared to conventional hard arm SoC balancing control (HASBC), this paper proposes an
alternative soft arm SoC balancing control (SASBC). The simulation results and analysis indicate the
following: 1. SASBC provides superior performance in achieving SoC balance both between and
within the arms, as compared to HASBC. 2. The MMC-BESS power fluctuates between phases, arms,
and individual submodules to balance the SoC of batteries. After the accomplishment of SoC equal-
ization, the power is equally distributed, and the circulating current is well eliminated. 3. MMC-BESS
can operate in both the charging and discharging modes, and the total harmonic distortion (THD) of
the output current is reduced from 6.80% to 1.13% after SoC balancing is achieved. 4. A robustness
test shows the control system’s effective performance in handling component variations.

Keywords: modular multilevel converter (MMC); battery energy storage system (BESS); soft arm SoC
balancing control; hard arm SoC balancing control; SoC balancing control; circulating current control

1. Introduction

According to the International Electrotechnical Commission (IEC), the share of renew-
able energy in the global power sector will reach 8108 TWh in the year 2025, representing a
100% increase compared to 2009. The increasing penetration of renewable energy sources
has led to a growing need for grid modernization and upgrading the infrastructure to
accommodate higher levels of renewable generation. One crucial aspect of grid moderniza-
tion is addressing increasing voltage level requirements [1]. Consequently, the demand for
a high-performance, scalable multilevel converter becomes inevitable to efficiently convert
power from renewable energy sources to the grid while supporting the transmission of
renewable energy over longer distances and reducing transmission losses [2,3]. Battery
energy storage systems (BESSs) are progressively utilized to balance the variable generation
of renewable energy sources and provide grid stability and flexibility while integrating
larger amounts of renewable generation. BESSs need to be interfaced with the grid by uti-
lizing advanced power electronics and control systems to enhance flexibility, grid stability,
and reliable power flow [4,5]. A modular multilevel converter (MMC) is a recent advanced
high-power electronic device that is utilized to convert electrical energy between DC and
AC [6]. The MMC is flexible to scale up or down to meet the power requirements of the
system, and it is advantageous for constant balancing generation and load, high system
reliability and efficiency, and stable control performance compared to traditional power

Energies 2024, 17, 740. https://doi.org/10.3390/en17030740 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en17030740
https://doi.org/10.3390/en17030740
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-9780-3739
https://orcid.org/0000-0002-9727-7844
https://orcid.org/0000-0002-8475-0305
https://orcid.org/0000-0002-8650-7341
https://doi.org/10.3390/en17030740
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en17030740?type=check_update&version=1


Energies 2024, 17, 740 2 of 24

converters [7]. Therefore, it is prospective to embed a BESS into an MMC and integrate
with the grid to support a more sustainable, reliable, and resilient modern grid.

Some of the recent literature has made contributions to the applications of the MMC-
BESS system. It is reported that the MMC system with distributed battery sources has
higher efficiency, reliability, and versatility compared to the MMC with a centralized
BESS [4]. For the distributed MMC-BESS, it is crucial to realize the SoC equalization among
phases, between upper and lower arms, and among submodules within one arm. The
individual SoC balancing [8] can be realized by the carrier rotation method [9,10], sorting
algorithm [11–13], and modulation reference adjustment [14,15]. Leg/phase and arm SoC
balancing can be achieved by a zero-sequence injection [15,16], a negative-sequence current
injection [17], and circulating current control [18–23]. Zero-sequence voltage injections
and negative-sequence current injections can realize SoC balancing among phases by
incorporating deviation power into the input/output power reference. The balancing
process needs to be performed in active operation and is not feasible in standby mode. On
the other hand, by utilizing circulating current control, the MMC-BESS can achieve phase
SoC balancing and arm SoC balancing even in standby mode [8]. Specifically, leg SoC
balancing is realized by regulating the DC component of the circulating current, and arm
SoC balancing is performed by regulating the fundamental component of the circulating
current from the three phases of the MMC, which has been discussed in detail in [18–23].
The method used to balance the SoC between the upper and lower arms by employing
fundamental circulating current from the three phases is referred to as hard arm SoC
balancing control (HASBC) in this paper. By regulating the fundamental circulating current,
the power can be injected into the arms, realizing SoC balancing between the upper and
lower arms. In [24], the authors introduced the power control of individual submodules
by using a power ratio factor, phase power control by choosing a common-mode voltage,
and arm power control by HASBC. Based on the power control of individual submodules,
phases, and arms, three-level SoC balancing is realized with a proportional controller. The
control methods under DC and AC fault modes were investigated in [25], where HASBC is
used to balance the SoC in the DC-side fault mode by injecting fundamental circulating
current, and the DC component is regulated to balance the SoC in the AC-side fault mode.
The authors in [26] analyzed the gain calculation of the grid-connected power–current
double-closed control and proposed a self-adaption control based on an online SoC capacity
estimation. The SoC convergence rate and overmodulation of submodules are discussed
in [27], which highlights that the methods mentioned above are not always optimal and
that SoC may not converge in some cases. For instance, in [28], the SoC will not converge
and the system will become unstable when the average power of the arm cannot be equal
to zero. Moreover, it is pertinent to acknowledge that, in scenarios involving three-phase
variables, the circulating currents are confined solely to the MMC converter, and their
total value is inherently constrained to be equal to zero. Assuming the arm SoCs in all
three phases are taken into consideration in the control, as in the HASBC, the sum of the
generated circulating current references can potentially violate the zero rule and cause
conflicts in the arm SoC balancing. For example, from the figure of all SoCs of battery
stacks in [21], it can be noticed that during the discharging mode, while all the SoC profiles
decline, they can be separated into two groups, which potentially indicates that the SoCs of
the upper arm and lower arm are split into two values, which are not well balanced.

Therefore, this paper aims to address the limitations of the HASBC by proposing
an alternative soft arm SoC balancing control (SASBC). In the SASBC, rather than the
three-phase arm SoCs adopted in the HASBC, two out of the three arm SoCs are taken in
the loop, and the minus sum of the produced circulating current references in the selected
two phases is considered the third circulating current reference. Compared to the HASBC,
the SASBC consistently adheres to the principle of maintaining zero total current flow in
the circulating currents. This unwavering compliance not only elevates the efficiency of
the balancing operation but also enables a more flexible and effective distribution of the
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SoCs between and within the arms. Therefore, the SASBC is an advanced and preferable
alternative for the SoC management of an MMC-BESS.

The rest of this paper is organized as follows: Section 2 introduces the configuration of
the MMC-BESS system and mathematically analyzes the converter behaviors and balancing
principles. Section 3 presents control scenarios with respect to the grid-connected power
control, the circulating current control, and the SoC balancing control. The results and
analysis are described in Section 4 to verify the operating characteristics of the proposed
MMC-BESS. Section 5 concludes this paper.

2. MMC-BESS Modeling and Analysis
2.1. MMC-BESS Configuration

The schematic diagram of the MMC-BESS considered in this paper is illustrated in
Figure 1. The MMC-BESS has three phases, and each phase contains two symmetrical
arms in the upper and lower branches. In each arm, there are N identical submodules
connected in series together with an arm inductor. The arm inductor is able to suppress
the MMC-BESS circulating current, limit its fault current, and reduce current ripples. The
submodule is integrated with battery banks, one capacitor, and a bidirectional half-bridge
converter composed of two power switches with freewheeling diodes. With N submodules
per arm, the MMC-BESS can generate three-phase line-to-line AC voltages with (2N + 1)
levels. The voltage stress across each semiconductor is restricted to the battery module
voltage. The battery pack can either be charged or discharged, depending on the switch’s
actions and the current direction.
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2.2. MMC-BESS Modeling and Analysis
2.2.1. MMC-BESS System Modeling

Assuming that there are N submodules in each arm and each submodule battery pack
shares the same voltage, then the maximum voltage on each arm is Vmax = NVBAT . The
upper and lower arms in the same phase are regulated complementarily, with a focus on
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maintaining the voltage constant between the positive and negative busbars. According to
the Kirchhoff voltage law, the voltages in the upper and lower arms are as follows:

vxu =
1
2

NVBAT − vx − vLarmxu (1)

vxl =
1
2

NVBAT + vx − vLarmxl (2)

−1
2

NVBAT ≤ vx ≤ 1
2

NVBAT (3)

where vx represents the fundamental output voltage, and all the quantities referred to in
the three phases are expressed with the subscript x; vLarmxu and vLarmxl are the voltage drops
across the upper and lower arm inductors. Assuming the resistance of the arm inductors is
small and can be neglected, the voltage drop across the arm inductors can be calculated by
the derivative of the current flowing through them, which is given by the following:

vLarmxu = Larm
dicirx

dt
+

Larm

2
dix

dt
(4)

vLarmxl = Larm
dicirx

dt
− Larm

2
dix

dt
(5)

where icirx is the circulating current flowing within the MMC-BESS system, and ix is
the output current. The current flowing through the arm inductor is referred to as the
upper arm current ixu and lower arm current ixl , which are expressed as icirx and ix in
Equations (4) and (5). The relations between the MMC-BESS output current, circulating
current, and upper/lower arm current are expressed as follows:

ixu = icirx +
ix

2
(6)

ixl = icirx −
ix

2
(7)

icirx =
ixu + ixl

2
(8)

The circulating current contains DC and harmonic components, which can be ex-
panded with the Fourier series as follows:

icirx = icirx,dc +
∞

∑
h=1

Icirx,hsin(hωt + φh) (9)

where icirx,dc is the DC component of the circulating current, Icirx,h represents the amplitude
of the h-th harmonic component, and φh is the corresponding phase angle.

By substituting Equations (4)–(7), the MMC-BESS outer and inner dynamic equations
can be yielded as follows:

Larm

2
dix

dt
=

vxl − vxu

2
− vx (10)

Larm
dicirx

dt
=

1
2

NVBAT − vxu + vxl
2

(11)

As stated in Equations (10) and (11), the output current ix can be managed by tuning
the difference between the upper arm and lower arm voltages, and by regulating the sum
voltage of the upper arm and the lower arm, the circulating current icirx is under control.
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Consequently, the voltage difference and sum of the upper arm and lower arm contribute to
the output current and circulating current driving voltages, which are presented as follows:

vx =
vxl − vxu

2
− Larm

2
dix

dt
(12)

vcirx =
1
2

NVBAT − vxu + vxl
2

(13)

2.2.2. MMC-BESS SoC Balancing Analysis

The battery packs can be discharged and charged by the submodule switching events
and current direction. The corresponding battery current can be described by means of
battery SoC and capacity as follows:

ixuk = QBAT
dSoCxuk

dt
(14)

ixlk = QBAT
dSoCxlk

dt
(15)

where ixuk and ixlk denote the current flowing into or out of the battery banks in the k-th
submodule in the upper arm and lower arm, respectively, QBAT is the battery capacity,
and SoCxuk and SoCxlk are the k-th submodule corresponding SoCs. Based on each single
SoCxuk and SoCxlk, the average SoC of the arm, phase, and whole system can be calculated
as follows:

SoCxu =
1
N

N

∑
k=1

SoCxuk (16)

SoCxl =
1
N

N

∑
k=1

SoCxlk (17)

SoCx =
1
2
(
SoCxu + SoCxl

)
(18)

SoCavg =
1
3 ∑

x=a,b,c
SoCx (19)

where SoCxu and SoCxl represent the average upper/lower arm SoCs, SoCx denotes the
average phase SoC, and SoCavg is the individual average SoC of the whole MMC-BESS system.

Under the assumption of ideal switches and battery packs, the power of the battery
packs in each submodule can be obtained by [19] as follows:

pxuk = vSMxukixu = VBATixuk = VBATQBAT
dSoCxuk

dt
(20)

pxlk = vSMxlkixl = VBATixlk = VBATQBAT
dSoCxlk

dt
(21)

where pxuk and pxlk are the k-th submodule battery power in the upper arm and lower
arm, respectively. Then, the power of the upper arm and lower arm can be calculated
by the sum of all independent submodules in that arm, which can be expressed in
Equations (22) and (23) after being substituted by Equations (16) and (17):

pxu =
N

∑
k=1

(
NVBATQBAT

dSoCxuk
dt

)
= NVBATQBAT

dSoCxu

dt
(22)

pxl =
N

∑
k=1

(
NVBATQBAT

dSoCxlk
dt

)
= NVBATQBAT

dSoCxl
dt

(23)
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where pxu and pxl represent the power of the upper arm and lower arm, respectively.
According to the arm power and the relationship in Equation (18), the power of each phase
and its differential value can be obtained as follows:

pxΣ = pxu + pxl = 2NVBATQBAT
dSoCx

dt
(24)

px∇ = pxu − pxl = NVBATQBAT
d
(
SoCxu − SoCxl

)
dt

(25)

As stated above, the arm power is calculated from the perspective of battery voltage
and current. Additionally, arm power can be yielded from the perspective of arm voltage
and arm current, as shown below:

pxu =

(
1
2

NVBAT − vx − Larm
dixu

dt

)
︸ ︷︷ ︸

vxu

ixu (26)

pxl =

(
1
2

NVBAT + vx − Larm
dixl
dt

)
︸ ︷︷ ︸

vxl

ixl (27)

Similarly, the arm power summation and its difference are yielded as follows:

pxΣ = pxu + pxl = NVBATicirx − vxix − Larm

(
ixu

dixu

dt
+ ixl

dixl
dt

)
(28)

px∇ = pxu − pxl = −1
2

NVBATix − 2vxicirx − Larm
d(ixicirx)

dt
(29)

The right sides of Equations (24), (25), (28) and (29) are equal to each other. Assuming
vx = Vxsin(ωt) and ih = Ihsin(ωt − φ) and ignoring the alternating terms, the new
equations to describe the SoC can be yielded with the substitution of Equation (9) into (28)
and (29) (see and Appendices A.1 and A.2):

NVBATQBAT
dSoCx

dt
∼= NVBAT Icirx_dc −

1
2

Vx Ixcos φ1 (30)

NVBATQBAT
d
(
SoCxu − SoCxl

)
dt

∼= −Vx Icirx1cos ϕx1 (31)

From Equation (30), it is indicated that the DC component of the circulating current
can contribute to achieving SoC equalization between different phases in the MMC-BESS.
Additionally, Equation (31) shows that the SoC between the upper arm and lower arm can
be balanced by adjusting the fundamental component of the circulating current.

3. MMC-BESS Control Strategy

The control system of the MMC-BESS comprises grid-connected power control, circu-
lating current control, and SoC balancing control. The grid-connected power control is the
control top level, which regulates the power exchange between the grid and BESS with a
desired output voltage following the grid. The circulating current control is responsible for
eliminating the circulating current flowing within the converter, which can be disadvanta-
geous in the steady state of the MMC-BESS. The SoC balancing control consists of three
parts: the phase SoC balancing control, the arm SoC balancing control, and the individual
SoC balancing control. With the benefit of the SoC balancing control, SoC equalization can
be achieved among the phases, arms, and submodules.
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3.1. Grid-Connected Power Control

The grid-connected power control structure is shown in Figure 2 by using the promi-
nent dual-loop control method in the rotating reference frame. Here, vg is the grid voltage,
and the PLL detects and synchronizes with the grid frequency. The outer-loop controller, as
the power controller, tracks the commanded active power and reactive power, subsequently
producing reference values for the active current i∗d and reactive current i∗q . The inner-loop
controller, tasked with tracking the current references, generates the direct and quadra-
ture voltage components, which are inversely transformed to generate the output voltage
reference [7]. In terms of power flow, since the proposed MMC-BESS has no external DC
link, the power only flows between the battery modules and the AC grid side during both
the charging and discharging modes under balanced conditions. Before the realization of
SoC balancing, the phase power is redistributed from the phase with a higher SoC to the
phase with a lower SoC by using the DC circulating current component, as presented in
Equation (30). Similarly, arm power is transferred from the arm with a higher SoC to the one
with a lower SoC by leveraging fundamental circulating current, as stated in Equation (31).
Notably, the power flow adjustments made to facilitate SoC balancing remain internal to the
converter, even in scenarios of SoC imbalance. Consequently, the power exchange between
the battery side of the converter and the AC grid side consistently aligns with the command
values P∗ and Q∗. Additional details regarding the implementation of grid-connected
power control can be found in reference [26].
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3.2. Circulating Current Control

The circulating current only flows within the converter system and has little impact
on the output current. However, since the circulating current causes distortion in the arm
current and additional power losses, it is required to be eliminated. The arm inductor can
suppress the circulating current to a certain degree [29], but to fully eliminate it, an active
regulator is needed. Since the circulating current is dominated by second-order harmonics,
the eliminator is mainly designed to suppress this component. As reported in the literature,
the most prominent circulating current control methods are based on a PI controller and
a proportional resonant (PR) controller. In this paper, the quasi-PR (QPR) controller is
utilized due to its wider bandwidth and more practical implementation compared to the
PR controller [30–33], and the control block diagram is shown in Figure 3.
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The transfer function of the QPR controller is given as follows:

Gcir(s) = Kcirp +
2Kcirhωcs

s2 + 2ωcs + (2ω0)
2 (32)

where Kcirp and Kcirh are the proportional and integral coefficients of the QPR controller,
ωc and 2ω0 denote the cut-off and resonant angular frequency. The introduced cut-off
frequency can prevent a loss of sensitivity in the QPR controller when the frequency shifts,
and the shift should be limited to a range of ∆ f = ±2% [33]. Therefore, the margin of the
cut-off frequency can be set as follows:

ωc ≤ 2 × (2π f0)× ∆ f (33)

where f0 is the fundamental frequency, assuming f0 = 50 Hz, and then the cut-off frequency
margin is ωc ≤ 12.57. The transfer function of the plant is as follows:

GcirP(s) =
1

Larms + rarm
(34)

The open-loop transfer function of the circulating current control can be expressed
as follows:

Gcir_OP(s) = (Kcirp +
2Kcirhωcs

s2 + 2ωcs + (2ω0)
2 )

1
Larms + rarm

(35)

The selection of the coefficients of the QPR controller will be discussed in Section 3.3.
SoC Balancing Control. In this paper, the coefficients are set as Kcirp = 5, Kcirh = 250,
and ωc = 8. Given a 10 mH inductor used in the arm, the Bode plot of the circulating
current open-loop transfer function can be obtained, as shown in Figure 4. From the Bode
plot, it indicates that the circulating current control is stable with a good gain margin
and a phase margin of 34.3◦ at a frequency of 936.5 rad/s. Additionally, it is shown
from the Bode plot that the resonant frequency is 628.3 rad/s, aligning with the targeted
second-order harmonics. As the frequency increases, a significant decrease in magnitude is
observed. This trend is counteracted at the resonant frequency of 628.3 rad/s, where the
magnitude increases. This particular characteristic underscores the enhanced capability
of the circulating current control to eliminate the component at the specified second-
order frequency.
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3.3. SoC Balancing Control

The SoC balancing control contains the phase SoC balancing control, the arm SoC
balancing control, and the individual submodule SoC balancing control. In this paper, we
propose an alternative soft arm SoC balancing control (SASBC) compared to conventional
hard arm SoC balancing control (HASBC). In the HASBC, the circulating current refer-
ences generated by the arm SoC balancing controller from the three phases are applied
to balance the SoC between the upper and lower arms in the three phases. Instead, the
components of two phases are utilized in the SASBC, and the minus sum of the produced
circulating current references in the selected two phases is taken as the third circulating
current reference.

Firstly, in terms of phase SoC balancing, it drives the three-phase SoCx to be the
same value as SoCavg. If SoCx is less than SoCavg, more power tends to be required in
the corresponding phase, and vice versa, less power is required. The power distribution
among phases is achieved by regulating the DC component of the circulating current. The
control scheme is visualized in Figure 5a, where LPF is the low-pass filter to extract the DC
component from the circulating current, and the command DC component is generated by
the outer-loop controller as follows:

i∗cirx_dc = KSOCxp
(
SoCavg − SoCx

)
+ KSOCxi

∫ (
SoCavg − SoCx

)
dt (36)

where KSOCxp and KSOCxi denote the proportional and integral coefficients of the outer-
loop PI controller. The modulation voltage reference of the phase SoC balancing control is
created by the inner controller, which is given by the following:

v∗phx = KSOCxp′
(
LPF(icirx)− i∗cirx_dc

)
+ KSOCxi′

∫ (
LPF(icirx)− i∗cirx_dc

)
dt (37)

where KSOCxp′ and KSOCxi′ represent the proportional and integral gains of the inner-loop
PI controller. In order to reduce the computational burden, there is no need to detect the
current direction.
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With respect to arm SoC equalization, HASBC is widely applied, where all SoC
variables of the three phases are taken into account in the arm SoC balancing control, as
shown in Figure 5b. However, the circulating current only flows within the MMC converter,
and the sum of the circulating currents is equal to zero.

∑ icirx = 0 (38)

Assuming the arm SoCs in all three phases are used in the control, as in the HASBC, the
sum of the generated circulating current references could potentially violate Equation (38)
and cause conflicts in the arm SoC balancing. Therefore, SASBC is proposed where the arm
SoCs of two phases are adopted rather than those of three phases, as shown in Figure 5c,
and the minus sum of the produced circulating current references in the selected two phases
is taken as the third circulating current reference. Similar to the power flow in the phase
SoC control scheme, the power is transferred from the arm with the greater SoC to the arm
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with less SoC. The command for the fundamental component of the circulating current is
given as follows:

i∗cira1 = KSOCarmp
(
SoCau − SoCal

)
+ KSOCarmi

∫ (
SoCau − SoCal

)
dt (39)

i∗circ1 = KSOCarmp
(
SoCcu − SoCcl

)
+ KSOCarmi

∫ (
SoCcu − SoCcl

)
dt (40)

where KSOCarmp and KSOCarmi are the proportional and integral gains of the inner-loop
arm SoC controller, respectively. Similarly to the circulating current controller, the QPR
controller is adopted to regulate the fundamental harmonics. The final modulation reference
of the arm SoC balancing control is expressed as follows:

v∗arma = (icira − i∗cira1cos θa1)

(
Kcirp_1 +

2Kcirh_1ωcs
s2 + 2ωcs + ω1

2

)
(41)

v∗armc = (icirc − i∗circ1cosθc1)

(
Kcirp_1 +

2Kcirh_1ωcs
s2 + 2ωcs + ω1

2

)
(42)

v∗armb = (icirb + i∗cira1cos θa1 + i∗circ1cosθc1)

(
Kcirp_1 +

2Kcirh_1ωcs
s2 + 2ωcs + ω1

2

)
(43)

where Kcirp_1 +
2Kcirh_1ωcs

s2 + 2ωcs + ω1
2 is the transfer function Gcir_1(s) of the fundamental circulat-

ing current controller. For the fundamental current, the plant transfer function is as follows:

GcirP_1(s) =
2

Larms + rarm
(44)

In Section 3.2, the margin of the cut-off frequency ωc is discussed. ωc is chosen
to have a desired bandwidth around the resonant frequency. In the arm SoC balancing
control, the resonant frequency is equal to the grid frequency. Kcirp_1 should be calculated
within the boundary to have a good transient response and stability. It is assumed that the
modulation time delay is half of the sampling period Ts; therefore, the transfer function of
the modulation PWM can be written as follows [33]:

GPWM(s) =
e−Tss(1 − e−Tss)

Tss
(45)

The delay can be approximated by poles and zeros to simplify the calculation with rea-
sonable accuracy by using the first-order Pade approximation, as shown in Equation (46).

e−Tss ≈ 1 − 0.5Tss
1 + 0.5Tss

(46)

Substituting Equation (46) into Equation (45), GPWM(s) can be approximated as follows:

GPWM(s) ≈ 1 − 0.5Tss

(1 + 0.5Tss)2 (47)

Then, the boundary of Kcirp_1 can be calculated according to the open-loop trans-
fer function Gcir_1(s)GcirP_1(s)GPWM(s) by using Routh’s stability criterion. Assuming
Gcir_1(s)GcirP_1(s)GPWM(s) = N(s)/D(s), the characteristic equation can be yielded
as follows:

D(s) + KN(s) = 0 (48)
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where K is the upper boundary of the proportional coefficient under different Kcirp_1 values.
By using the MATLAB symbolic solver, the boundary of Kcirp_1 can be obtained as follows:

Kcirp_1 <
4Larm + 4RarmTs + 2ωc(R armTs

2 + LarmTs

)
+ Larmω1

2Ts
2

4Ts
(49)

The value of Kcirh_1 is chosen to help eliminate phase and magnitude steady-state
errors. Before estimating Kcirh_1, the corresponding phase margin ϕm can be assumed
according to [34] as follows:

ϕm =
π

2
− 1.5αcTs (50)

where αc denotes the crossover frequency, and the time constant τi can be obtained approx-
imately by the crossover frequency as follows [35]:

τi ≈
10
αc

(51)

Then, the resonant coefficient Kcirh_1 can be estimated by considering the time constant
in relation to the proportional coefficient Kcirp1 as follows:

Kcirh_1 <
Kcirp1

τi
≈

Kcirp1(π − 2ϕm)

30Ts
(52)

Given the coefficients Kcirp_1 = 10, Kcirh_1 = 500, the Bode plot of the fundamental
circulating current control is presented in Figure 6 with a good gain margin and a phase
margin of 69.3◦ at a frequency of 2146 rad/s. The resonant frequency can be observed
at 314.2 rad/s. Similar to the second-order circulating current eliminator, the magnitude
decreases while the frequency increases, but it is pulled up at the fundamental resonant
frequency. This particular characteristic shows the enhanced tracking capability of the
fundamental circulating current to balance the SoC between the upper and lower arms.
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The individual SoC equalization is achieved with a simple PI controller, as shown in
Figure 5d, and the sign of the arm current is incorporated to adjust the control signal.

v∗indxk =

(
Kindp

(
SoCavg − SoCxk

)
+ Kindi

∫ (
SoCavg − SoCxk

)
dt
)

sign(ixu/ixl) (53)

where Kindp and Kindi are the proportional and integral coefficients of the individual
SoC controller.

Figure 7 provides an overview of the control strategy for the MMC-BESS. Firstly,
the grid voltage and output current are measured and sent to the grid-connected power
control, and the command active and reactive power are assigned to generate the output
voltage reference v∗x (v∗a , v∗b , and v∗c ). Secondly, the leg SoC balancing control and arm SoC
balancing control adjust the references v∗phx (v∗pha, v∗phb, and v∗phc) and v∗armx (v∗arma, v∗armb,
and v∗armc) caused by the unbalanced phase and arm SoCs. Then, the circulating current
control is used to eliminate the circuiting current by using the command v∗cirx (v∗cira, v∗cirb,
and v∗circ). The individual SoC balancing control deals with each submodule SoC and
generates the individual SoC control signal v∗indxk (v∗indak, v∗indbk, and v∗indck ( k = 1 ∼ 2N)).
All reference signals generated by the grid-connected power control, leg/arm/individual
SoC balancing control, and circulating current control are combined to generate the final
modulation references for each submodule. These references are then sent to the modulator
to produce the gating signals for each switch of the submodule to realize the objectives of
the control strategy.
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4. Results and Analysis

In order to explore the operating characteristics of the proposed MMC-BESS, a simula-
tion model was prepared in MATLAB/Simulink®R2020b. The specification of the simulated
MMC-BESS is shown in Table 1.



Energies 2024, 17, 740 14 of 24

Table 1. Specification of the simulated MMC-BESS.

Parameters Values

No. of submodules per arm 6
Nominal voltage of battery banks 1000 V
RMS grid phase-to-phase voltage 2000 V

Grid frequency 50 Hz
Carrier frequency 1 kHz

Nominal power level ±1 MW
Submodule capacitance 1000 µF

Arm inductance 10 mH

The MMC-BESS system has 6 submodules in each arm branch, i.e., 36 submodules in
total. The nominal voltage of each battery bank is assumed to equal 1000 V. The MMC-BESS
is a grid-connected converter used for stationary applications, where the connected grid
voltage is RMS 2000 V in phase-to-phase and rotates at 50 Hz. Since the rechargeable
batteries need to be charged and discharged from the grid, there are two operation modes
in the model, which are the charging mode and the discharging mode. Additionally, the
system’s nominal power level is ±1 MW. The simulated inductance of the arm inductor is
10 mH, which is obtained as follows [36]:

Larm =
0.25TS
∆iL,max

·Varm, max

N
(54)

where TS is the switching cycle duration, ∆iL,max is the maximum ripple current, and
Varm, max is the maximum arm voltage.

The important input signals of the MMC-BESS system are the active power and reactive
power references, which are carried as P∗ = Pre f = [−1 MW, 1 MW] and Q∗ = Qre f =
[0 W, 0 W] at time [0 s, 10 s], respectively, as shown in Figure 8. P and Q present the actual
active power and reactive power, respectively. Under the regulation of the power controller,
the actual active power and reactive power are forced to track the reference values.
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To better explore the power flow and conversion of the MMC-BESS, the power distri-
bution among phases, arms, and individual submodules is demonstrated graphically in
Figure 9. The phase power and arm power (Figure 9a) are not equally distributed among
phases and arms initially, which happens because at the start of the operation, the phase
and arm SoC profiles are not balanced. As aforementioned in the balancing control, more
power would be captured by the phase/arm with less SoC, and vice versa. Similarly,
Figure 9b provides the individual submodule power distribution of the MMC-BESS. After
realizing the SoC balancing, the power is equally distributed among the phases, arms, and
individual submodules.
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Figure 9. Power distribution with 1 MW (charging and discharging) operation: (a) phase power and
arm power; (b) submodule power.

Under the command of the grid-connected power control, the output voltage of the
MMC-BESS matches the rotating grid voltage, and the output current is forced to follow
the voltage to contribute to the target power in the charging mode and inversely align with
it in the discharging mode, as shown in Figure 10.
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The realization of balancing control is based on controlling the circulating current. The
circulating current is calculated by measuring the upper arm and low arm currents. After
the balancing achievement, the circulating current is disadvantageous in terms of the arm
current quality and power losses, which are required to be eliminated. Figure 11 presents
the simulated output current, arm current, and circulating current. From Figure 11a, it is
shown that the circulating current reaches 40 A, and the waveforms of the output current
and the current in the upper arm and lower arm yield some distortions at the start of the
operation. As shown in Figure 11b, the circulating current is eliminated, and the output
current and arm current are less distorted in a balanced situation.
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The harmonic distortions of the output current are analyzed by fast Fourier transform
(FFT), as shown in Figure 12. It is obvious that the quality of the output current is improved
from THD 6.80% to 1.13% after balancing is achieved.
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To compare the control performance of the HASBC and the SASBC, the SoC profiles
under the two control methods are shown separately in Figure 13a,b in terms of phase SoC,
arm SoC, and individual SoC. It is noted that the arm SoC profiles with the HASBC cannot
be converged to a line, and the individual SoC profiles of phase A split as two bundles,
even though the individual SoC profiles of phase B and phase C are well equalized. In
contrast, the arm SoC profiles with the SASBC tend to be equal, and the individual SoC
profiles of phase A, phase B, and phase C are all well balanced. The SoC profiles are shown
in 5 s for the sake of a clear illustration, and more information is shown in Figure 14.
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∆SoCxuk/xlk = SoCxuk/xlk −
∑ SoCxuk + ∑ SoCxlk

2N
(56)

Figure 14a,b track the value of the difference/delta between the arm SoCs and their
average SoC under the regulation of the hard and soft SoC balancing controls. As shown in
Figure 14a, under HASBC, even though the delta arm SoCs in phase B and phase C can be
fast-forced to zero, i.e., equalized arm SoCs, the arm SoCs of the phase A upper arm and
lower arm are not able to follow the average arm SoC before 100 s, and it takes 66 s in the
phase A upper arm to reduce the delta SoC to 0.05% (∆SoCxu/xl = 0.05%) with reference
to the average arm SoC. In contrast, as shown in Figure 14b, all arm SoCs in the three
phases/six arms can be balanced fast, and it takes 5.1 s to fall into the 0.05% zone under the
SASBC. Figure 14c,d depict the SoC gap (delta individual SoC calculated by Equation (43))
in phase A under the two control modes. It is obvious that the delta individual SoCs under
the HASBC are split into two groups and converge slowly (>100 s) toward zero, taking up
to 62.5 s to enter the threshold of 0.05% deviation. However, they are forced to converge
at zero rapidly and only take 6.5 s to reach the margin of 0.05% under the SASBC. To
summarize, the SoC comparison between the HASBC and SASBC is listed in Table 2 based
on Figures 13 and 14.
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Table 2. SoC comparison between SASBC and HASBC.

SoCs Hard Arm SoC
Balancing Control

Soft Arm SoC
Balancing Control

Arm SoC balancing Split > 100 s
(66 s (∆SoCxu/xl = 0.05))

Balanced
(5.1 s (∆SoCxu/xl = 0.05))

Phase A individual SoC Split > 100 s
(62.5 s (∆SoCxuk/xlk = 0.05))

Balanced
(6.5 s (∆SoCxuk/xlk = 0.05))

Phase B individual SoC Balanced Balanced

Phase C individual SoC Balanced Balanced

Figure 15 depicts the SoC profiles of 36 submodules of the MMC-BESS model with the
SASBC in both the charging and discharging modes. In Figure 15a, the operation starts in
the charging mode and then switches to the discharging mode at 10 s. On the contrary, the
operation is shifted from the discharging mode to the charging mode at 10 s in Figure 15b.
In both scenarios, it is indicated that all the individual SoCs can be forced to converge on a
common average value in the charging mode and the discharging mode.
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Considering the robustness of the MMC-BESS, which encompasses numerous sub-
modules and components, evaluating its robustness in response to component variations
becomes essential. Consequently, a simulation is conducted for the MMC-BESS, integrating
variations in submodule capacitances and arm inductance. The capacitance of the submod-
ule and the inductance of the arm inductor, respectively, exhibit random variations of ±10%
around the nominal values. The simulation results, as shown in Figure 16, reveal that the
output current, upper and lower arm current, and SoC profiles show little difference from
those of the simulation without component variations. Additionally, the circulating current
is noticeably higher but acceptable (<2% output current) compared to simulations without
these variations. The robustness test shows the control system’s effective performance in
handling component variations.
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5. Conclusions

The control of a grid-connected MMC-BESS can have three main parts, which are
the grid-connected power control, the circulating current control, and the SoC balancing
control. This paper focuses on the modeling and control of a grid-connected MMC-BESS,
especially its SoC balancing modeling and control. The main contribution of this paper is
the first proposal of the alternative SASBC method compared to the corresponding HASBC.
The simulation results show the following:

1. Compared to HASBC, SASBC provides better performance in balancing the SoC
between and within the arms. In this case, under the control of HASBC, the arm SoCs
of the phase A upper arm and lower arm are not able to be equalized before 100 s, and
it takes 66 s to reduce the delta SoC to 0.05% with reference to the average arm SoC.
In contrast, all the arm SoCs in the three phases/six arms can be balanced fast, and it
takes 5.1 s to fall into the 0.05% zone under the control of SASBC. Besides, individual
SoCs of phase A under the control of HASBC are split into two groups and exhibit
a protracted convergence exceeding 100 s toward zero, requiring 62.5 s to reach the
0.05% deviation range. However, they are forced to converge at zero rapidly and only
take 6.5 s to reach the margin of 0.05% under the SASBC.
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2. The MMC-BESS power fluctuates between phases, arms, and individual submodules
to balance the SoC of batteries, and after the accomplishment of the SoC equalization,
the power is equally distributed and the circulating current is well eliminated.

3. The MMC-BESS can operate in both charging and discharging modes, and the THD
of the output current is reduced from 6.80% to 1.13% after SoC balancing is achieved.

4. The robustness test shows the control system’s effective performance in handling
component variations.
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Appendix A. Derivation of Equations 
Appendix A.1. Equation (30) 𝑝 = 𝑁𝑉 𝑖 − 𝑣 𝑖 − 𝐿 𝑖 𝑑𝑖𝑑𝑡 + 𝑖 𝑑𝑖𝑑𝑡  

= −𝑉 sin(𝜃 )𝐼 sin(𝜃 − 𝜑1) + 𝑁𝑉 𝐼 _ + 𝐼 , sin 𝜎 ,  

−𝐿 𝑖 + 12 𝑖 𝑑𝑑𝑡 𝑖 + 12 𝑖  + 𝑖 − 12 𝑖 𝑑𝑑𝑡 𝑖 − 12 𝑖  

= −𝑉 sin(𝜃 )𝐼 sin(𝜃 − 𝜑1) + 𝑁𝑉 𝐼 _ + 𝐼 , sin 𝜎 ,  

−𝐿 𝑖 𝑑𝑖𝑑𝑡 + 12 𝑖 𝑑𝑖𝑑𝑡 + 14 𝑖 𝑑𝑖𝑑𝑡 + 12 𝑖 𝑑𝑖𝑑𝑡  

−𝐿 𝑖 𝑑𝑖𝑑𝑡 − 12 𝑖 𝑑𝑖𝑑𝑡 + 14 𝑖 𝑑𝑖𝑑𝑡 − 12 𝑖 𝑑𝑖𝑑𝑡  

= −𝑉 sin(𝜃 )𝐼 sin(𝜃 − 𝜑1) + 𝑁𝑉 𝐼 _ + 𝐼 , sin 𝜎 ,  

−𝐿 2𝑖 𝑑𝑖𝑑𝑡 + 12 𝑖 𝑑𝑖𝑑𝑡  

= −𝑉 sin(𝜃 )𝐼 sin(𝜃 − 𝜑1) + 𝑁𝑉 𝐼 _ + 𝐼 , sin 𝜎 ,  

(A1)
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Appendix A. Derivation of Equations

Appendix A.1. Equation (30)

pxΣ = NVBATicirx − vxix − Larm

(
ixu

dixu
dt + ixl

dixl
dt

)
= −Vmsin (θx)Imsin(θx − φ1) + NVBAT

[
Icirx_dc +

∞
∑

h=1
Icirx,hsin(σx,h)

]
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icirx +

1
2 ix

)
d
dt

(
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1
2 ix

)
+
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)
d
dt

(
icirx − 1
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))
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dt

)
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dt
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h=1
Icirx,hsin(σx,h)

]
−Larm

(
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dt
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Icirx,hsin(σx,h)
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])
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1
4 I2
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])

≈ −Vm Imsin (θx)sin(θx − φ1) + NVBAT Icirx_dc

= − 1
2 Vm Imcos(θx) +

1
2 Vm Imcos(2θx − φ1) + NVBAT Icirx_dc

≈ − 1
2 Vm Imcos(φ1) + NVBAT Icirx_dc

(A1)
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Appendix A.2. Equation (31)

px∇ = − 1
2 NVBATix − 2vxicirx − Larm

d(ix icirx)
dt

= − 1
2 NVBAT Imsin(θx − φ1)− 2Vmsin(θx)

[
Icirx_dc +

∞
∑

h=1
Icirx,hsin(σx,h)

]
−Larm

d
dt

(
Imsin(θx − φ1)

[
Icirx_dc +

∞
∑

h=1
Icirx,hsin(σx,h)

])
≈ −2Vmsin (θx)

∞
∑

h=1
Icirx,hsin(σx,h)

−ωLarm Imcos(θx − φ1)
∞
∑

h=1
Icirx,hsin(σx,h)

−ωLarm Imsin(θx − φ1)
∞
∑

h=1
hIcirx,hcos(σx,h)

= −
∞
∑

h=1
Vm Icirx,h(cos(θx − σx,h)− cos(θx + σx,h))

− 1
2 ωLarm

∞
∑

h=1
Im Icirx,h(sin(θx + σx,h − φ1)− sin(θx − σx,h − φ1))

− 1
2 ωLarm

∞
∑

h=1
hIm Icirx,h(sin(θx + σx,h − φ1)− sin(θx − σx,h − φ1))

≈ −
∞
∑

h=1
Vm Icirx,hcos(θx − σx,h) +

1
2 ωLarm

∞
∑

h=1
Im Icirx,hsin(θx − σx,h − φ1)

− 1
2 ωLarm

∞
∑

h=1
hIm Icirx,hsin(θx − σx,h − φ1)

≈ −Vm Icirx,1cos(θx − σx,1) +
1
2 ωLarm Im Icirx,1sin(θx − σx,1 − φ1)

− 1
2 ωLarm Im Icirx,1sin(θx − σx,1 − φ1)

= −Vm Icirx,1cos(θx − σx,1) = −Vm Icirx,1cos(ϕx1 )

(A2)
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