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Abstract: The complexity of modern power grids, caused by integrating renewable energy sources,
especially inverter-based resources, presents a significant challenge to grid operation and planning,
since linear models are unable to capture the complex nonlinear dynamics of power systems with
coupled muti-scale dynamics, and it necessitate an alternative approach utilizing more advanced
and data-driven algorithms to improve modeling accuracy and system optimization. This study
employs the sparse identification of nonlinear dynamics method by leveraging compressed sensing
and sparse modeling principles, offering robustness and the potential for generalization, allowing
for identifying key dynamical features with relatively few measurements, and providing deeper
theoretical understanding in the field of power system analysis. Taking advantage of the this method
in recognizing the active terms (first and high order) in the system’s governing equation, this paper
also introduces the novel Volterra-based nonlinearity index to characterize system-level nonlinearity.
The distinction of dynamics into first-order linearizable terms, second-order nonlinear dynamics,
and third-order noise is adopted to clearly show the intricacy of power systems. The findings
demonstrate a fundamental shift in system dynamics as power sources transit to inverter-based
resources, revealing system-level (second-order) nonlinearity compared to module-level (first order)
nonlinearity in conventional synchronous generators. The proposed index quantifies nonlinear-to-
linear relationships, enriching our comprehension of power system behavior and offering a tool for
distinguishing between different nonlinearities and visualizing their distinct patterns through the
profile of the proposed index.

Keywords: inverter-based resources; measure-based method; model identification; nonlinear
dynamics; power system; SINDy; synchronous generators; system-level nonlinearity; Volterra-based
nonlinearity index

1. Introduction

While machine learning algorithms and artificial intelligence have improved system
analysis by overcoming the limitations of conventional models in capturing the intricate
nonlinear dynamics of power systems, the incorporation of inverter-based energy resources
(IBRs) with interconnected multi-scale dynamics requires a thorough analysis and charac-
terization of the nonlinearity of the system [1–4]. The systemic nonlinearity conundrum is
a central focus in power system operation due to the intricate dynamics within modern
power grids [5]. As these grids increasingly incorporate diverse energy sources, including
IBRs, conventional linear models fail to capture the complex web of nonlinear interactions,
feedback loops, and emergent behaviors [6]. The recognition and comprehensive exam-
ination of system-level (second order) nonlinearity are paramount for safeguarding the
resilience, stability, and efficiency of contemporary electrical grids.
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Recent studies emphasized the transformative impact of IBR integration in power sys-
tem dynamics. The work by Mishra et al. (2022) uncover the intrinsic nonlinearities within
conventional power grids, highlighting the challenge of maintaining stability amid dynamic
interactions among synchronous generators and intricate load profiles [7]. Ekomwenrenren
et al. (2021) empirically demonstrate deviations from conventional linearized frequency
control in IBR grids, revealing nuanced nonlinear frequency responses unique to these
systems [8]. Orihara et al. (2021) delve into the pivotal dynamics of virtual inertia in IBR
grids, offering insights into nonlinear control mechanisms [9]. Keyon et al. (2020) examine
the impact of varying IBR penetration levels on power system dynamics, illustrating the
transition from first-order to high-order behavior [10].

Understanding the distinctions between synchronous generators (SGs) and the inter-
actions within systems that combine SGs and IBRs or rely exclusively on IBRs is vital for
system operators [11]. The most significant impacts in power system analysis and man-
agement materialize in real-time operations, where precise mathematical system dynamics
models are often unattainable [12].

Measurement-based methodologies, rooted in the observed data and supported by
advanced monitoring technologies and data analytics, provide a solution for real-time
decision support. These techniques empower grid operators to make informed decisions
that ensure the continuity of electrical power systems’ stability and the reliability of evolving
energy landscapes characterized by nonlinear dynamics and grid architectures [13].

There is potential for innovative approaches that extend and refine the SINDy paradigm,
making it applicable and relevant across diverse domains [14,15]. Integrating sparsity meth-
ods in analyzing dynamical systems is a significant advancement, employing compressed
sensing and sparse regression techniques to identify concise and accurate models represent-
ing the underlying nonlinear dynamics [16]. SINDy is a measure-based method specifically
designed to discover governing equations or mathematical models from observed data.

The development and application of advanced modeling techniques, such as SINDy,
are essential in understanding modern power systems’ higher-order dynamics and nuanced
interdependencies [17]. Since its inception in 2016, the SINDy algorithm has been exten-
sively adopted for model identification in diverse fields. It has demonstrated impressive
efficacy by explicitly recognizing governing equations through sparse regression tech-
niques, resulting in interpretable models that adeptly handle complexity. The development
and adaptation of SINDy techniques provide the following benefits:

• Provide a novel avenue for understanding complex systems;
• Enrich our understanding of fundamental principles;
• Pave the way for groundbreaking applications and insight in various fields of study [18,19].

While the SINDy algorithm has found applications in various disciplines, its utilization
in power system analysis has been limited, with only a handful of studies exploring its
potential in this domain [20–23]. Notably, these investigations have predominantly focused
on analyzing the broader power system and have primarily relied on first-order system
models, as exemplified in a 2020 paper on power system applications [20].

This paper represents a significant contribution to the field, as it utilizes the SINDy
method in power systems, investigating a diverse set of conditions, encompassing both
abrupt changes (faults) and gradual changes (load variations). This approach ensures
robustness and the potential for generalization, and it enables the identification of key
dynamical features with relatively few measurements, enhancing our theoretical under-
standing of power system analysis. Leveraging this method to distinguish active terms,
of both first and high order, in the system’s governing equation, the study introduces the
Volterra-based nonlinearity index (VNI). This index characterizes system-level nonlinearity
by distinguishing between first-order linearizable terms, second-order nonlinear dynamics,
and third-order noise, providing a comprehensive understanding of power systems’ intrica-
cies. The results show a fundamental shift in system dynamics as power sources transition
to IBRs, revealing system-level nonlinearity compared to module-level nonlinearity in
conventional generators. The proposed index quantifies nonlinear-to-linear relationships
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and enriches our comprehension of power system behavior, offering a valuable tool for dis-
tinguishing between different nonlinearities and visualizing their distinct patterns through
the index’s profile.

The introduction of higher-order polynomial function libraries to model IBR integra-
tion represents a significant departure from traditional modeling approaches, reflecting the
evolving needs of power grid analyses as renewable energies dominate. The findings pave
the way for a better understanding of the intricacies of power systems and offer practical
solutions for building more resilient and efficient grids.

The subsequent sections of this manuscript are organized as follows: Section 2 de-
scribes the developed SINDy method for power systems. Section 3 demonstrates the con-
ducted study and the respective results followed by the introduction of the proposed index
for system nonlinearity. The final segment comprises the concluding remarks, emphasizing
the results’ significance and suggesting potential research directions for future studies.

2. SINDy Algorithm

In this section, we will delve into the mechanics of the SINDy framework, exploring
its fundamental principles and methodologies to develop an algorithm that is suitable
for power system analysis. We will begin by examining how SINDy leverages sparsity
methods, compressed sensing, and sparse regression techniques to identify concise and
accurate models for complex dynamical systems. We will dissect the critical steps of the
SINDy approach, from data collection and constructing a library of candidate functions to
sparse regression and model construction. Additionally, we will highlight the significance
of sparsity in simplifying system dynamics and improving interpretability. Finally, we will
introduce a three-section data analysis structure, which extends SINDy’s capabilities for
enhanced data-driven research across diverse domains.

Analyses of nonlinear dynamics in electric power systems typically rely on a set of
first-order ordinary differential equations that accommodate various scales, expressed
as [24]:

du
dt

= F(u, β,γ) (1)

In this equation, β and γ denote two parameters representing independent inputs
steering the system. These inputs encompass rapidly changing factors, such as active IBRs,
and slowly changing elements, such as passive loads [24,25]. With a slight modification of
the function F to incorporate passive loads (γ), the equation aligns with those characterizing
general dissipative energy systems:

du
dt

= F(u, β) (2)

Here, u signifies the system states typically observable, and β denotes the inputs
actively driving the system [25].

Considering the voltage as the observable variable, the dynamics of a power system
can be described using the following general form [26]:

dv(t)
dt

= f (v(t)), (3)

where v(t) ∈ Rn represents the system’s voltage at time t, and f (v(t)) encompasses
the dynamic constraints governing the system’s equations, including parameters, time
dependence, and external forcing.

Integrating sparsity methods in analyzing dynamical systems has emerged as a signif-
icant advancement, employing compressed sensing and sparse regression techniques to
identify concise and accurate models representing the underlying nonlinear dynamics [19].
SINDy is a measure-based method specifically designed to discover governing equations
or mathematical models from observed data. The SINDy approach focuses on dynamical
systems described using the Equation (3).
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Leveraging recent progress in compressed sensing and sparse regression, the sparsity
perspective enables the identification of the nonzero terms in f without computationally
demanding brute-force searches. Convex methods that scale well with Moore’s law allow
for identifying sparse solutions with high probability, striking a balance between model
complexity and accuracy, thereby avoiding overfitting the model to the available data [18].
An example case is illustrated in Figure 1 to demonstrate SINDy’s algorithm [7].
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To determine the function f from the available data, a time history of the system’s
state, denoted as v(t), is collected. The derivative of v(t), denoted as

.
v(t), is directly or

numerically approximated. The data are sampled at various time instances, {t 1, t2, . . . , tm}
and organized into V and

.
V matrices. The matrix V is constructed as follows:

V =

 |
v(t1),

|

|
v(t2)
|

, . . . ,
|

v(tm)
|

T

(4)

and the matrix
.

V is constructed as follows:

.
V =

 |
.
v(t1)
|

,
|

.
v(t2)
|

, . . . ,
|

.
v(tm)

|

T

(5)

The next step in the SINDy approach involves defining a library of candidate functions,
denoted as Θ(V), where V is the data matrix that contains the observed data points of the
system variables [7]. The library is constructed by carefully selecting relevant nonlinear
functions based on prior knowledge and theoretical considerations. These functions can
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include polynomials, trigonometric functions, exponentials, logarithmic functions, and
other suitable nonlinear expressions [7].

Θ(V) =
[
1, V, V2, V3, . . . , cos(V), sin(V), . . .

]
(6)

Higher-order polynomials are denoted as V2, V3, and so on. Each column in the Θ(V)
matrix represents a candidate function for the right-hand side of the dynamical equation [7].

Assuming that only a few of these nonlinearities are active in each row of f , a sparse
regression problem is formulated to determine the sparse vectors of coefficients,

Ξ =

 |
ξ1
|

,
|

ξ2
|

, . . . ,
|

ξn
|

 (7)

which indicate the active nonlinearities. Mathematically, this can be expressed as follows:

.
V = Θ(V)Ξ. (8)

Each column, ξk, of the Ξ matrix corresponds to a sparse vector of coefficients
that determines the active terms in the right-hand side of one of the row equations,
vk = f (v) [7,19].

Given the data matrix V and the library of candidate functions Θ(V), SINDy formu-
lates the sparse regression problem as follows:

minimize
∣∣∣| .

V − Θ(V)Ξ|
∣∣∣
2
+ λ||Ξ||1 (9)

where Ξ is the sparse vector of coefficients representing the importance or relevance of
each term in the library, ||.||2 denotes the L2 norm, ||.||1 represents the L1 norm, and λ is
a regularization parameter that controls the trade-off between data fidelity and sparsity.
The first term in Equation (9) ensures that the model predictions, obtained by multiplying
Θ(V) with Ξ, are close to the observed data, while the second term encourages a sparse
solution by promoting a minimal number of nonzero coefficients [7].

The sparsity principle is central to this approach, as it seeks to select a subset of
functions from the candidate library that is most relevant to the system’s dynamics. By
incorporating regularization techniques, such as L1 regularization (or the Lasso), the
model achieves sparsity by encouraging the coefficients of irrelevant terms to be zero,
thereby emphasizing the significant functions while minimizing the overall number of
terms [18]. This strategy simplifies the representation of system dynamics, leading to
improved interpretability and a more concise model.

Once the Ξ matrix is determined, a model for each row equation can be constructed us-
ing the library of candidate functions and the corresponding sparse coefficients. Specifically,
the kth row equation, vk = f (v), can be expressed as follows:

vk = Θ(v)ξk, (10)

where Θ(v) is a vector of symbolic functions of the elements of v. It is important to note
that Θ(v) differs from Θ(V) in that it represents symbolic functions of the state variables,
unlike Θ(V), which represents a data matrix. Consequently, the overall representation of
the system dynamics can be written as follows:

.
v = f (v) = ΞTΘ(v) (11)

Each column requires a separate optimization procedure to determine the sparse vector
of coefficients, ξk, for the corresponding row equation. It is also possible to normalize the
columns of Θ(V), particularly when the entries of V are small.
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SINDy has been extensively studied and validated in various scientific domains,
showcasing its effectiveness in uncovering governing equations from data. However, the
method has limitations. SINDy is sensitive to noise and requires careful model selection
to balance sparsity and accuracy [27]. Its application to densely coupled dynamics poses
challenges as disentangling individual contributions becomes difficult [28]. Furthermore,
while SINDy captures dynamics from data, it does not explicitly incorporate physical
constraints, necessitating additional techniques or prior knowledge incorporation to ensure
compliance with fundamental principles [7,27]. Awareness of these limitations is essential
for the effective and informed utilization of the SINDy method.

The proposed three-section data analysis structure represents a notable evolution in
data analysis, particularly within the SINDy framework. This innovative structure intro-
duces a novel third section that extends the conventional SINDy methodology, providing
new avenues for enhanced data analysis. The initial two sections focus on identifying lin-
earizable and nonlinear dynamics within the system [29]. The addition of the third section
substantially enhances the overall data analysis process by categorizing and managing
negligible data, often regarded as noise, which significantly improves the precision and
accuracy of system modeling. This comprehensive approach enables a more profound
understanding of intricate nonlinear behaviors, benefiting applications across diverse do-
mains. The inclusion of the third section underscores the adaptability and versatility of
the SINDy methodology, allowing for a more nuanced examination of complex system
dynamics, which is a critical component of contemporary data-driven research.

The first section of the proposed data analysis framework plays a fundamental role in
identifying and characterizing first-order impacts within the system. Its unique focus lies
in evaluating the nonlinearities across nodes, with a particular emphasis on those that are
trivial or readily linearizable. This systematic approach dissects the system dynamics to
isolate elements that exhibit straightforward and manageable nonlinearities amenable to
linear approximations. This categorization enhances the precision and tractability of the
data analysis process, providing insights into complex system behaviors encompassing both
linear and nonlinear components, particularly in applications spanning diverse domains,
including power systems.

The second section within the outlined data analysis structure takes a central role in
the comprehensive examination of system dynamics. It is dedicated to discerning and
categorizing true nonlinearity, which differs significantly from the more straightforward
and readily linearizable elements identified in the first section. True nonlinearity repre-
sents intricate and nontrivial characteristics that defy simple linearization, delving deep
into complex system behaviors. Focusing on these inherently nonlinear dynamics offers
profound insights into the intricate interdependencies and feedback loops characterizing
real-world systems, transcending linear approximation constraints. This in-depth analysis
is pivotal for understanding nonlinearity’s nuances across various domains, providing a
foundation for a richer comprehension of system dynamics, particularly in the context of
power systems and beyond.

The third section within the data analysis structure plays a role in isolating and ad-
dressing components of system dynamics categorized as negligible. These elements include
tolerable errors, inherent noise, and other factors exerting minimal influence on the overall
system behavior. While individually minor, their cumulative impact can introduce varia-
tions and perturbations in the system’s dynamics. However, by considering these factors
within a dedicated section, they can be managed and refined effectively, enhancing the
overall modeling accuracy of the system. This meticulous categorization offers a framework
for researchers and system operators, allowing them to discern essential dynamics from
negligible ones, ensuring a more accurate representation of system behavior. This process
is fundamental for optimizing system models and is highly relevant to applications in
various domains, with particular significance in power system analysis.
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3. Demonstration Study

In this study on an IEEE 15-bus power grid, we employed the SINDy algorithm
to analyze voltage waveforms and identify system dynamics under various complex
operational scenarios. The choice of the experimental configuration was deliberate, aligning
it with similar studies conducted by other researchers. The system architecture consists of
15 buses interconnected through branches representing power transmission lines, each with
unique parameters and attributes governing power flow dynamics, as shown in Figure 2.
Our discussion also encompasses the test scenarios, including abrupt changes and gradual
load variations in the context of conventional SGs and IBRs at 50% and 100% integration.
Our analysis serves as the foundation for introducing the Volterra-based nonlinearity
index as a novel tool for assessing the order of nonlinearity in dynamic systems, offering
significant insights into system dynamics.
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3.1. Investigation Setup

The system architecture consists of 15 buses, representing distinct nodes within the
power system network, and these buses are interconnected through branches that represent
the power transmission lines. Each bus in the IEEE 15-bus system has a unique set of param-
eters and attributes and is connected to neighboring busses via branches characterized by
specific impedance, which govern the dynamics of power flow among the interconnected
buses. Table 1 provides a comprehensive overview of the network configuration and branch
parameters of the IEEE 15-bus system.

This investigation explores a comprehensive set of power system conditions, encom-
passing both abrupt changes (faults) and gradual changes (load variations), in the context
of conventional SGs and IBRs. The study encompasses three distinct scenarios, represent-
ing both single- and multi-dynamic systems. The first scenario examines a system solely
supplied by a synchronous generator at Bus 1, with all other generators disconnected from
the network. The second scenario incorporates the integration of an IBR at Bus 3, sharing
the load demand equally with the synchronous generator at Bus 1. In the third scenario, the
network is subjected to a 100% penetration of IBRs, where the demand is supplied by two
IBRs located at Bus 1 and Bus 3. Each scenario spans 10 s, with the synchronous generators
and IBRs initiated at t = 0 s. At t = 3.3 s, a three-phase-to-ground fault occurs at Bus 10,
cleared after four cycles of the fundamental frequency (60 Hz). Furthermore, at t = 7 s, a
significant load is connected to Bus 14, only to be disconnected at t = 8 s.

The SINDy algorithm, described in Algorithm 1, analyzed the acquired voltage wave-
forms, demonstrating promising system identification and modeling capabilities. Employ-
ing a refined computational approach, we consider essential parameters and algorithms
to facilitate a comprehensive analysis. Careful consideration is given to the sampling rate
(20,000 samples per second) and fundamental frequency (60 Hz) to ensure a high-fidelity
representation of electrical phenomena. The simulation duration (10 s) and total sample
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count (200,000) are determined to capture temporal dynamics faithfully. By leveraging the
Hilbert transform, converting voltage waveforms into complex numbers, and subsequent
computation of instantaneous phase angles, we gain profound insight into the intricate
behavior of the system.

Algorithm 1: The SINDy algorithm

Input:
Time history of the system’s state, denoted as v(t), where v(t)∈Rn.
Regularization parameter λ.
Library of candidate functions, Θ(V), where V is the data matrix that contains the observed
data points of the system variables.
Step 1: Data Collection
Initialize empty matrices V and

.
V, where

.
V represents the time derivatives of V.

For each time instance t in the set of time instances:
Collect data at time t and store it in v(t).
Compute the derivative of v(t) at time t, denoted as

.
v(t).

Append v(t) to the V matrix.
Append

.
v(t) to the

.
V matrix.

Step 2: Construct Library of Candidate Functions
Initialize an empty list for the library of candidate functions.
For each candidate function in the set of candidate functions:
Compute the values of the candidate function using data matrix V.
Append the function values to the library.
Step 3: Sparse Regression
Initialize an empty list Ξ to store the sparse coefficient matrices for each variable.
For each system variable k:
Perform sparse regression using data matrices V,

.
V, the library Θ(V), and regularization

parameter λ to obtain Ξk.
Sparse Regression Formulation:
The sparse regression problem for variable k can be expressed as follows:

minimize
∣∣∣| .

V − Θ(V)Ξ|
∣∣∣
2
+ λ||Ξ||1

where Ξk represents the sparse coefficient matrix for system variable k.
||.||2 denotes the L2 norm.
||.||1 represents the L1 norm.
λ is a regularization parameter that controls the trade-off between data fidelity and sparsity.
Step 4: Model Construction
Initialize an empty list for the models representing the system dynamics.
For each system variable k:
Construct the model for variable k using the library of candidate functions Θ(v) and the

corresponding sparse coefficient Ξk.
Model Construction:
The model for system variable k can be expressed as follows:

vk = Θ(v)ξk
where Θ(v) is a vector of symbolic functions of the elements of v.

ξk is the sparse vector of coefficients that determines the active terms in the system variable
vk = f (v).

Output:
The list of models represents the system dynamics for each system variable, providing

concise and accurate descriptions of the underlying nonlinear dynamics.

Furthermore, the simulation methodology incorporates the SINDy algorithm, wherein
a polynomial library is constructed with up to a third-order polynomial and a regularization
parameter (0.8). The ensuing coefficients derived from this process are then employed to
solve the system’s ordinary differential equation, thus elucidating the underlying dynamics.
Rigorous evaluation is conducted to assess the accuracy of the predicted slow dynamics
and quantify the disparity between the identified fast dynamics and actual data.
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Table 1. The implemented IEEE 15-bus-network configuration.

Line Index From Bus To Bus r + xi (Ω) Node Index Pload + jQload (kW + kVAR)

1 1 2 1.53 + 1.778i 2 100 + j60

2 2 3 1.037 + 1.071i 3 90 + j40

3 3 4 1.224 + 1.428i 4 120 + j80

4 4 5 1.262 + 1.499i 5 60 + j30

5 5 9 1.176 + 1.335i 6 60 + j20

6 6 10 1.1 + 0.6188i 7 200 + j100

7 7 6 1.174 + 0.2351i 8 200 + j100

8 8 7 1.174 + 0.74i 9 60 + j20

9 9 8 1.174+ 0.74i 10 60 + j20

10 10 11 1.15+ 0.065i 11 45 + j30

11 11 12 1.274 + 1.522i 12 60 + j35

12 12 13 1.274 + 1.522i 13 60 + j35

13 13 14 1.075 + 1.522i 14 120 + j80

14 14 15 1.075+ 1.522i 15 60 + j10

Applying polynomial function libraries up to the third order in the context of inverter-
based resources signifies a notable departure from traditional modeling approaches. In
power grid modeling, mainly when dealing with inverter-based resources, these higher-
order polynomial functions allow for a more intricate representation of the dynamic be-
havior within the system. Unlike first-order models that may oversimplify the interactions
between various components, including polynomial functions up to the third order enables
the capturing of nonlinearities and interactions characteristic of inverter-based resources.
These functions provide a flexible framework to model the complex interplay between
inverter controllers, grid conditions, and the response of renewable energy sources to
changing environmental factors.

The application of these polynomial function libraries has theoretical and practical
implications. Theoretically, it acknowledges the importance of capturing higher-order
dynamics and interactions. It aligns with the principles of complex systems theory, empha-
sizing the significance of nonlinear dynamics and the emergence of complex behaviors in
systems like power grids with significant inverter-based resource penetration. From a prac-
tical standpoint, this approach facilitates more accurate modeling, enabling grid operators
and planners to understand better and predict the behavior of inverter-based resources.
The practical advantages are particularly evident when renewable energy integration is
critical. Through accommodating higher-order dynamics, these models enhance the ability
to simulate, analyze, and optimize the grid’s performance, ultimately contributing to a
more resilient and efficient power system.

Our investigation introduces a three-section data analysis structure, offering an en-
hanced approach to analyzing system dynamics. The initial two sections focus on iden-
tifying linear and nonlinear dynamics within the system, categorizing elements that are
linearizable and those that are inherently nonlinear. The addition of the third section allows
for managing negligible data components, ensuring improved modeling accuracy. This
approach provides a more profound understanding of intricate nonlinear behaviors across
various domains.

3.2. SG-Driven Power Grid Dynamic Identification

The study’s findings demonstrate that SINDy, with its utilization of voltage waveforms,
successfully captures essential patterns and relationships within the electrical behavior
of the power grid. The results highlight the potential of SINDy as a powerful tool for
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system identification and modeling in power systems. The results related to the SG model
exhibit consistencies to foundation theories and findings from the other research. Our
analysis highlights the dominance of first-order terms in the extensive 15-dimensional
system. Second-order terms play minor roles, and third-order terms are close to zero,
affirming the precision of our SINDy-based model with an impressively low error rate in
capturing both short-term and long-term dynamics.

Figure 3 demonstrates that first-order terms dominate within the entire 15-dimensional
system. In this case, the SG resources are modeled using the basic model. Second-order
terms’ and third-order terms’ coefficients are negligible, approximated to zero using the
MATLAB calculation.
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The approximation of the system dynamics highlights the precision of the model
estimated. The error between the actual data and the identified model’s approximation
is impressively less than 0.001 percent, affirming the model’s accuracy in capturing both
short-term and long-term dynamics.

To reduce the potential bias introduced by our choice of SG model, we replicated the
investigation using a seventh-order SG model. This strategic adaptation allowed us to
explore the impact of higher-order terms, primarily second-order terms, on the overall
dynamics of the system. The result, presented in Figure 4, shows that the dynamics are
still dominated by first-order terms where second-order-term coefficients are minimal,
comprising less than 1 percent of the smallest first-order terms, and third-order term
coefficients are even more negligible, approximated to zero using MATLAB (R2021a).

It is noteworthy that the appearance of second-order terms did not yield any signifi-
cant effects, which aligns with the expectations set by current theoretical frameworks. The
conventional understanding of power systems suggests that higher-order terms, particu-
larly those that are second order, tend to play a relatively minor role in system behavior,
especially when compared to the prominence of first-order terms. This observation under-
scores the consistency of our findings with established theoretical principles, reaffirming
the accuracy and reliability of our analysis.

From a system analysis perspective, the prominence of the first-order terms in the anal-
ysis indicates that the nondiagonal eigenvalues of the system are nonvital. Consequently,
the system does not exhibit considerable system-level interactions and can be characterized
as linear or quasi-linear. This linearity suggests that the system is linearly stabilizable from
a monitoring and control standpoint. Furthermore, the assertion extends to the system’s
linearity, implying that the system response is proportional to the applied inputs and obeys
the principle of superposition. This linearity facilitates the analysis and control design,
allowing for the use of linear control strategies without resorting to nonlinear or complex
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control approaches. Furthermore, these dominant terms dictate the rate of decay or growth
of disturbances, directly impacting system stability and reflecting the system’s ability to
withstand disturbances and recover stability.
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From a Fourier series analysis perspective, the dominance of first-order terms in the
system underscores the critical influence of fundamental-frequency components on system
dynamics. This prominence suggests that the system’s behavior is primarily characterized
by these fundamental oscillations, with higher-order contributions playing a secondary
role, resulting in the system exhibiting minimal harmonic distortion.

3.3. Dynamic Identification in IBR-Integrated Power Grid

Through conducting the investigations on the power system integrated with IBRs, this
section navigates through these distinct nonlinear behaviors, grounded in the principles
of complex systems theory and nonlinear dynamics, to offer valuable insights into the
dynamic response of power grids with substantial IBR integration. The results embark
on an exploration of the dynamic behavior of IBRs within a power grid, shedding light
on the distinctive difference in the nature of nonlinear dynamics caused by IBRs and SGs.
The nonlinearity in SGs is characterized as “module-level dynamic nonlinearity,” which
is rooted in well-documented electromagnetic principles and iron core saturation effects,
primarily influenced by the individual components of SGs. In contrast, the nonlinearity
encountered in IBRs reveals a multifaceted character, encompassing both module and
system-level nonlinearity. The latter, system-level nonlinearity, is a product of intricate
interactions between diverse components, control algorithms, and the inherent variability
of input sources, indicative of complex system dynamics.

The investigation will analyze two scenarios. The first scenario will conduct the test
over the same IEEE 15-bus system that is supplied using both the basic SG model and
IBR where each supplies 50% of the load demand. The second scenario will investigate
the same power system under full penetration of IBRs, i.e., 100% of the load demands are
supplied with IBRs.

Through the first scenario with 50% integration of inverter-based resources into the
power grid, equalizing their role with SGs in supplying load demands, the SINDy algorithm
was used to identify the underlying dynamic with the measured data. As Figure 5 illustrates,
it was found that the second-order terms become more effective in the dynamic model.
The higher impact of the second-order terms will show that the data-based model, i.e., the
underlying model within measurements, has a more nonlinearizable nature that shows
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itself in higher coefficient values for second-order terms. However, the third-order terms,
representing the negligible data (noise) are still in the same condition.

Energies 2024, 17, x FOR PEER REVIEW 12 of 19 
 

 

same power system under full penetration of IBRs, i.e., 100% of the load demands are 
supplied with IBRs. 

Through the first scenario with 50% integration of inverter-based resources into the 
power grid, equalizing their role with SGs in supplying load demands, the SINDy algo-
rithm was used to identify the underlying dynamic with the measured data. As Figure 5 
illustrates, it was found that the second-order terms become more effective in the dynamic 
model. The higher impact of the second-order terms will show that the data-based model, 
i.e., the underlying model within measurements, has a more nonlinearizable nature that 
shows itself in higher coefficient values for second-order terms. However, the third-order 
terms, representing the negligible data (noise) are still in the same condition. 

 
Figure 5. Colormap of the dynamical terms identified using SINDy for the IEEE 15-bus system sup-
plied by basic model SG sources and IBRs. 

The results unveil a noteworthy transformation in the power grid dynamics during 
our exploration of IBR integration. What becomes evident is not only the heightened in-
fluence of second-order terms (characterizing nonlinear dynamics) on the system’s overall 
behavior within all the individual buses but also the activation of more terms in the sec-
ond-order region, thus highlighting the unmistakable imprint of system-level nonlinearity 
on outcomes. This intriguing shift underscores the intricate interplay of components in 
the network and the inherent variability in each source, collectively contributing to the 
observed system-level nonlinearity. In comparison to previous scenarios, this outcome 
signifies a fundamental difference, illuminating how power grids evolve when IBRs are 
introduced, revealing a dynamic that transcends more module dynamics and delves into 
the realm of complex, system-wide nonlinear interactions. 

In the next scenario, where load demands were exclusively supplied by IBRs, our 
model identification analysis, as depicted in Figure 6, remarkably underscored the domi-
nance of second-order terms. This shift in the composition of dominant terms is a pivotal 
result that merits in-depth discussion. The prominence of second-order terms in this con-
text carries profound implications for understanding power grid dynamics. 

Figure 5. Colormap of the dynamical terms identified using SINDy for the IEEE 15-bus system
supplied by basic model SG sources and IBRs.

The results unveil a noteworthy transformation in the power grid dynamics during
our exploration of IBR integration. What becomes evident is not only the heightened
influence of second-order terms (characterizing nonlinear dynamics) on the system’s overall
behavior within all the individual buses but also the activation of more terms in the second-
order region, thus highlighting the unmistakable imprint of system-level nonlinearity
on outcomes. This intriguing shift underscores the intricate interplay of components in
the network and the inherent variability in each source, collectively contributing to the
observed system-level nonlinearity. In comparison to previous scenarios, this outcome
signifies a fundamental difference, illuminating how power grids evolve when IBRs are
introduced, revealing a dynamic that transcends more module dynamics and delves into
the realm of complex, system-wide nonlinear interactions.

In the next scenario, where load demands were exclusively supplied by IBRs, our
model identification analysis, as depicted in Figure 6, remarkably underscored the domi-
nance of second-order terms. This shift in the composition of dominant terms is a pivotal
result that merits in-depth discussion. The prominence of second-order terms in this context
carries profound implications for understanding power grid dynamics.

This outcome indicates the profound impact of IBR-related nonlinearity on the power
grid, highlighting the necessity for more nuanced modeling to represent these complex
interactions accurately. The dominance of second-order terms indicates that these nonlinear
behaviors have a substantial impact on the system’s dynamics. In the context of IBRs, it
becomes evident that second-order terms play a key role in capturing and representing the
system’s response to these nonlinear effects. This underscores the need to consider and
model the nonlinearity introduced by IBRs explicitly, as first-order models may need to be
revised to represent these intricate interactions.

Moreover, from a theoretical perspective, this result aligns with the established prin-
ciples of nonlinear system dynamics. In complex systems, it is expected that we observe
higher-order nonlinearities, especially when the interactions among system components are
intricate. These second-order terms can arise due to a variety of reasons, including feedback
mechanisms, nonlinear-component characteristics, and complex system interactions.
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Furthermore, a noteworthy observation emerged when comparing the level of partici-
pation of second-order terms in the 100% penetration of IBRs to the 50% and 0-penetration
scenarios. This comparison, presented in Figure 7, accentuated a significant shift, indicative
of the substantial impact of variable interactions in contrast to the direct effects of individual
variables on the system’s dynamics.
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As observed, the analysis of the seventh-order SG model underscores the prevalence of
first-order terms, indicative of linearizable dynamics within the measured data. The limited
influence of high-order terms and noise in this model allows for their neglect without
substantially affecting the model’s accuracy. Furthermore, the nonlinearity in this context
is primarily associated with the individual buses connected to SG sources, suggesting a
module-level nonlinearity.

In scenarios featuring 50% and 100% integration of IBRs, a notable increase in nonlin-
earity is evident, which is manifested as higher coefficients for second-order terms. It is
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worth noting that the integration of IBRs activates a greater number of terms, and these
activated terms are not directly linked to the buses connected to IBR sources, indicating the
emergence of system-level nonlinearity resulting from network interactions. The graphical
representation vividly portrays the escalating nonlinearity and the increasing influence of
second-order terms as IBR penetration rises from 50% to 100%, ultimately leading to the
dominance of nonlinear dynamics in the overall system behavior.

From a system analysis perspective, when high-order terms dominate the dynamics, it
implies a departure from the conventional understanding associated with the prominence
of first-order terms. In this scenario, the system’s nondiagonal eigenvalues become vital
indicators of system behavior. The dominance of high-order terms suggests increased
complexity and nonlinearity in system dynamics, potentially leading to stronger system-
level interactions and a departure from linear or quasi-linear behavior. Consequently, the
eigenvalues associated with these high-order dynamics play a crucial role in determining
system stability, with their characteristics influencing stability margins and critical clearing
times. Understanding and analyzing these eigenvalues become imperative for assessing
system stability and designing effective control strategies.

From a Fourier series analysis perspective, the dominance of high-order terms unveils
a more intricate system response characterized by a broader range of frequency compo-
nents, leading to a richer harmonic content in the system’s response. This phenomenon
enriches the harmonic content within the system’s response, aligning with authors’ pre-
vious findings [30]. Such heightened complexity underscores the necessity for thorough
frequency–domain analysis to comprehend the breadth of system behavior fully.

3.4. Volterra-Based Nonlinearity Index

In dynamic systems, the interplay between linear and nonlinear behaviors is a com-
mon phenomenon, and quantifying this nonlinearity holds paramount importance for
comprehending system performance, facilitating effective control, and optimizing signal
processing. In this study, the Volterra-based nonlinearity index (VNI) is introduced as a
novel analytical instrument with the capacity to evaluate nonlinearity in dynamic systems
quantitatively. This section not only introduces the fundamental concept of VNI but also
explores its mathematical underpinnings. The VNI’s significance transcends this, as it
enables the quantification of the nonlinear-to-linear relationship within dynamic systems,
offering profound insights into the intricate dynamics at play. Moreover, the VNI’s versatil-
ity allows for the recognition of different types of nonlinearities and the quantification of
the relative influences of system-level and module-level nonlinearity, further enhancing its
utility in system analysis and modeling. Using the case studies conducted in this research,
we showcase practical experiments employing VNI, revealing new discoveries regarding
nonlinearity in the seventh-order SG model compared to IBRs. These discoveries highlight
different patterns of nonlinearity and emphasize the importance of structural analysis in
identifying their sources.

Since dynamic systems often exhibit a combination of linear and nonlinear behaviors,
characterizing the extent of nonlinearity is pivotal in understanding system performance,
control, and signal processing. To elucidate the impact of high-order terms and to highlight
the effectiveness of the SINDy in capturing system dynamics, we introduce a novel index
that assesses the influence of high-order dynamics. The VNI is an analytical tool designed
to assess the level of nonlinearity in dynamic systems quantitatively. The VNI draws
its foundation from the Volterra series [16], a powerful mathematical construction that
dissects system responses into linear and higher-order nonlinear components, providing a
systematic approach to nonlinear modeling and analysis [31].

VNI is expressed as the ratio of the energy (or magnitude) associated with the nonlinear
components to the energy of the linear response within the Volterra series expansion. This
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formulation encapsulates the inherent nonlinearity of the system and the interplay between
linear and nonlinear phenomena. Mathematically, VNI is defined as follows:

VNI =
∑N

k=1
s

|Hk(τ1, τ2)|2dτ1dτ2

|H0|2
(12)

Here, N represents the selected order of the Volterra series, accommodating the anal-
ysis of a range of higher-order nonlinear terms. Hk(τ1, τ2) signifies the Volterra series
coefficients on the kth order nonlinear terms, and |H0|2 represents the squared magnitude
of the linear response.

A higher VNI value implies a greater prevalence of nonlinearity in the system. Con-
sequently, VNI serves as a comprehensive gauge of the nonlinear-to-linear relationship
within a dynamic system, contributing to a more profound understanding of the system’s
dynamics and its suitability for specific applications.

It has to be noted that the application of machine learning approaches to the VNI
introduces an exciting dimension in the realm of system analysis and modeling. VNI,
when coupled with machine learning techniques, can unlock the potential to discern and
differentiate various types of nonlinearities inherent within complex dynamic systems.
Machine learning algorithms recognize patterns, relationships, and hidden structures
within data, and, when applied to VNI data, they can extract nuanced distinctions in the
system’s behavior. These distinctions manifest as different types of nonlinearities that
are challenging to identify using conventional methods. This capability has significant
implications for characterizing the complex behavior of systems with mixed linear and
nonlinear components relying on measurement-based and real-time methods, as it can
provide insights into how different nonlinear phenomena manifest and interact in the
overall system response.

The VNI framework could be utilized in diverse applications across science and en-
gineering disciplines. In control systems, it aids in assessing the stability and robustness
of nonlinear control strategies, informing the choice of appropriate controllers. In com-
munication systems, it provides insights into signal quality, especially in scenarios where
nonlinear effects can degrade signal integrity. In physical and biological systems, VNI
enables researchers to quantify and understand the nonlinear interactions underlying
complex behaviors.

Applying the VNI and VNI profile to the case studies in our investigations, the
VNI values for three scenarios in the system were supplied with seventh-order SGs, a
combination of basic model SGs and IBRs, and the IBRs were calculated equal to 0.78, 0.54,
3.54, respectively.

To have a visual indicator of the extent of nonlinearity within the dynamic system the
VNI profile, as a novel concept used to assess the linearity and nonlinearity within dynamic
systems, particularly in system-level interactions is introduced. It is based on the proposed
VNI, which quantitatively measures the level of nonlinearity within a dynamic system.
The VNI profile associates a profile with the identified dynamics of the system, explicitly
relating the slope of the profile, r, to the calculated VNI value through the following relation:

r = VNI − 1 (13)

This relationship provides a means to classify the prevalence of either linearity or
nonlinearity within the system. The calculation of the VNI profile for each case study serves
to distinctly illustrate and visualize the distinctions in both the magnitude and character of
nonlinearity between them. When the VNI profile exhibits a negative slope, it suggests that
linearity dominates the system dynamics. In this scenario, the higher-order terms have less
influence on the overall dynamics, indicating that the system’s behavior is primarily linear
or that nonlinearity is confined to a module level. This means that linear relationships
can predominantly explain the system’s response, and the impact of higher-order terms
is limited.
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Conversely, when the VNI profile shows a positive slope, it signifies the domination
of nonlinearity within the system and suggests that the higher-order terms have a more
significant impact on the overall dynamics. In such cases, nonlinearity is not confined to
module-level interactions but extends to system-level interactions. Through analyzing
this profile, researchers and engineers can understand whether linearity or nonlinearity
predominates in a given system and whether the nonlinearity is confined to the module
level or extends to system-level interactions. The estimated VNI profiles of the scenarios
with seventh-order SGs, a combination of basic model SGs and IBRs, and the IBRs are
presented in Figure 8.
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4. Conclusions

This paper contributes to the field of power system analysis by employing the SINDy
method, exploring a range of conditions, including abrupt faults and gradual load vari-
ations. This methodology ensures robustness, generalization potential, and the identifi-
cation of key dynamical features utilizing voltage measurements, thereby advancing our
theoretical understanding of power system analysis. Introducing the Volterra-based non-
linearity index in this paper, the study distinguishes first- and high-order active terms in
the system’s governing equation. The VNI characterizes system-level nonlinearity through
differentiating between first-order linearizable terms, second-order nonlinear dynamics,
and third-order noise, providing a comprehensive grasp of power systems’ intricacies. The
results showed a fundamental shift in system dynamics as power sources transition to IBRs,
revealing system-level nonlinearity compared to module-level nonlinearity in conventional
generators. The proposed index quantifies nonlinear-to-linear relationships, enriching
our understanding of power system behavior and offering a valuable tool for discerning
different nonlinearities and visualizing their distinct patterns through the index’s profile.
The introduction of higher-order polynomial function libraries to model IBR integration
marks a significant departure from traditional approaches, reflecting the evolving needs of
power grid analysis as renewable energy takes center stage.

The relevance of the findings regarding the influence of dominant terms on system
eigenvalues extends to established methodologies such as dynamic phasor modeling, state
estimation, and optimal power flow. Dynamic phasor modeling, which approximates
the dynamic behavior of power systems using phasor representations, relies on accurate
characterization of system eigenvalues to capture transient stability and dynamic response.
By understanding the impact of dominant terms on eigenvalues, dynamic phasor models
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can better simulate system behavior under varying operating conditions, enhancing stability
assessment and control design. Similarly, in state estimation, accurate estimation of system
states and parameters is crucial for real-time monitoring and control. Knowledge of
dominant terms aids in refining state estimation algorithms, improving the accuracy of
system state estimates, and enhancing situational awareness. Furthermore, in optimal
power flow studies, where the objective is to optimize power system operation while
satisfying operational constraints, considering system eigenvalues influenced by dominant
terms enables a more precise assessment of system stability limits and helps identify
optimal operating points that maximize efficiency and reliability.

The practical implications of these findings are substantial for power grid operators
and planners. By utilizing the introduced VNI and the insights gained from the SINDy
method, operators can better assess and manage the dynamic behavior of power systems.
This knowledge enables more accurate predictions of system-level nonlinearity, helping to
anticipate and address potential challenges associated with the transition from conventional
generators to IBRs.

Additionally, the ability to quantify nonlinear-to-linear relationships through the
proposed index offers a practical tool for optimizing grid performance. Grid operators can
use this information to fine-tune control strategies, improve grid stability, and enhance
operational efficiency. The departure from traditional modeling approaches, especially with
the introduction of higher-order polynomial function libraries for IBR integration, reflects a
forward-looking perspective that aligns with the evolving landscape of renewable energy.
This shift provides practical solutions for building resilient and efficient grids capable of
accommodating the increasing penetration of renewable energy sources.

The complexities of modern power systems demand ongoing research and develop-
ment to refine our tools and approaches. Future investigations could further enhance our
ability to detect and identify sources of oscillations in real-time, a crucial step towards
ensuring the stability and reliability of our power grids.
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