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Abstract: Adsorbed gas may account for a significant part of the gas resources in shale gas and
coalbed methane plays. Understanding gas sorption behaviors and integrating gas desorption into
analytical reservoir modeling and an associated transient performance analysis are important for
evaluating a system’s gas desorption ability and further analyzing its CO2 injectability, utilization,
and storage capacity. However, gas desorption, along with other pressure-dominated gas properties,
increases a system’s non-linearity in theoretical studies. Few studies on analytical modeling have
integrated the gas desorption feature into a non-linear system and validated the model’s accuracy. In
this study, the desorbed gas due to pressure decay was treated as an additional source/sink term in
the source-and-sink function methods. This method was combined with the integral image method in
a semi-analytical manner to determine the amount of gas desorption. Fundamental reservoir and gas
properties from the Horn River Basin shale gas play were chosen to evaluate the methodology and
the performance of the associated production well. The results were compared with the commercial
fine-gridding numerical simulation software, and good matches were achieved. The results showed
that the desorbed gas released from rock will supply free-gas flow when the pressure significantly
decreases due to gas production. The production wellbore pressure can be maintained at a higher
level, and the production rate was higher than in cases where gas desorption was not considered,
depending on the operating conditions.

Keywords: semi-analytical methodology; shale gas desorption; non-linear gas diffusion; reservoir
modeling; pressure and rate transient analysis

1. Introduction

Organic-rich shale and coalbed methane (CBM), which serve as sources of low-carbon
fossil fuels, will play an important role in the future development of a clean energy supply;
CO2 capture, utilization, and storage (CCUS); and geothermal energy production. Natural
gas is seen as a relatively cleaner-burning fossil fuel than coal and petroleum products, as it
generates fewer emissions of air pollutants and CO2 [1] while still providing a high calorific
value [2]. The development of unconventional gas resources has significantly changed the
global gas supply market, and the U.S. has become a self-sufficient-energy country after the
evolution of hydraulic fracturing technology, as an example [3,4]. CCUS is one of the most
promising methods for reaching a net-zero-emissions goal, and depleted shale gas and CBM
could be good potential formations for geological carbon storage [5–9]. Molecular models
have shown that the adsorption of CO2 can promote CH4 desorption [10], which enhances
the gas production in shale and CBM and the storage of more CO2 through geological
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sequestration. Many shale gas and CBM formations are also sources of geothermal en-
ergy [11,12] and thermal energy storage [13]. As a result, unconventional gas resources such
as shale and CBM are critical to the future energy industry, and studies on their resource
characterization, storage mechanisms, and flow regimes are important to understanding
their resource production and their potential for applications in CCUS and geothermal
energy production.

Gas adsorption is one of the primary storage mechanisms of natural gas resources
in shale gas and CBM [14]. Compared to conventional gas reservoirs, shale gas and
CBM present greater difficulties in estimating their gas production because of their gas
desorption mechanism [15,16]. In shales, gas is physically adsorbed (Figure 1) on organic
matter because the attractive intermolecular forces between the solid surface and natural
gas are greater than those between gas molecules [17,18]. The Langmuir isotherm is widely
used to describe the gas desorption in shale gas reservoirs [15,18–20]. The maximum
adsorbed gas volume can be affected by clay minerals, the pressure, the temperature, the
water/moisture content, the thermal maturity, and the kerogen types [18,21–24]. However,
many publications and laboratory data suggest that the organic richness, or the total organic
carbon (TOC), primarily controls the adsorption feature in shale gas reservoirs [18,22,25–27].
During the shale gas production process, the free gas existing in the porous rock matrix
(organic and inorganic) and fractures will first be driven towards producers by the pressure
gradient. The adsorbed gas will then be released from the solid surface due to the pressure
depletion and become the new free-gas phase. Among the gas in reservoirs, adsorbed shale
gas accounts for 20–80% [19,20] of the total original gas in place (OGIP). Considering future
CO2 sequestration and geothermal energy production, accurately evaluating the shale
gas adsorption/desorption behavior through the transient performance of the production
wellbore is essential.
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Analyzing the transient performance of unconventional gas reservoirs using equa-
tions has historically been a challenge due to their high non-linear gas diffusion and
adsorption/desorption behavior. In general, pseudo-functions are applied to integrate
the pressure-dependent variables into pressure and time terms [28–31]. As a result, the
non-linearity of the system due to its pressure-dependent gas properties can be linearized,
and the equation can be solved analytically. Recent works have mainly focused on mod-
eling the performance of hydraulic fracturing wells in tight and shale reservoirs [32–35].
Few studies have integrated shale gas desorption into reservoir-scale modeling [36], and
fundamental research on the effect of gas desorption needs to be conducted and validated.
This work presents an analytical approach using an additional source/sink method to
describe non-linear gas diffusion processes and reveal the transient behavior of the pressure
decline in a shale gas reservoir with the gas desorption mechanism. The proposed analytical
method uses linearized gas diffusivity equations, based on pseudo-pressure and pseudo-
time, and the integral image method (IIM) for reservoir-scale modeling. The pseudo-time
was converted back to the real-time domain by resolving the reservoir’s average pressure
in the region of investigation using an iterative procedure in the Laplace domain. Gas
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desorption was analytically treated as an additional source/sink with a variable rate within
each discretized reservoir domain. The proposed method was then applied to the Horn
River shale gas play to examine the gas desorption and flow behaviors in relation to the
production performance.

2. Methodology
2.1. Gas Diffusion Process

The natural gas diffusion process in porous media can be characterized by a combi-
nation of the mass conservation principle and the gas-phase equation of state (EOS). The
continuity equation of gas diffusion is expressed as:

∇
(

p
µgzg

k∇p
)
= ϕ

∂

∂t

(
p
zg

)
(1)

where p is the pressure of the gas phase, k is the gas-phase permeability, ϕ is the rock
porosity, µg is the viscosity of natural gas, zg is the gas compressibility factor, and t is the
time. In this equation, the viscosity and gas compressibility factor are dependent on the
pressure, making the diffusion equation non-linear. Pseudo-pressure (Equation (2)) and
pseudo-time (Equation (3)) were applied to integrate the pressure-dependent variables in
the continuity equation (Equation (1)) and linearize the system:

m(p) =
∫ p

p∗

p
µgzg

dp (2)

ta =
∫ t

0

k
∅cg(τ)µg(τ)

dτ (3)

where p∗ is the reference pressure; cg is the gas compressibility, which can be expressed
by a function of p and zg; and τ is the time integral variable. The linearized gas diffusion
equation is then expressed as follows:

∇2m =
∂m
∂ta

(4)

By applying the source-and-sink function methods first used in the mathematical
description of variable temperature cases of heat conduction in solids [37] and Newman’s
product [38], the point-source/sink solution of the pseudo-pressure change in a 2D system
can be expressed as follows:

∆m
(
x, x′, y, y′, ta

)
=

pstd
kh

· Tres

Tstd

∫ ta

o
qstd(τa)

1
4π(ta − τa)

exp

[
− (x − x′)2 + (y − y′)2

4(ta − τa)

]
dτa (5)

where pstd and Tstd are the pressure and temperature under standard conditions, respec-
tively; Tres is the temperature under reservoir conditions; h is the reservoir thickness in this
2D system; qstd is the gas source/sink flow rate under standard conditions; x and y are the
coordinates of any point; x′ and y′ are the coordinates of the source/sink point; and τa is
the instantaneous pseudo-time. Further details on the use of source-and-sink functions to
solve problems regarding the fluid flow and heat transfer in porous media are given in
previous studies [39–42].

Dimensionless terms could help generate a universal solution and the results could be
applied for further type-curve matching. The related dimensionless terms are defined as
follows:

mD =
2πkh

qstd_unit·
Tres ·pstd

Tstd

·∆m (6)
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tD =
ta

l2
re f erence

(7)

qD =
qstd

qstd_unit
(8)

xD =
x

lre f erence
(9)

yD =
y

lre f erence
(10)

x′D =
x′

lre f erence
(11)

y′D =
y′

lre f erence
(12)

where qstd_unit is the unit flow rate of the gas source/sink under standard conditions and
lre f erence is the reference length. The dimensionless solution of the gas reservoir point source
can be rewritten as follows:

mD
(

xD, x′D, yD, y′D, tD
)
=

∫ tD

0
qD(τD)·

1
2(tD − τD)

exp

[
− (xD − x′D)

2 + (yD − y′D)
2

4(tD − τD)

]
dτD (13)

In order to inverse the dimensionless results to dimensional space, the pseudo-pressure
and pseudo-time need to be evaluated back to the pressure and time domains. A curve of
the pseudo-pressure vs. pressure was generated using the gas-phase properties, either from
lab tests or empirical formulas. The pressure was then calculated through interpolation
from the data set. In terms of evaluating the pseudo-time, the use of the average pressure
in the drainage area was proposed to determine the numerical integral. The time was
expressed using the inverse of the pseudo-time:

t =
∫ ta

0

∅cg(τa)µg(τa)

k
dτa (14)

For the pressure-dependent variables cg and µg, the average pressure in the drainage
area was used to calculate their values at each time point. The drainage area was defined
as the area where the pressure changed compared to the initial reservoir pressure. In
dimensionless terms, it was the area where mD was not equal to zero (Figure 2).
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The average pressure can be calculated using the volumetric average:

pave(t) =
∫

p(t)dVd∫
dVd

(15)

where Vd is the volume of the reservoir in the drainage area. A verification case study of
a point source in the center of a square-shaped 2D reservoir was conducted to examine
the pseudo-pressure and pseudo-time system. The pressure decline under a constant
production rate is plotted in Figure 3. The result was compared with a commercial software,
the KAPPA Workstation Saphir V.5.50 module. A highly accurate result was achieved by
using the pseudo-pressure and pseudo-time methodology in the gas diffusion process.
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behavior.

2.2. Desorption Behavior

The gas desorption behavior characterized from lab experiments was used in this
analytical model. The widely accepted Langmuir isotherm was used as an example to
demonstrate the application of the proposed method in a shale gas desorption analysis.
The gas content per unit weight of shale or coal rock can be expressed as follows:

C =
VL p

pL + p
(16)

where C is the gas content, measured in scf/ton of coal or shale rock; VL is the Langmuir
volume, which is the largest volume of the adsorbed gas per unit weight of rock; and pL is
the critical desorption pressure when the gas content reaches 0.5VL. The Langmuir volume
and pressure are described graphically in Figure 4.
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According to the Langmuir model, the desorbed gas due to the pressure change can
be mathematically described as follows:

∆V =

(
pold

pL + pold
− pnew

pL + pnew

)
·VL (17)

where ∆V is the desorbed gas due to the pressure change from pold to pnew per unit weight
of the rock matrix. Assuming this process takes ∆t, the gas desorption rate in a specific
volume of the reservoir in a 2D system can be mathematically described as follows:

qdesorption =
∆V
∆t

=

(
pold

pL+pold
− pnew

pL+pnew

)
·VL·ρb·∆x∆yh

∆t
(18)

where ρb is the bulk density, ∆x and ∆y are the sizes of the specific volume in a 2D system,
h is the reservoir thickness, and the “¯” on the variables means the average value in this
specific volume.

According to physics, desorbed gas is released naturally into the reservoir when the
pressure decreases, adding free gas to the reservoir. This addition of the desorbed gas is
equivalent to a free-gas injection from a virtual bulk-shaped injection well. By substituting
Equation (18) to Equation (13), the pressure change to the system due to the gas desorption
from this specific volume (Figure 5) can be quantified as follows:

mD(xD, yD, tD) =
∫ tD

0

1
2
·qD_desorption(τD)·psx(tD − τD)·psy(tD − τD)dτD (19)

where psx(tD − τD) and psy(tD − τD) are the source/sink functions in the x and y directions,
respectively, which can be derived by the integral of the point-source solution along the x
and y directions:

psx(tD − τD) =
1

∆x

∞

∑
−∞

{
1
2

er f
[

xR − x + 2nxe

2
√

tD − τD

]
− 1

2
er f

[
xL − x + 2nxe

2
√

tD − τD

]
+

1
2

er f
[

xR + x + 2nxe

2
√

tD − τD

]
− 1

2
er f

[
xL + x + 2nxe

2
√

tD − τD

]}
(20)

psy(tD − τD) =
1

∆y

∞

∑
−∞

{
1
2

er f
[

yT − y + 2nye

2
√

tD − τD

]
− 1

2
er f

[
yB − y + 2nye

2
√

tD − τD

]
+

1
2

er f
[

yT + y + 2nye

2
√

tD − τD

]
− 1

2
er f

[
yB + y + 2nye

2
√

tD − τD

]}
(21)

where xL, xR, yB, and yT are the coordinates of the specific volume; xe and ye are the
boundary locations; and “erf” stands for the error function defined in Equation (22):

er f (x) =
2√
π

∫ x

0
e−t2

dt (22)

2.3. Non-Linear System

The non-linearity due to the gas desorption from the rock came from two aspects.
The gas desorption rate versus time did not have an analytical solution. For example,
similar to the system of fluid flows, the change in the pressure in a specific area can be
random (Figure 6a). The desorption rate of that area follows the derivative line of the
average pressure, which is also non-linear. In order to quantify the desorption rate for the
calculation, we assumed that, over a small specific time range, ∆t, the desorption rate was
uniform, as shown in Figure 6b. By further applying the superposition principle, similarly
to the well-testing theory, this kind of stepped-rate gas injection problem can be expressed
semi-analytically.
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The other difficulties came from the unknown pressure at a given time point, because
we need the change in pressure to calculate the amount of gas desorbed from the last
time point. We can then calculate the overall pressure change if we know the amount
of desorbed gas from the last time point, forming a closed circle that cannot be solved
analytically (Figure 7a). Here, we introduce a system involving a self-iterative coupling
method to solve this problem. In the calculation at the present time point, a guessed
input of the average pressure is assumed (Figure 7b) and used to calculate the amount
of gas desorbed since the last time point. The calculated desorption rate is then used
to calculate the present pressure, updating the previous guessed average pressure value
(Figure 7c). The calculation loop will keep running until an acceptable difference between
the average pressure values of the two most recent iterations is achieved. The details
of the modeling procedures are shown in a flowchart (Figure 8). The calculations of the
source/sink functions, the numerical Laplace transformation, the matrix computation, and
the inverse Laplace algorithm were all coded using C++ in the Microsoft Visual Studio
Community 2022 environment.
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(c) Illustration showing the system’s self-iterative method (green arrows represent the causality).
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The reservoir-scale system modeling was based on a patented reservoir simulation
methodology using the integral image method of source-and-sink functions [39]. The
source-and-sink functions were calculated at each edge of the sub-grids of the system to
capture the accurate cross-boundary flow flux. This method has been successfully applied
in the analytical modeling of multistage horizontal fractured wells [40] and many other
extended studies [32,41,42].

3. Case Study and Results
3.1. Reservoir Description

The Horn River shale gas play in the Horn River Basin (HRB), British Columbia,
Canada, is one of the major shale gas plays in NE British Columbia, Canada, along with
other shale regions, such as the Liard Basin, the Cordova Embayment, and the Montney.
Dry natural gas resources [43] are mainly stored in the Muskwa, Otter Park, and Evie
formations (Figure 9). A study by Dong et al. [44] showed that this shale reservoir has a
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complex pore system. Organic-matter-hosted pores, intraparticle pores, and interparticle
pores are present in the Horn River shale reservoirs, and they form the porous media for the
gas flow. Organic-matter-hosted pores are much smaller than intraparticle and interparticle
pores. Although micropores dominate in number, mesopores and macropores contribute
more to the total pore volume. Kim et al. [45] conducted a shale gas resource assessment
of the Horn River shales and suggested that adsorbed gas accounts for 43% of the initial
original gas in place.

The HRB has experienced a period of robust development since 2005 because of the
advances in horizontal wellbore drilling and the associated multistage hydraulic fracturing
technologies [46]. In 2011, the HRB was estimated to ultimately contain 78 Tcf of marketable
gas resources [47]; the peak number of active producing wells in this region reached 222 in
2015, and a large amount of data has been accumulated that could help us better understand
the role of gas desorption in production and recovery. However, drilling and production
began to slow down due to the unfavorable natural gas price [48]. Although only 99 wells
remain in production as of December 2020, a renewal of the development of the natural
gas resources in this region can be expected in response to increasing demands for natural
gas as a low-carbon energy transition. The general reservoir properties of the HRB are
summarized in Table 1.

Table 1. Horn River shale gas reservoir parameters [43].

Depth Range 1900–3100 m

TOC range 1–5%

Porosity 3–6%

Pressure 20–53 MPa

Pressure regime Normal-Over Pressure

Temperature 80–160 ◦C
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3.2. Production-Well Performance

Two wellbore configurations were studied to analyze the bottomhole pressure varia-
tion under a constant gas production rate. Figure 10 shows the vertical and fractured wells
in a 2D reservoir system. The reservoir and gas properties remained the same in both well
configuration models and are summarized in Table 2.
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Table 2. Parameters of the reservoir and gas used in the case study.

Parameter Symbol Value Unit

Reservoir permeability k 0.5 md

Reservoir porosity ∅ 3 %

Reservoir thickness h 100 ft

Reservoir initial pressure pi 5400 psi

Reservoir temperature T 80 ◦C

Bulk density ρb 0.078 Ton/ft3

Langmuir volume VL 55 scf/ton

Langmuir pressure pL 740 psi

Gas specific gravity γg 0.6

Production rate at surface qstd 1000 Mscf/day

The gas-pressure-dependent properties, including the viscosity, compressibility factor,
and compressibility, were calculated using classical empirical formulas. However, raw
experimental data can also be used in this methodology. The natural gas viscosity was
derived from the empirical equation developed by Carr, Kobayashi, and Burrows [50],
and the compressibility factor was derived from Brill and Beggs’s z-factor correlation [51].
The details for those empirical equations can be found in the Natural Gas Engineering
Handbook [52]. The gas compressibility was calculated using Equation (23). The gas
compressibility factor, viscosity, and compressibility are plotted in Figure 11. The numerical
integration was then used to obtain the pseudo-pressure (Figure 11), which was inversed
to the real pressure value.

cg =
1
p
− 1

zg

∂zg

∂p
(23)
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Figure 12 shows the bottomhole pressure decay of the vertical wellbore case in the
first 500 h under a constant production rate. The wellbore had a radius of 0.3 ft. The
downhole wellbore pressure dropped sharply from the reservoir’s initial pressure, 5400 psi,
to 5100 psi within the first 100 h. Then, it gradually decreased to 5050 psi over the rest
of the 400 h. The blue line in the plot represents the results of this study, and the blue
circles represent the results of the commercial numerical simulation software, the KAPPA
Workstation numerical module V.5.50 (Rubis). The results were clearly well matched in
this case.
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Figure 13 compares the results of this study with a no-desorption case using the same
input parameters. The solid line represents the bottomhole pressure when considering
desorption, calculated in this study, and the dashed line represents the pressure without
the desorption mechanism. There was no difference between the two cases in the first few
hours. However, the difference became evident after 300 h of production. The difference
would become larger after years of production. Moreover, a shale gas reservoir with
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adsorbed gas would provide a higher wellbore pressure under the same production rate.
The desorbed gas released from the rock matrix played the role of an additional gas source
supply and ensured the maintenance of the reservoir pressure.
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The dimensionless results of the pressure derivative are plotted in Figure 14. In well-
testing engineering, a log–log plot of the pressure derivative curve helps evaluate the flow
regime and diagnose the well’s performance. The solid line represents the results of the
shale gas reservoir with the desorption mechanism calculated by this model. The dashed
line is the standard conventional gas reservoir without desorption, as the reference line.
The dashed line remained at 0.5 before tD = 2, and then it rose in a straight line. The flat
pressure derivative in the log–log plot represents a radial flow regime. At last, the dashed
line became a unit slope line, which means that the transient pressure wave reached the
boundary of the reservoir, representing the dominant boundary flow. The solid line also
started at 0.5, and then gradually dropped slightly below the 0.5 horizontal line. Then, it
slowly rose to the unit 1 slope line. However, the values were smaller compared to those
of the no-desorption case. In well testing, when the pressure derivative value becomes
lower, it usually means that the transient pressure wave reached a better reservoir, such as a
reservoir with a higher permeability and porosity. In contrast, when the pressure derivative
value increases, it could mean that the transient pressure wave met an obstruction, such
as a lower-permeability region, a boundary, or a sealed fault. In this standard case for a
shale gas reservoir with gas desorption, the pressure derivative started with a radial flow.
However, because of the release of additional gas, the pressure derivative decreased. At
last, it still reached the boundary as a unit slope line, but the pressure derivative value was
lower than in the no-desorption case. As such, a dimensionless pressure derivative plot
could be potentially used to compare different shale gas plays for gas adsorption.

In this study, variable reservoir discretization was used to handle the spatial variation
in gas desorption in the reservoir. The model grid was denser near the production wellbore,
where the greatest pressure drop occurred and the desorbed gas accumulated the most.
Usually, in numerical simulations, finer gridding is needed to obtain an accurate result.
Figure 15 shows the results of this study, where various grid numbers were used to test the
accuracy. The bottomhole pressure resulted in overlap, which showed a good accuracy for
this methodology.

The images on the left-hand side of Figure 16 show the 2D meshed pressure distri-
butions at three different time points. The transient pressure wave moving towards the
boundary was identified. At tD = 0.5, it showed a radial flow region. When tD = 4, it
was in the transition zone from a radial flow to a dominant boundary flow. It reached the
boundary when tD = 10. The other three images on the right-hand side of the figure are
the 3D plots of the pressure distribution at the same three time points. The pressure drop
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started from the center wellbore. After 9 days, the pressure across the entire reservoir was
below the initial reservoir pressure, and it kept decreasing below 5370 psi after 23 days.
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The case of a fractured wellbore was also studied. The half-length of the fracture was
300 ft, and it was located in the center of the system. Figure 17 shows the dimensionless
pressure derivative curve of the cases that did and did not consider adsorption. The black
solid line is the pressure derivative curve without considering desorption, as the baseline
for comparison. The green dashed line is the case that did consider gas desorption. The
black line started as a half-slope line, which indicates that it was in the linear flow regime.
Then, it gradually increased to a flat line at a value of 0.5, which shows a radial flow.
Eventually, it kept increasing and became a unit slope line, which shows that the pressure
wave reached the boundary and entered the dominant boundary flow. The green dashed
line also started as a half-slope line. However, in the middle of the transition zone, it was
lower than that for the no-desorption case, and when it eventually reached the dominant
boundary flow, the values were smaller than those for the no-desorption case. This also
demonstrates that the desorbed gas acted as an additional source to strengthen the gas flow
in production. In addition, the desorption ability could be identified from the difference.
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The wellbore pressure is plotted in Figure 18 and compared to the results without
consideration of desorption behavior. The pressure dropped from 5400 psi to 5220 psi in the
160-day period and was higher than that in the model that did not consider gas desorption.
The results from the proposed method matched well with the numerical simulation output,
with a high calculation accuracy.
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Figure 18. Bottomhole pressure of the fractured wellbore case.

In the fracture modeling, the total fracture was further divided into 50 sub-segments.
Each segment had a uniform, but transient, gas influx distribution. Five typical times were
chosen to show the influx difference at the different locations within the fracture (Figure 19).
In general, the segments near the edge had a higher flux rate because they were less affected
by the interference effect from other nearby segments. From the time domain aspect, the
flux rates were nearly the same in the very early stages. However, with the continuous
influence of the interference, the segments in the middle area lost their gas production
ability, while the flux rates of the segments near the edge increased.
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Figure 19. Gas influx rates of each sub-segment of the fracture at five time points.

In contrast to the results for the vertical wellbore, the shape of the pressure distribution
of the fractured well was similar to an oval (Figure 20). The pressure drop occurred along
the fracture and then spread out to the reservoir. Due to the more vital gas production
ability of the fractured well, the bottomhole pressure drop was not as significant as that of
the vertical wellbore. When tD = 0.1, the flow regime was in the transition zone from linear
to radial flow. Therefore, the pressure change front exhibited a near-rectangular shape,
with thicker parts in the middle. When tD = 1, it was in the radial flow, and the transient
pressure front displayed a circular shape. When tD = 10, the pressure change reached the
boundary, and the overall reservoir pressure decreased at the same rate.
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4. Sensitivity Discussion
4.1. Various Bottomhole Pressures

The production rates under various constant bottomhole pressure values were calcu-
lated and are plotted in Figure 21. The associated cases without considering gas desorption
behavior are also plotted for comparison. A lower pressure (a higher pressure difference
compared to the reservoir pressure) led to higher gas production rates. When the wellbore
pressure was 5000 psi, a difference between the cases that did and did not consider gas
desorption was not apparent. The adsorbed gas amount was minimal to show the differ-
ence. When the wellbore pressure was 2000 psi, a significant pressure drop occurred in the
near-wellbore region. A large amount of desorbed gas was released, thus supplying the
free-gas flow. The production was maintained at a higher level. The difference is obvious in
Figure 21. In future CCUS applications, a larger CO2 injection rate could be achieved under
the same injection pressure in a reservoir with gas adsorption behavior, which means that
shale gas reservoirs and coal beds have good potential for storing CO2.
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4.2. Various Gas Reservoirs and Producing Rates

In order to validate and test the proposed methodology in various reservoirs with
different gas properties, three case studies were conducted in a fractured well system. Case
A was the base case, with the same values as those of previous studies. Case B had a lower
specific gravity, of 0.56, which was close to that of a pure methane reservoir. It had a lower
reservoir temperature and initial pressure. Case C had a higher specific gravity, of 0.8, with
a higher reservoir temperature and initial pressure, which represents a high-temperature
and high-pressure reservoir. The key parameters are listed in Table 3.

Table 3. Parameters of three case studies, representing different reservoir and gas properties.

Case A Case B Case C

Specific gravity 0.6 0.56 0.8

Temperature, T 80 ◦C 60 ◦C 100 ◦C

Pressure, pi 5400 psi 4000 psi 7000 psi

Calculations were applied to the three cases using the methodology proposed in this
study and the commercial numerical software KAPPA Workstation Rubis V.5.50. The
gridding of the reservoir is shown in Figure 22. The methodology proposed in this study
used a simple 5 × 5 grid for the simulation, while the numerical software used a total
of 3255 grids, with finer gridding blocks near the fractured wellbore. The modeling
comparison between this study and the commercial software aimed to validate the accuracy
of the proposed method under three different initial gas reservoir conditions. Using a single
fracture in the well added a certain complexity to the well setup, which also tested the
gridding effect around the well. However, since the reservoir’s geological setup and the
fluid composition are not complicated, the proposed analytical method will be tested further
under more heterogeneous and complex fracture-network geo-systems in the future.

Each case was tested by applying three different production rates (Figure 23). A higher
production rate led to a quicker and more significant production well pressure drop. When
the production rate was lower, such as 100 Mscf/day, the difference between the cases that
did and did not consider gas desorption was not evident from the plots. However, the
difference was significant when the production rate was higher. More desorbed gas was
released from the pore surface of the rock, thus maintaining the reservoir pore pressure.
The results from this proposed semi-analytical methodology and the commercial numerical
simulation software matched well.
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Figures 24 and 25 show the wellbore pressures of Case B and Case C under the
same three constant production rates. Case B had a lower initial reservoir pressure and
temperature, and Case C had the highest initial pressure and temperature. A higher
production rate showed a clear contribution of the desorbed gas to the free-gas flow supply.
All three cases used the same Langmuir isotherm parameters. Case B, with an initial
reservoir pressure of 4000 psi, was closer to the Langmuir pressure, at 740 psi. More
desorbed gas was released under the same pressure drops. As a result, the contribution
of desorbed gas was more obvious in Case B. For developing a high initial pressure in the
reservoir, higher production rates are better for activating the gas desorption behavior and
enhancing the natural gas production.
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4.3. Various Gas Desorption Abilities (Langmuir Volume)

The Langmuir volume is an important property that needs to be considered for
shale gas reservoirs, as it determines the amount of gas adsorbed per unit weight of
rock. Figure 26 shows the bottomhole pressure drops from reservoirs with three different
Langmuir volumes under the same production rates (1000 Mscf/day). The case with a
value of 220 scf/ton VL had the highest production pressure. For the production, a higher
VL can contribute to a higher gas production rate under the same bottomhole pressure
(Figure 27). When using conventional well-testing methods or numerical history matching,
a higher production rate or pressure may lead to a higher permeability estimation. Further
research on using the pseudo-permeability to replace the desorption behavior in resource
assessments is worthwhile to simplify the modeling.
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5. Conclusions

This study proposed a semi-analytical methodology to capture the natural gas des-
orption processes in reservoirs for production modeling. The gas desorption was treated
as an additional source/sink term in the system and was handled mathematically using
source-and-sink functions. The desorbed gas source term and pressure-dependent gas
properties, such as the viscosity and compressibility factor, increased the non-linearity
of the gas diffusion in the porous media. Pseudo-terms, an average pressure evaluation,
and a self-iterative method were used to linearize the system and solve the problem semi-
analytically. Numerical models based on a Horn River Basin shale gas reservoir were
constructed to validate the proposed methods and demonstrate the application of the semi-
analytical model in predicting the performance of natural gas production while considering
gas desorption. A comparison of the results from the proposed methods with those from
the commercial fine-gridding numerical simulation software showed good matches with a
high accuracy. The major outcomes of this modeling are summarized below:

(1) The gas released from the organic-rich shale reservoir added free gas to the reservoir
and slowed down the pressure depletion to a certain degree, for instance, by increasing
the gas productivity and enhancing the gas recovery;

(2) The dimensionless pressure derivative plot could be a potential indicator of gas
desorption in comparing different shale gas plays;

(3) The proposed semi-analytical modeling methodology provides an additional tool
for modeling shale gas production while considering gas desorption, with a higher
accuracy and computational efficiency;

(4) Through a preliminary sensitivity analysis, it was found that a lower bottomhole
pressure and a high production rate will induce a severe gas desorption mechanism,
which will maintain a high production rate and bottomhole pressure. Shale reservoirs
with a higher amount of adsorption will have a stronger ability to achieve a high
production rate and bottomhole pressure. Through the results and associated dimen-
sionless type curves, the shale gas reservoir desorption ability was roughly diagnosed,
which could be very helpful for further resource assessments.

This study mainly focused on realizing the new idea of modeling the desorbed gas in
shale reservoirs. Many future works are planned and also recommended for researchers to
explore. More detailed sensitivity analyses need to be conducted on more complicated cases
of geological and fluid-phase behaviors. For instance, geological heterogeneity and complex
fracture networks will significantly affect the pressure decay regime and area, which will
further affect the gas flow and the associated desorption behavior. When applying this
methodology to condensate shale reservoirs, such as the Duvernay Formation in Canada,
the complexity of the gas-phase behavior needs to be considered and integrated into the
modeling and sensitivity analysis.
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