
Citation: Zhao, Y.; Han, Z.; Tan, Q.;

Shan, W.; Li, R.; Wang, H.; Du, Y.

Multi-Objective Optimization Design

of Cycloid-Pin Gears Based on RV

Reducer Precision Transmission

Performance. Energies 2024, 17, 654.

https://doi.org/10.3390/en17030654

Academic Editors: Denis N. Sidorov

and Fang Liu

Received: 31 December 2023

Revised: 22 January 2024

Accepted: 26 January 2024

Published: 30 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Multi-Objective Optimization Design of Cycloid-Pin Gears
Based on RV Reducer Precision Transmission Performance
Yunda Zhao, Zhenhua Han *, Qifeng Tan, Wentao Shan, Rirong Li, Hao Wang and Youwu Du

School of Mechanical Engineering, Jiangsu University of Technology, Changzhou 213001, China;
2021655185@smail.jsut.edu.cn (Y.Z.); tqf@jsut.edu.cn (Q.T.); shanwentao520@jsut.edu.cn (W.S.);
2021655267@smail.jsut.edu.cn (R.L.); 2021655244@smail.jsut.edu.cn (H.W.); duyouwu@jsut.edu.cn (Y.D.)
* Correspondence: han_jsut@jsut.edu.cn

Abstract: This paper aims to realize multi-objective optimization of cycloid-pin gears to improve the
positioning accuracy and load-carrying capacity of the rotary vector (RV) reducer, via the consider-
ation of backlash, transmission error, and torsional stiffness. Initially, the analytical models of the
RV transmission backlash and transmission error are developed by using both purely geometrical
and equivalent model methods individually. Based on the generalized Hooke’s law, a torsion angle
model is established to characterize the torsional stiffness of the system, utilizing methods such as
Hertzian contact theory and bearing stiffness models. Subsequently, employing the Monte Carlo
method, extremum method, and quality loss function, mapping objective functions for dimensional
accuracy (tolerance) and transmission performance (backlash, transmission error, and torsional stiff-
ness) are constructed. The geometry dimensions, dimensional accuracy, and modification of the
cycloid-pin gear are considered as design variables to create a multi-objective optimization model.
The improved Parallel Adaptive Genetic Algorithm using Deferential Evolution (PAGA-DE) is used
for multi-objective solutions. Through example calculations, the impact of cycloid-pin gear param-
eters on transmission performance before and after optimization is determined. The reliability of
backlash after optimization within 1.5′ reaches 99.99%, showing an increase of 8.24%. The reliability
of transmission error within 1′ reaches 98.52%, demonstrating an increase of 1.35%. The torsional
angle is reduced by 8.9% before optimization. The results indicate that the proposed multi-objective
optimization design method for cycloid-pin gears can achieve the goal of improving the transmission
performance of the RV reducer.

Keywords: cycloid-pin gear; backlash; transmission error; torsional stiffness; PAGA-DE algorithm

1. Introduction

The rotary vector (RV) reducer is widely used in high-end precision equipment such as
robots, photovoltaic manufacturing and power generation, and semiconductor production,
due to its advantages of high energy utilization rate, strong load-bearing capacity, high
transmission accuracy, and a wide range of transmission ratios. The cycloid-pin gear is the
core transmission component of RV reducers. Its parameter design directly affects the RV
reducer ratio, transmission accuracy, load-carrying capacity, and other major transmission
properties [1–3]. The design theory and research of cycloid-pin gears are mostly based
on traditional mechanical analysis methods. In engineering practice, a tendency towards
conservative strength design is often adopted [4,5]. The dimensional accuracy of each
component mostly adopts the same tolerance level, which makes the reliability of the
RV reducer low, resulting in a waste of human resources. As a result, the design and
optimization of the cycloid-pin gear in RV reducers have been a continuous focus of
research for scholars both domestically and internationally, aiming to enhance transmission
accuracy and carrying capacity and reduce mass loss.

At present, research on the design of cycloid-pin gear primarily focuses on aspects
such as error impact analysis, tolerance optimization and selection, profile modification
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design, meshing contact analysis and structural dimension parameter analysis. Errors are
a critical factor influencing the accuracy of gear transmission, while tolerances determine
the machining process requirements for gears [6]. Thus, error impact analysis, tolerance
optimization, and selection are focal points of the active design research for cycloid-pin
wheel transmission at the microscopic scale. On the basis of analyzing various error
factors affecting backlash, Li et al. [7] employed orthogonal experiments and robust
design to effectively control the backlash in RV transmissions. Han et al. [8], utilizing
the “Sobol” method, established the global sensitivity analysis model of RV reducers to
investigate the effects of manufacturing errors, assembly errors, and bearing clearance
on transmission accuracy. Li et al. [9], based on the tooth contact analysis, examined
the impact of manufacturing errors on the precision of RV transmission. Ahn et al. [10]
presented an impact quantitatively analysis of pin radius errors and friction between the
cycloid gear and pin on the meshing force in the cycloid-pin gear pair using the FE method.
In terms of tolerance optimization and selection, Sun et al. [11] analyzed the sensitivity
of various errors in RV reducers and, through Monte Carlo simulations, determined
suitable tolerance levels for error parameters. Zhao et al. [12] constructed the distribution
model of various errors and tolerances of RV reducers on the basis of the analysis of the
backlash model. Chu et al. [13] developed a tolerance selection and assembly method
for RV reducers based on a genetic algorithm, aiming to achieve the required backlash
precision. Li et al. [14] started with the processing cost of tolerances to achieve tolerance
design for the parameters inside the cycloid-pin gear. At the microscopic level, profile
modification design is also a pivotal study direction in the design of the cycloid-pin gear.
Wan et al. [15] quantitatively analyzed the variations in precision in cycloid-pin gear
transmission due to different combinations of profile modifications. Liu et al. [16], starting
from the meshing force of the cycloid-pin gear pair, optimized the design of the cycloid
gear profile modification. Sun et al. [17] proposed a novel parabolic profile modification
method and used a particle swarm algorithm with the minimum transmission error as the
optimization objective to obtain the optimum trimming coefficients.

Meshing contact analysis is particularly crucial for the study of gear design [18–20]. Experts
have conducted the following research in the field of cycloid-pin gears. Blagojevic et al. [21]
conducted a stress analysis of single-stage cycloid gears under working conditions with
only one pair of meshing teeth using finite element analysis and experimentally used the
strain gauge method for experimental validation. Li et al. [22] established a theoretical
contact analysis model of cycloid pin gears considering manufacturing errors and analyzed
the effects of tooth shape error and pitch error of cycloid gears on meshing characteristics.
Qiao et al. [23] performed transient dynamic analysis on RV reducers to investigate the
stress distribution of cycloid-pin gears during the meshing process. Li et al. [24] applied the
minimum energy principle to propose a mathematical model for calculating the number
of simultaneously meshing teeth in the process of cycloid-pin gear transmission, which
was validated by simulation and measurement experiments. Li et al. [25] considered
the impact of ring pin position deviation, established an analysis model for the load
distribution in the misaligned cycloid-pin gear pair, and analyzed the effects of pin tooth
radial position error and phase angle on the meshing characteristics of cycloid-pin gear
pair. In addition, scholars conducted qualitative and quantitative analyses of structural
dimension parameters at the macro scale. Bednarczyk et al. [26] investigated the effect of
the eccentricity of the cycloid gear on meshing force and power loss in gear transmission
through optical elastic experiments. A generalized dynamics model of a cycloid-pin gear of
an RV reducer considering bearings was developed by Xu et al. [27]. It is used to investigate
the effects of geometrical parameters in the cycloid-pin gear pair on the dynamic contact
response and internal load transfer characteristics. Zhang et al. [28] analyzed the impact of
design parameters of the cycloid-pin gear (eccentricity, radius of pin gear distribution circle,
pin gear radius, and width of the cycloid gear, etc.) on the load-bearing capacity from three
aspects: load distribution coefficient, torsional stiffness, and contact stress. Li et al. [29]
established a calculation model for the meshing stiffness of the cycloid-pin gear pair related
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to profile modification and eccentricity errors. They separately explained the effects of
profile modification and eccentricity on torsional stiffness, load-bearing transmission error,
and contact stress.

The above scholars have analyzed the influence of the design parameters of the cycloid-
pin gear more comprehensively. However, the design parameters of components in the
cycloid-pin gear transmission system have a relationship of interdependence and mutual
influence, and the transmission performance is coupled with each other. Therefore, the
design of the cycloid-pin gear of RV reducers should not only comprehensively analyze
its failure mode, structural form, and design guidelines, but also make the comprehensive
performance of the transmission system to meet the design requirements.

Meanwhile, considering multiple transmission performance indicators for parameter
design is a typical multi-objective optimization problem. In this regard, experts have
conducted the following research on cycloid-pin gear transmission. Wang et al. [30], with
the optimization objectives of achieving the highest transmission efficiency and the smallest
volume, considered constraints such as tooth profile, strength, and lifespan. They con-
ducted an optimization design of parameters including the cycloid gear, pin gear, and
pin for the cycloid-pin gear transmission. Wang et al. [31] established a multi-objective
optimization model with the objectives of the volume of the cycloid-pin gear, the bearing
load on the turning arm bearing, and the bending stress on the pin. Zhang et al. [32]
optimized the geometric dimensions and modification of RV reducers with the objectives
of volume, efficiency, and anti-adhesive capability. Wu et al. [33] proposed an optimization
method for the design of the cycloid-pin gear in RV transmissions with transmission error,
load of the turning arm bearing, and volume as optimization objectives. The method
considers constraints such as tooth profile interference, contact strength, and bearing life.
Song et al. [34] proposed a cycloid gear profile design method that considers a composite
modification function and transmission error as optimization objectives, determining the
magnitude of the profile modification. Furthermore, in the multi-objective optimization of
other gear transmission systems, Paridhi et al. [35], considering constraints such as tooth
surface contact and bending strength, minimized volume as the optimization objective.
They conducted an optimization design for the profile displacement coefficient, number of
teeth, face width, and module of helical gears. Daoudi et al. [36], considering constraints
such as assembly, bending strength, and tooth surface contact strength, started from the
mass, center distance, and efficiency of the epicyclical gear train system. They optimized
and improved parameters such as the number of teeth, tooth width, tooth thickness, and
shaft diameter. Yao [37] established an optimization model with the objectives of center
distance, load factor, and meshing efficiency for spur gear systems. Using the NSGA-II
algorithm, they achieved optimization and improvement of design parameters such as
module, number of teeth, and transmission ratio. The scholars mentioned above, in the
multi-objective optimization of gear transmission, mostly focus on efficiency, volume, and
mechanical load-bearing performance, regulating design parameters at the macro scale.
Simultaneously, research on related backlash primarily concentrates on error parameter
design [7,8] and tolerance allocation issues [11,12]. There is a lack of multi-scale parameter
design methods for cycloid-pin gear drives involving comprehensive analysis of back-
lash and other transmission performance. Moreover, most of the mentioned optimization
designs use traditional intelligent optimization algorithms. For different multi-objective op-
timization models, the computational efficiency and optimization accuracy of the algorithm
are quite different.

To address the above issues, this paper proposes a multi-objective optimization design
method for cycloid-pin gear pairs, comprehensively considering backlash, transmission
error, and torsional stiffness in RV reducers. This method takes the geometric dimensions,
dimensional accuracy (tolerance), and modification of cycloid-pin gear pairs as design
variables, enabling active regulation of parameters of both macro and micro dual scales on
the transmission performance of RV reducers. Additionally, an improved Parallel Adap-
tive Genetic Algorithm using Deferential Evolution (PAGA-DE) is introduced, enhancing
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computational efficiency and convergence accuracy during the optimization model-solving
process. The research presented in this paper essentially achieves error control in the
transmission system and provides guidance for the design of geometric dimensions. The
established analytical model offers theoretical support for research and optimization in the
field of reducers, while also presenting a novel improvement in the algorithmic domain.

2. Transmission Performance Analysis Model of RV Reducers

In this paper, the standard RV reducer with three crankshafts is the object of study, and
its transmission principle is illustrated in Figure 1. The establishment of a reasonable and
effective mathematical model for transmission performance, including backlash, transmis-
sion error, and torsional stiffness, is the theoretical basis for the analysis and optimization
of precision reducer transmission performance. These models are also crucial for achieving
the optimal design of the cycloid gears in RV reducers.
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2.1. Mathematical Model of Backlash in RV Reducers

The root cause of the formation of backlash is gaps between gear meshing pairs (i.e.,
side clearance) caused by various errors. Errors are generally divided into three main
categories: manufacturing errors, assembly errors, and other errors (temperature, force
deformation, etc.). Manufacturing errors and assembly errors are important reasons for
the generation of geometric return difference. According to the transmission principle, the
backlash of the RV reducer primarily comprises three parts: the first-stage involute gear
system backlash ϕ1, the second-stage cycloid-pin gear backlash ϕ2, and the backlash in the
output mechanism ϕ3. The total backlash ϕΣ of the RV transmission system is obtained by
superimposing these three components [11].

ϕΣ = ϕ1 + ϕ2 + ϕ3 (1)

2.1.1. Backlash of the Involute Gear System

The primary error parameters considered in calculating the backlash of involute gear
systems comprise the average length error Ew of the base tangent, center distance error
∆Fα, and radial runout error ∆Fr of the gear [38]. Ew, ∆Fα, and ∆Fr induce circumferential
clearances as illustrated below: 

jE1 = Ew/cos α

jE2 = 2∆FαKα tan α

jE3 = ∆FrKα tan α

, (2)
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where jE1, jE2 and jE3 represent the circumferential clearances induced by errors Ew, ∆Fα

and ∆Fr, respectively, α is the pressure angle of involute gears, Kα is the conversion factor,
Kα = sin α′/sin α, and α′ is the angle of engagement for involute gears.

Converting clearance JEi into an angle at the output shaft, we can obtain the backlash
ϕ1 of the involute gear system as follows:

ϕ1 =
180× 60(JE1 + JE2 + JE3)

izπr1
, (3)

where iz is the overall transmission ratio, and r1 is the radius of the sun gear pitch circle.

2.1.2. Backlash of the Cycloid-Pin Gear Pair

By employing the pure geometric method [39], modification of equidistance ∆rp,
moving distance modification ∆Rp, and various errors in the cycloid-pin gear pair are
converted into clearances along the meshing, which errors contain the radius of the circle
error of the pin gear δRp, the radius of the pin gear error δrp, the radial run-out error of the
cycloid gear δFr1, the circular position error of the pin gear hole δt, the pitch cumulative
error of the cycloid gear δFp, the radial-moving modification error δ∆rp, the equidistant
modification error δ∆Rp, and the eccentric error of crankshaft δa. Subsequently, based
on the principles of RV transmission and the relationship of motion transmission, these
clearances are further transformed into angular displacements at the output shaft, thereby
obtaining the backlash of the cycloid-pin gear pair.

ϕ2 =
180× 60

π

(
∑ ∆j2i

azc
+ ∆ϕa

)
, (4)

where ∑ ∆j2i is the clearance on the meshing line that errors translate into, ∆ϕa is the
backlash caused by eccentric error of crankshaft δa, and they can be calculated by

∆j2i = COER, (5)

where CO is the coefficient matrix, ER is the error matrix, CO = diag
(

2,−2
√

1− K2
1, 2
√

1− K2
1,−2, 1/2, 2K1,−K1, 2,−2

√
1− K2

1

)
ER =

(
∆rp, ∆Rp, δRp, δrp, δFr1, δt, δFp, δ∆rp, δ∆Rp

)T
,

where K1 is the short width coefficient, a is eccentricity, zc is the number of teeth of the
cycloid gear.

∆ϕa = −2knδa, (6)

where kn is the conversion coefficient of eccentricity error, and it is expressed as:

kn =
∆rp

a2zc
−

 zc

aR2
p

√
1− K2

1

+

√
1− K2

1

a2zc

∆Rp,

where Rp is the radius of pin position.

2.1.3. Backlash of the Output Mechanism

The backlash ϕ3 generated by the output mechanism is mainly caused by the radial
clearance of the turning arm bearing ∆u, which is calculated as follows:

ϕ3 =
180× 60

πa0
∆u, (7)

where a0 is the center distance of involute planet gear transmission.
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2.2. Mathematical Model of Transmission Errors in RV Reducers

This paper adopts the equivalent model method [40] to model and analyze transmis-
sion errors in RV reducers. The modeling principle is based on the meshing line analysis
method, considering the influence of the phase angles of errors. It projects errors onto
the meshing line, transforming them into equivalent meshing errors, and then calculates
transmission errors. The overall transmission error calculation for RV reducers includes
three parts: first-stage involute gear system transmission error β1, second-stage cycloid-pin
gear pair transmission error β2, and output mechanism transmission error β3 [33].

βΣ = β1 + β2 + β3 (8)

2.2.1. Transmission Error of the Involute Gear System

The errors primarily studied in the involute gear system include the manufacturing
eccentricity error of the sun gear Es, the manufacturing eccentricity error of the planet gear
Epi, and the installation eccentricity error of the sun gear As. Their relative positions in the
gear system are illustrated in Figure 2. In the figure, the center O of the sun wheel is taken
as the origin of the coordinate system, a fixed coordinate system XOY is established, and
the direction of the meshing line away from the sun gear teeth is set as a positive direction.
Using pure geometry, errors Es, Epi and As are projected onto the meshing line, obtaining
equivalent meshing errors es, epi and αs along the meshing line, respectively.

es = Es cos(θs + βs − An)
epi = Epi cos

(
θp + βpi − An

)
αs = As cos γs cos An + As sin γs sin An

, (9)

where θs is the rotation angle of the sun gear, βs is the phase angle of the manufacturing
eccentricity error of the sun gear, An is the angle between the meshing line and the X-
axis, An = θc − α′ + αxi + 0.5π, θc is the angle of the planet carrier, θc = θs/iz, αxi is the
relative position of the center of the planet gear in coordinate system XOY, αxi = 120(i− 1)
(i represents the i-th planet gear, i = 1, 2, 3), θp is the rotation angle of the planet gear,
θp = θs[1/iz + (1− 1/iz)z1/z2], z1 is the number of teeth of the sun gear, z2 is the number
of teeth of the planet gear, βpi is the phase angle of the manufacturing eccentricity error
of the planet gear, and γs is the phase angle of the installation eccentricity error of the
sun gear.
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The equivalent meshing errors calculated from Equation (9) are linearly superimposed
and transformed into the angular error of the output shaft, representing the transmission
error of the involute gear system β1:

β1 =
180× 3600

(
es + epi + αs

)
r1izπ

(10)

2.2.2. Transmission Error of the Cycloid-Pin Gear Pair

The impact of various errors in the cycloid-pin gear pair is directly reflected at the
output, exerting a significant influence on the overall transmission error. Therefore, starting
from the installation fit and transmission motion relationship between the cycloid gear, pin,
and crankshaft, an analysis is conducted on the influence of various error parameters on
the system of transmission error [41,42].

Figure 3 depicts the relative positions of errors at a specific moment during the
transmission process between the cycloid gear and the pin. In the figure, a Cartesian
coordinate system, XzOzYz, whose origin is the center of the pin gear Oz, is employed
to represent the reference coordinate system. Ocj is the center of the cycloid gear, Oak is
the center of the pin, and P is the node where the cycloid gear engages with the pin gear.
Based on the meshing line analysis method, the radius of the circle error of the pin gear
δRp, the pitch error of the pin gear δRa, the radial run-out error of the cycloid gear δFr1, the
pitch cumulative error of the cycloid gear δFp, the radius of the pin gear error δrp and the
clearance error of pin and pin slot δH are converted to the equivalent meshing errors eR, ea,
eFr, eFp, er and eH on the meshing line as:

eR = δRp cos
(

φjk1 − αjk

)
ea = δRa sin

(
αjk − φjk1

)
eFr = δFr1 cos

(
φjk2 − αjk

)
eFp = δFp sin

(
αjk − φjk2

)
er = −δrp

eH = δH

, (11)

where φkj1 is the angle between the line segment OzOak and the positive direction of ηj axis,
φkj2 is the angle between the line segment OcjOak and the positive direction of ηj axis, and
αjk is the angle between the meshing line and the positive direction of the ηj axis.
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In addition, the change of cycloid gear tooth profile caused by modification is shown
in Figure 4. Meanwhile, the coordinate system XzOzYz in the figure is the same as the
reference coordinate system in Figure 3. Therefore, the equivalent meshing errors erp and
eRp of the modification of equidistance ∆rp and the moving distance modification ∆Rp are
expressed as: {

erp = ∆rp

eRp = −∆Rp

(
1− K1 cos φjk1

)(
1 + K2

1 − 2K1 cos φjk1

)−1/2 (12)
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Figure 4. Schematic diagram of cycloid profile modification.

About the installation fit between the cycloid gear and the crankshaft, the existing
errors are depicted in Figure 5. The coordinate system XzOzYz represents the pin gear
coordinate system, and Oqi is the center of the crankshaft hole on the cycloid gear (also
the center of the eccentric axis on the crankshaft). Combining with Figure 3, similarly, the
expression for transforming the position error of the crankshaft hole on the cycloid gear
δCh and the eccentricity error of the crankshaft δCs into equivalent meshing errors eCh and
eCs along the meshing line is: eCh = δCh cos

(
θc + αxi + βhji

)
cos
(

αjk + θp + ψj

)
+ δCh sin

(
θc + αxi + βhji

)
sin
(

αjk + θp + ψj

)
eCs = δCs cos

(
θp + ψj + βsji

)
cos
(

αjk + θp + ψj

)
+ δCs sin

(
θp + ψj + βsji

)
sin
(

αjk + θp + ψj

) , (13)

where βhji and βsji are the phase angle of the errors δCh and δCs, respectively, and ψj is the
relative position of the center of the cycloid gear, ψj = (j− 1)π (j represents the j-th cycloid
gear, j = 1, 2).
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The equivalent meshing errors obtained from Equations (11)–(13) are linearly su-
perimposed and converted into angular errors on the output shaft, thus obtaining the
transmission error of the cycloid-pin gear pair β2.

β2 =
180× 3600

π

[(
eR + ea + eFr + eFp + er + eH + erp + eRp + eCh

)
r′c

+
eCs

r′ci′h

]
, (14)

where r′c is the pitch circle radius of the cycloid gear, r′c = azc, i′h is the transmission ratio
from the crankshaft to the output shaft, i′h = abs(ih) = abs(−zc) = zc.

2.2.3. Transmission Error of the Output Mechanism

In the installation fit and transmission motion between the planet carrier and the
crankshaft, there is mainly the eccentricity error of the crankshaft hole on the planet carrier
δPq and the installation eccentricity error of the planet carrier δPa, as shown in Figure 6.
With the center of the planet carrier Os as the coordinate origin, a reference coordinate
system XsOsYs is established, which coincides with the coordinate system XzOzYz in
Figure 3. Based on the principle of equivalent meshing error transformation, the equivalent
meshing errors epq and epa of errors δPq and δPa, on the meshing line can be calculated by epq = δPq cos(θc + αxi + βci) cos

(
αjk + θp + ψj

)
+ δPq sin(θc + αxi + βci) sin(αjk + θp + ψj)

epa = δPa cos γc cos
(

αjk + θp + ψj

)
+ Ac sin γc sin

(
αjk + θp + ψj

) , (15)

where βci and γc are the phase angle of errors δPq and δPa, respectively.
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As above, according to Equation (15), the transmission error β3 of the output mecha-
nism is given by

β3 =
180× 3600

(
epq + epa

)
πr′c

(16)

2.3. Mathematical Model of Torsion Angle in RV Reducers

According to generalized Hooke’s law, under the assumption of constant torque,
the torsional angle is inversely proportional to the torsional stiffness under a certain
torque. Therefore, a mathematical model of torsional angle is established to characterize the
torsional stiffness. According to the RV transmission principle, the overall torsion angle θΣ
can be divided into involute gear train torsion angle θ1, cycloid-pin gear pair torsion angle
θ2, turning arm bearing torsion angle θ3, crankshaft torsion angle θ4 and planet carrier
torsion angle θ5.

θΣ = θ1 + θ2 + θ3 + θ4 + θ5 (17)
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Among them, the torsional angle generated by the elastic deformation of the planet
carrier can refer to the mathematical model in reference [43], which will not be explained in
detail in this paper.

2.3.1. Torsion Angle of the Involute Gear System

From the ISO 6336 [44], the meshing stiffness of involute gears kX is calculated
as follows:

kX = (0.75ε + 0.25)CMCRCBB
1
q

, (18)

where ε is the contact degree of gear meshing, CM is the theoretical correction coefficient,
CM = 0.8, CR is the structure coefficient of the wheel blank, CR = 1, CB is the basic tooth
profile coefficient, CB = 1, B is the tooth width of involute gear, and q is the gear flexibility.
Its calculation formula is

q = 0.04723 + 0.15551
zn1

+ 0.25791
zn2
− 0.00635x1 − 0.11654 x1

zn1
−

0.00193x2 − 0.24188 x2
zn2

+ 0.00529x2
1 + 0.00182x2

2

, (19)

where zn1 is the equivalent number of teeth of the solar wheel, zn2 is the equivalent number
of teeth of the planet gear (when the gear is straight teeth, zn1 = z1, zn2 = z2), x1 is the
displacement coefficient of the solar wheel, and x2 is the displacement coefficient of the
planet gear.

Based on Hooke’s law and combined with Equation (18), the linear deformation ∆δp
of involute gear transmission is represented as

∆δp =
Ft/cos α′

kX
, (20)

where Ft is the tangential component of involute gear.
The linear deformation ∆δp is converted to the sun gear angle, which is reduced by

the transmission ratio iz to obtain the torsion angle θ1 of the involute gear system in the
output shaft.

θ1 =
180× 3600∆δp cos α′

πr1iz
=

180× 3600Ft

πkXr1iz
(21)

2.3.2. Torsion Angle of the Cycloid-Pin Gear Pair

There is only one pair of teeth engaged in theory when the cycloid gear is engaged
with the pin gear after modification. The other pairs of teeth have different sizes of initial
meshing clearance ∆1(ϕk) [45]. At the same time, δRp and δrp also produce a small gap
∆2(ϕk), which affects the size of the clearance ∆1(ϕk). Therefore, the initial meshing
clearance ∆(ϕk) becomes

∆(ϕk) = ∆1(ϕk)− ∆2(ϕk)

∆1(ϕk) = ∆rp

(
1− S−1/2 sin ϕk

)
− ∆Rp

(
1− K′1 cos ϕk −

√
1− K′1

2 sin ϕk

)
S−1/2

∆2(ϕk) = δrp

(
1− S−1/2 sin ϕk

)
+ δRp

(
1− K′1 cos ϕk −

√
1− K′1

2 sin ϕk

)
S−1/2

, (22)

where S = 1 + K′1
2 − 2K′1 cos ϕk, (k = 1, 2, · · · , zp/2), K′1 = azp/

(
Rp + ∆Rp

)
.

Under the action of the load torque Tc, the cycloid gear contacts deformation produced
with the pin, causing the cycloid gear to rotate by a small angle βc. According to the
deformation coordination principle, the normal deformation ∆δk of each tooth on the
cycloid gear is given by

∆δk = lkβc =
lk∆δmax

r′c
, (23)
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where lk is the distance from the common normal of the engagement point of the k-th
pin tooth or the normal of the point to be engaged to the center of the cycloid gear,
lk = r′cS−1/2 sin ϕk, ∆δmax is the maximum contact deformation.

Based on the Hertzian contact theory [25], the contact deformation w of the cycloid
gear with the pin is

w =
2F
πb1

[
1− µ2

1
E1

(
1
3
+ ln

4R1

L

)
+

1− µ2
2

E2

(
1
3
+ ln

4R2

L

)]
, (24)

where F is the force exerted on the two cylinders, b1 is the contact length of the two
cylinders, µ1 and µ2 are the Poisson’s ratios of the two cylinders, respectively, E1 and E2
are the modulus of elasticity of the two cylinders, respectively, R1 and R2 are the radii of
the two cylinders, in addition to this

L = 1.60

√√√√ F
b

KD

(
1− µ2

1
E1

+
1− µ2

2
E2

)
, (25)

where when the cylinder is convex contact with the cylinder, KD = 2R1R2/(R1 + R2),
and when the cylindrical and cylindrical holes are convex and concave contact,
KD = 2R1R2/(R1 − R2).

If F = Fmax, combined with Equation (24), the maximum deformation ∆δmax can
be obtained.

∆δmax = wmax (26)

If the normal displacement ∆δk of a tooth pair is greater than the meshing clearance
∆(ϕk), the pair of teeth is correspondingly in load-bearing mesh. The meshing force Fk of
the meshing tooth pair of the cycloid-pin gear is

Fk =
∆δk − ∆(ϕk)

∆δmax
Fmax (27)

According to the torque equilibrium condition, we obtain Tc =
G
∑

k=g
Fklk (g is the starting

tooth number, G is the end meshing tooth number). Then, combining with Equation (27),
the maximum meshing force Fmax can be deduced as

Fmax =
Tc

e
∑

i=b

(
li
r′c
− ∆(ϕi)

∆δmax

)
li

(28)

In light of the deformation coordination condition Equation (23) and torque balance
Equation (28), the mechanical analysis model of a cycloid-pin gear is founded. The calcula-
tion flow is as follows:

Step 1, the maximum meshing force is proposed as Fmax0, that is substituted into
Equation (24) to calculate the maximum deformation ∆δmax0. ∆δmax0 is substituted into
Equation (28) to obtain Fmax1.

Step 2, the difference judgment, if |Fmax1 − Fmax0| > 0.1Fmax1, assign the Fmax1 value
to Fmax0, and then repeat the cycle step 1.

Step 3, when |Fmax1 − Fmax0| < 0.1Fmax1 is stopped, the maximum meshing force is
Fmax = (Fmax0 + Fmax1)/2, and the meshing interval [g, G] and the maximum deformation
∆δmax can be obtained from Equations (22)–(26).

From the maximum deformation ∆δmax, the cycloid gear angle ∆θb caused by contact
deformation is

∆θb =
∆δmax

Rp1
, (29)
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where Rp1 is the pitch circle radius of the pin gear, Rp1 = azp.
By converting the cycloid gear angle ∆θb to the output shaft, the cycloid-pin gear pair

torsion angle θ2 can be obtained.

θ2 =
180× 3600

π
∆θbib, (30)

where ib is the transmission ratio of the output shaft relative to the pinwheel when the
involute sun gear is fixed, ib = −(1− iz)/iz.

In order to analyze the torsional stiffness of cycloid-pin gear pair, the equivalent
torsional stiffness mathematical model was established based on the above mechanical
analysis model. Using Hertz theory, considering the distribution radius error δRp and
the radius error δrp, the meshing stiffness kb of cycloid gear and pinwheel single pair
teeth [46] is

kb =


πbER′pS3/2

4(1−µ2)(R′pS3/2+2T′r′p)
, (ρ2 > 0)

πbE
4(1−µ2)

, (ρ2 ≤ 0)
, (31)

where b is the width of cycloid gear teeth, µ is the Poisson ratio, µ = 0.3, E is the elasticity
modulus, E = 2.06× 1011Pa, R′p = Rp + δRp, S = 1 + K′1

2 − 2K′1 cos ϕk, ϕk is the angle of
the k-th pin tooth to the swivel arm OcOz, r′p = rp + δrp, ρ2 is the actual radius of curvature

of the cycloid gear, T′ = K′1
(
zp + 1

)
cos ϕi −

(
1 + zpK′1

2
)

.
Based on Equation (31), the equivalent torsional stiffness kk of a single pair of teeth

can be calculated as
kk = kbl2

k (32)

The torsional stiffness K of the cycloid-pin gear pair is obtained by linear superposition
of equivalent torsional stiffness kk of the contact tooth pair at different phase angles.

K =
G

∑
k=g

kk (33)

2.3.3. Torsion Angle of the Turning Arm Bearing

Take a rotor bearing in a cycloid gear as an example. Its force is shown in Figure 7. In
the figure, XzOzYz represents the global coordinate system established on the pinwheel,
and XqOqYq is the local coordinate system of the turning arm bearing.
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Figure 7. Force analysis diagram of turning arm bearing.
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The meshing force of the contact tooth pair of cycloid-pin gear pair moves along the
meshing line to node P. The combined force is Fp and is decomposed into the component
forces PX and PY along the Xz axis and Yz axis [47].

PX = ∑ Px = Ma
2r′c

=
Mazp

2K′1R′pzc

PY = KyPX

Ky = 2
π

(
1

K′1
+

K′1
2−1

2K′1
2 ln 1+K′1

1−K′1

) , (34)

where Ma is the load borne by the RV transmission, with its maximum value being 2.5
times the rated torque T.

The force generated by the crankshaft on the cycloid gear can be divided into three
parts: Fit, Fi1 and Fi2. The equation can be obtained from the moment equilibrium condition,
as shown below 

PXr′c −
Nq

∑
i=1

Fita0 = 0

PX −
Nq

∑
i=1

Fi1 = 0

PY −
Nq

∑
i=1

Fi2 = 0

, (35)

where Nq is the number of crankshafts
The component forces Fit, Fi1 and Fi2 are projected onto the Xq and Yz axes of the local

coordinate system to obtain the component forces Fx and Fy. Thereby, the radial force Fs on
the turning arm bearing is formulated as

Fs =
√

F2
x + F2

y , (36)

where Fx = Fit + Fi1 cos ϕ + Fi2 sin ϕ, Fy = Fi1 sin ϕ + Fi2 cos ϕ, and ϕ is the angle between
the Yq axis and Yz axis.

Using the stiffness model of cylindrical roller bearing [48], the stiffness of turning arm
bearing ks is expressed as

ks = 0.34× 104Fs
0.1Ng

0.9L0.8 cos
(
θj
)1.9, (37)

where Ng is the number of rollers, L is the effective length of the roller, and θj is the contact
angle of the rolling element.

According to the stiffness ks of the turning arm bearing, the relative displacement ∆δs
of the inner and outer rings of the turning arm bearing can be calculated

∆δs =
Fs

ks
(38)

The relative displacement ∆δs is converted into the angle of the output shaft, that is,
the torsion angle θ3 of the turning arm bearing.

θ3 =
180× 3600zc∆δsib

πzpa0
(39)

2.3.4. Torsion Angle of the Crankshaft

In transmission, the crankshaft is not only subject to the circumferential force dis-
tributed by the cycloid gear in the bearing hole of the boom, but also to the torque action,
as shown in Figure 8. Therefore, the torsion angle of the crankshaft is caused by both
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circumferential bending deformation and torsional deformation of the crankshaft, which
will be analyzed separately in the following.
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Figure 8. Force analysis diagram of crankshaft.

(1) In the figure, F1t and F2t are separately the circumferential forces of the two cycloid
gears on the crank shaft under the action of torque, F1t = F2t = T/(6a0). F1 is the force
caused by the input torque of the planet gear, F1 = Tin/(3r1), and Tin is the input torque.
Section I and section II represent the assumed action sections of two cycloid gears on the
crankshaft. According to the beam deflection theory of material mechanics, the deflection of
the crankshaft subjected to F1t, F2t and F1 in section I and section II is calculated, respectively.
However, due to the different deflections of the two cross-sections, the average value fm
should be used to calculate the output shaft angle ∆θq1 caused by the bending deformation
of the crankshaft.

∆θq1 =
fm

a0
=

fI + fII

2a0
, (40)

where fI is the deflection at section I, and fII is the deflection at Section II.
(2) According to the elastic deformation theory of material mechanics, the crankshaft

will have a relative angle ∆ϕs between Section 0 and Section 3 under the action of torque.

∆ϕs =
3

∑
t=1

T2tl2t

GJpt
, (41)

where T2t is the torque of each section of the crankshaft, T23 = T22 = T21/2,
T21 = Tz2/(3izz1), l2t is the length of each shaft of the crankshaft, G is the shear modulus,
G = 8× 104MPa, Jpt is the polar moment of inertia, Jpt = πdt

4/32, and dt is the diameter
of each shaft of the crankshaft.

The angle of torsion ∆ϕs, generated by the crankshaft under the action of the torque,
translates into the angle of rotation ∆θs2 of the output shaft as

∆θs2 =
∆ϕsz2

z1iz
(42)

The total torsion angle θ4 of the crankshaft is obtained by superimposing the torsion
angle obtained by Equations (40) and (42).

θ4 = ∆θs1 + ∆θs2 (43)

3. Multi-Objective Optimization Model and Optimization Algorithm
3.1. Establishment of Multi-Objective Optimization Model

Figure 9 shows the flow chart for building a multi-objective optimization model for RV
reducers. By analyzing the transmission performance of RV reducers in Section 1, the func-
tional relationship between basic parameters (geometrical dimensions, error parameters
and modification) and transmission performance has been achieved. Then, the Monte Carlo
method, extreme value method, and quality loss function are employed to further analyze
the mapping relationship between dimensional accuracy (error parameter tolerance) and
backlash, transmission error, and torsional angle (torsional stiffness). Finally, three objective
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functions are acquired, representing the maximum backlash characterization coefficient,
the minimum mean transmission error, and minimum torsional angle. Simultaneously,
design variables and reasonable constraints are selected.
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3.1.1. Objective Function

(1) Given that the errors are mutually independent and follow certain probability
distributions within the tolerances, this paper employs the Monte Carlo method to find
the mapping relationship between dimensional accuracy and transmission accuracy. The
Monte Carlo experimental simulation NS is set to 20,000 times. Experimental simulations
are conducted based on the backlash mathematical model established in Section 2.1. Using
the experimental sample data, the reliability coefficient is calculated by dividing the number
s1(X) of backlashes within 1.5’ by the total number S1(X) of simulations.

S1(X) = s1(X)/NS (44)

The quality loss function L(T) is introduced to take into account both precision re-
quirement and quality cost [49]. {

L(Ti) = kTi
2/4

C(Ti) = ∑ L(Ti)
, (45)

where k is the loss coefficient, C(Ti) is the total quality loss, and Ti is the tolerance value of
each error.

By combining the reliability coefficient with the quality loss function, the backlash
characterization coefficient is established as the objective function f1(X), and the formula
is as follows:

max f1(X) = S1(X)[C(T)/C(Tmax)], (46)
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where C(Tmax) is the maximum quality loss.
(2) The quality cost function of tolerance has been included in the establishment of

the backlash objective function, so only the Monte Carlo method is used to establish the
transmission error objective function. According to the experimental simulation sample
data, the mean transmission error is calculated as the objective function f2(X), and the
formula is as follows:

S2i(X) = max(β1 + β2 + β3)−min(β1 + β2 + β3)

min f2(X) =

(Ns
∑
i

S2i(X)

)/
Ns

, (47)

where S2i(X) is the transmission error obtained by the simulation of the i experiment.
(3) The extreme value method is used to analyze the error in the mathematical model

of torsional angle (torsional stiffness). The principle is to take the maximum value of the
error within the tolerance and substitute it into the model. In the case of constant load
torque, the torsional angle is inversely proportional to the torsional stiffness. To enhance
the load-bearing performance of reducers, the minimum torsional angle objective function
f3(X) is established, expressed as:

min f3(X) = θ1 + θ2 + θ3 + θ4 + θ5 (48)

(4) In order to make the backlash characterization coefficient, the mean value of
transmission error and the torsion angle objective function reach an optimal equilibrium
state under the interaction. Based on this, the linear weighted combination method is used
to construct the fitness function F(X).

maxF(X) = w1
f1(X)

Dn1
+ w2

Dn2

f2(X)
+ w3

Dn3

f3(X)
, (49)

where wi is the weighting factor, the corresponding weighting factor of each objective
function in this paper is w1 = 0.33, w2 = 0.33, w3 = 0.34, and Dni is the dimensionless
coefficient. This paper takes the optimal value of each objective function under single-
objective optimization (i = 1, 2, 3).

3.1.2. Design Variable

As a core component of RV reducers, the design parameters of the cycloid-pin gear
pair play a crucial role in the overall transmission performance of the RV system. According
to the established mathematical model of backlash, transmission error, and torsion angle,
the geometrical dimensions, modification, and dimensional accuracy of cycloid-pin gear
pair are selected as the design variables, which are expressed as:

X =
(

Rp, rp, a, b, ∆rp, ∆Rp, TδRp, Tδrp, TδFr, TδFp
)
,

where Rp is the radius of pin position, rp is the radius of pins, a is the eccentricity, b is
the width of the cycloid gear, ∆rp is the modification of equidistance, ∆Rp is the moving
distance modification, TδRp is the tolerance of the pin distribution radius, Tδrp is the
tolerance of the pin radius, TδFr is the tolerance of the run-out error of the cycloid gear, and
TδFp is the tolerance of the pitch cumulative error of the cycloid gear.

3.1.3. Constraint Condition

The constraint conditions are primarily determined from two aspects: the design
parameters and design criteria of the cycloid-pin gear pairs [23,30,33].

Among the design parameters, the short width coefficient K1 affects the tooth shape
of cycloid gears, thereby affecting the load-bearing force of cycloid-pin gear pairs. The
pin-diameter coefficient K2 plays an important role in meeting the strength requirements
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of the pin gear housing with the pin and avoiding mutual collision between the pin. The
tolerance accuracy Tδi is the focus of the study of gear transmission accuracy. The width of
the cycloid gear b is determined by the diameter of pinwheel central circle DP. Thus, their
constraint ranges are shown in Table 1.

Table 1. Constraints on the structural parameters of the cycloid-pin gear pair.

Serial Number Parameter Range of Values

g1(X)
Number of cycloid gear teeth zc ≤11 13~23 25~59 61~87

Short width coefficient K1 0.42~0.55 0.48~0.74 0.65~0.9 0.75~0.9

g2(X)
Number of pins zp 12~14 24~36 36~60 60~88

Pin-diameter coefficient K2 2.8~2 2~1.25 1.6~1 1.5~0.99

g3(X) Diameter of pinwheel central circle Dp 95~105 106~120 140~160 165~185
g4(X) Tolerance accuracy Tδi IT4~IT6
g5(X) Width of cycloid gear b 0.05Dp ∼ 0.1Dp

Where the range of values of K1 is related to the number of cycloid gear teeth
zc, K1 = azc/Rp, the range of values of K2 is determined by the number of pins zp,
K2 = Rp sin

(
180/zp

)
/rp, and Dp ranges from 140 to 160.

In the design of the cycloid-pin gear, to avoid the cycloid gear tooth profile from
producing the top cut or sharp angle, it is necessary to make the radius of pins less than the
minimum radius of curvature of the cycloid gear cam portion. At the same time, it is also
necessary to ensure that meets the requirements of the strength, so add the constraint of
contact stress between the pin gear and the cycloid gear. Because of the gear processing,
manufacturing errors are inevitable. To facilitate the assembly and disassembly, lubrication
and deformation, and other conditions, the cycloid gear and pin need to ensure a certain
meshing clearance. Reducer service life is an important issue that cannot be ignored,
and the service life of the RV reducer generally depends on the life of the bearings. The
transmission efficiency of the RV reducer is also an important performance indicator, so it
is necessary to ensure transmission efficiency while improving the transmission accuracy
and load-bearing performance. Summarize the detailed expression of the above, shown in
Table 2.

Table 2. Constraints on the design criteria for the cycloid-pin gear pair.

Serial Number Constraint Condition Calculation Formula for the Range of Values

g6(X) Avoiding top cutting or sharp angle
rp − (1 + K1)

2Rp/
(
zpK1 + 1

)
< 0,

((
zp − 2

)
/
(
2zp − 1

)
≥ K1

)
rp − Rp

√
27(1− K1

2)
(
zp − 1

)(
zp + 1

)−3
< 0,

(
1 > K1 >

(
zp − 2

)
/
(
2zp − 1

))
g7(X)

Contact stress between the pin gear
and the cycloid gear 0.418

√
E
b

(
Fi
ρe

)
max
− [σH] ≤ 0

g8(X) Meshing clearance 2(∆Rp−δRp)
azc

√
1− K2

1 −
2(∆rp−δrp)

azc
≤ 0

g9(X) Bearing life 5000− 106

60np

(
C
P

) 10
3 ≤ 0

g10(X) Transmission efficiency 0.8− η12ηS(1− ηM) ≤ 0

In the table, Fi is the engagement force at the contact point of the cycloid-pinwheel,
ρe is the equivalent radius of curvature, ρe =

∣∣ρirrp/
(
ρi − rrp

)∣∣, ρi is the radius of
curvature of the cycloid gear at the engagement point, [σH] is the allowable contact stress,
[σH] = 1500 MPa, np is the rotating speed of the boom bearing, np = n1

[
1 + 1/

(
zp − 1

)]
,

C is the rated dynamic load of the boom bearing, P is the actual dynamic load on the
boom bearing, ηS is the total bearing efficiency, ηS = 0.99, ηM is the hydraulic loss



Energies 2024, 17, 654 18 of 27

efficiency, ηM = (0.01 ∼ 0.02)η12, η12 is the meshing efficiency of RV transmission, and
it is expressed as

η12 =
1− i1i2(η1η2)

iz
, η1 = 1− 2.3 fz

(
1
z1

+
1
z2

)
, η2 =

1− (Rp − rp)
4 fz

K1zcRpπ

1 + (Rp − rp)
4 fz

K1Rpπ

,

where fz is the friction coefficient of tooth meshing, i1 = −z2/z1, i2 = zp/
(
zp − zc

)
.

In summary, the multi-objective optimization model established by combining the
objective function and constraints can be expressed as

maxF(X) = [max f1(X), min f2(X), min f3(X)]

s.t.

{
gimin(X) ≤ gi(X) ≤ gimax(X), (i = 1, 2, · · · , 5)

gi(X) ≤ 0, (i = 6, 7, · · · , 10)

(50)

3.2. PAGA-DE Algorithm

Traditional Genetic Algorithm (GA) [50,51] is commonly used to solve objective opti-
mization models, but it has drawbacks such as a tendency to fall into local optima, poor
convergence accuracy, and low computational efficiency for solving complex models. To
overcome these shortcomings, an improved Parallel Adaptive Genetic Algorithm using
Deferential Evolution (PAGA-DE) is proposed. The principle of this algorithm is to inte-
grate the mutation operator from the Differential Evolution (DE) algorithm [52,53] into
the crossover operator of the Adaptive Genetic Algorithm (AGA) [54,55], redesign the
crossover operator, and utilize parallel operation [56] throughout the algorithm. The
improved crossover operator is illustrated in Figure 10. First, it identifies the crossover indi-
vidual Pi

s in the current iteration population. Second, it randomly selects two individuals
Pr

s and Pt
s from the current population and calculates the crossover copy Ps

i
′. Finally, it

performs a crossover calculation between Pi
s and Ps

i
′ to obtain the individual for the next

iteration Pi
s+1, where s is the number of current iterations, s + 1 is the number of the next

iteration, i is the serial number of cross individuals in the current iteration population, r
and t are individual sequence numbers in the current iteration population, and r 6= t 6= i.
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In addition, the variable w in the figure represents the scaling factor. In the DE
algorithm, w is a constant, which is not conducive to the iterative optimization of the
algorithm. In the early stages of algorithm optimization, to avoid the population falling
into a local optimum, a relatively large scaling factor needs to be used. In the later stages
of algorithm optimization, it is necessary to reduce the scaling factor to increase local
exploration intensity. Therefore, in the crossover operator of the PAGA-DE algorithm,
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starting from the cosine law, the scaling factor w is designed as a dynamically changing
function with the iteration count. It is represented as

w =


1+{cos[(Iter−1)π/(Itermax−1)]}k

2 ,
(

i ≤ imax
2

)
1−|cos[(Iter−1)π/(Itermax−1)]|k

2 ,
(

i > imax
2

) , (51)

where Iter indicates the current iteration times, Itermax indicates the maximum number of
iterations, and k is the decreasing exponent, 0 < k ≤ 1.

The solution steps of PAGA-DE algorithm are shown in Figure 11.

Energies 2024, 17, x FOR PEER REVIEW 21 of 29 
 

 

No

Yes

include

Start

Setting the PAGA-DE 
algorithm base parameters

Initialising populations
using parallel operations

Calculate individual fitness 
in the population

The optimization operation is
calculated by parallel operation

Calculate the fitness of the
new individuals and get the
new population by fitness

Termination
criteria satisfied?

Stop

Optimize operation
content

selection operation

Crossover
probability
calculation

New crossover
operator

Mutation
probability
calculation

Mutation operation

 
Figure 11. The flowchart of PAGA-DE algorithm. 

4. Results and Discussion 
To validate the proposed multi-objective optimization design method for the cycloid-

pin gear, an analysis is conducted based on the optimization results from three aspects: 
backlash, transmission error, and torsional stiffness. Therefore, the design variables before 
and after optimization are separately incorporated into the mathematical models for back-
lash and transmission error in Sections 2.1 and 2.2, and Monte Carlo simulation is em-
ployed for the analysis. Since the design variables are parameters within the cycloid-pin 
gear, the torsional stiffness is analyzed from two aspects: the equivalent torsional stiffness 
model of the cycloid-pin gear in Section 2.3.2 and the stiffness of the turning arm bearing 
in Section 2.3.3. It is noted that, according to Equation (37), the stiffness of the output arm 
bearing is primarily related to the radial force it experiences. Therefore, the analysis of the 
bearing force is incorporated into the results. 

The RV-80E reducer is taken as an optimization example. Table 3 presents the oper-
ating conditions and partial basic parameters of the reducer, while also including the con-
figuration of the PAGA-DE algorithm. Tables 4 and 5 are the error parameters that do not 
participate in optimization in the backlash and transmission error, respectively. 

Table 3. Setting of basic parameters. 

 Parameter Numerical 
Value 

Operating conditions and partial 
basic parameters of the RV reducer 

Input speed n1 1215 r/min 
Input power P 1.64 kW 
Load torque T 784 N·m 

Transmission ratio zi  81 
Number of teeth of the sun gear 1z  21 

Number of teeth of the planet gear 2z  42 
Module m 1.5 

Number of cycloid gear teeth cz  39 

Figure 11. The flowchart of PAGA-DE algorithm.

4. Results and Discussion

To validate the proposed multi-objective optimization design method for the cycloid-
pin gear, an analysis is conducted based on the optimization results from three aspects:
backlash, transmission error, and torsional stiffness. Therefore, the design variables be-
fore and after optimization are separately incorporated into the mathematical models for
backlash and transmission error in Sections 2.1 and 2.2, and Monte Carlo simulation is
employed for the analysis. Since the design variables are parameters within the cycloid-pin
gear, the torsional stiffness is analyzed from two aspects: the equivalent torsional stiffness
model of the cycloid-pin gear in Section 2.3.2 and the stiffness of the turning arm bearing
in Section 2.3.3. It is noted that, according to Equation (37), the stiffness of the output arm
bearing is primarily related to the radial force it experiences. Therefore, the analysis of the
bearing force is incorporated into the results.

The RV-80E reducer is taken as an optimization example. Table 3 presents the op-
erating conditions and partial basic parameters of the reducer, while also including the
configuration of the PAGA-DE algorithm. Tables 4 and 5 are the error parameters that do
not participate in optimization in the backlash and transmission error, respectively.
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Table 3. Setting of basic parameters.

Parameter Numerical Value

Operating conditions and partial
basic parameters of the RV reducer

Input speed n1 1215 r/min
Input power P 1.64 kW
Load torque T 784 N·m

Transmission ratio iz 81
Number of teeth of the sun gear z1 21
Number of teeth of the planet gear z2 42

Module m 1.5
Number of cycloid gear teeth zc 39

Number of pins zp 40

PAGA-DE algorithm

Population size M 50
Maximum crossover probability Pc1 1
Minimum crossover probability Pc2 0.7
Maximum mutation probability Pm1 0.1
Minimum mutation probability Pm2 0.05

Table 4. The value of the error parameter in the backlash (Unit: µm).

Error Parameter Upward Deviation Lower Deviation Tolerance

Ew −25 −45 20
∆Fα 15 −15 30
∆Fr 14 0 14
δt 10 −10 20
δa 3 0 3

δ∆rp 1 −1 2
δ∆Rp 1.2 −1.2 2.4

∆u 4 1 3

Table 5. The value of the error parameter in the transmission error (Unit: µm).

Error Parameter Upward Deviation Lower Deviation Tolerance

Es 10 0 10
Ep 12 0 12
As 10 0 10

δRa 5 −5 10
δH 5 −5 10

δCh 5 0 5
δCs 3 0 3
δPq 5 0 5
δPa 5 0 5

4.1. Comparison of Optimization Algorithms

The PAGA-DE and GA algorithms are applied to solve the multi-objective model in this
study. In order to verify that the PAGA-DE algorithm has higher computational efficiency
and convergence than the GA algorithm, this paper will be divided into two parts: simu-
lated optimization solution and complete optimization solution.

Initially, the maximum number of iterations Itermax is set to 20 in the simulation
optimization solution, and 3 calculations are performed, obtaining the runtimes as shown
in Table 6. The computer hardware is an AMD Ryzen 9 5900X 12-Core Processor and
128 GB RAM. The average runtime for the PAGA-DE algorithm is 4755 s, while for the GA
algorithm, it is 13,941 s. It is evident that, compared to the GA algorithm, the PAGA-DE
algorithm improves optimization efficiency by more than 65.89%.



Energies 2024, 17, 654 21 of 27

Table 6. Run time comparison.

Optimization Algorithm Serial Number Time (s)

GA
1 14,701
2 13,813
3 13,308

PAGA-DE
1 4787
2 4740
3 4739

Additionally, in the complete optimization solution, by setting the maximum number
of iterations Itermax to 100 for optimization, convergence curves for different algorithms
are obtained, as shown in Figure 12. In the figure, at the end of the first iteration, the fitness
value of the PAGA-DE algorithm is significantly higher than that of the GA algorithm.
Moreover, the convergence curve of the PAGA-DE algorithm is approaching stability by
the 15th iteration cycle, while the GA algorithm achieves a stable convergence curve only
around the 69th iteration cycle. The results indicate a significant improvement in both
convergence and computational efficiency for the improved PAGA-DE algorithm. The
optimized data is be solved using the PAGA-DE algorithm, filled in Table 7, and rounded.
In the optimized data, the unrounded design variables are placed in ( ), as shown in
Table 7(a,b).

Table 7. Before and after optimization data.

(a) Geometric dimensions and modifications

Parameter Before optimization After optimization

Rp (mm) 75 77.4 (77.37)
rp (mm) 3.5 3.8 (3.81)
a (mm) 1.5 1.6 (1.59)
b (mm) 10 14.7 (14.71)

∆rp (µm) −15 −7 (−7.18)
∆Rp (µm) −30 −13 (−12.73)

(b) Dimensional accuracy (Unit: µm)

Error parameter
Before optimization After optimization

Upward
deviation

Lower
deviation Tolerance Upward

deviation
Lower

deviation Tolerance

δRp(TδRp) 2 −8 10 3 −9 12 (12)
δrp(Tδrp) −1.5 −4.5 3 −1 −5 4 (4.15)
δFr1(TδFr) 10 0 10 7 0 7 (6.77)
δFp(TδFp) 10 0 10 8 0 8 (7.95)

(c) Objective function

Objective function Before optimization After optimization
Backlash characterization coefficient 0.86 0.91
Mean value of transmission error (′′) 36.03 34.17

Torsion angle (′′) 105.2 95.84
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4.2. Analysis of Backlash before and after Optimization

According to the design variables before and after optimization, the Monte Carlo
method was used to calculate the backlash of RV reducers. The results of the backlash
before and after optimization are entered in Table 8 and fitted to the curve as shown in
Figure 13. As can be seen from the curve in the figure, the backlash has a normal distribution
trend. Before optimization, the range of backlash is between 0.53′ and 2.06′, with a mean
of 1.23′. The number of simulation experiments with deviations within 1.5′ was 18,318,
accounting for 91.75%. After optimization, the range of backlash is between 0.05′ and 1.61′,
with a mean of 0.81′. The number of simulation experiments with deviations within 1.5′

is 19,998, accounting for 99.99%. Based on the comparison of backlash before and after
optimization, it is concluded that the maximum value of backlash after optimization has
decreased by 21.84%, and the reliability of backlash accuracy has improved by 8.24%.

Table 8. Number and percentage of the backlash with 1.5′ before and after optimization.

Number of the Backlash within 1.5′ Proportion

Before optimization 18,318 91.75%
After optimization 19,998 99.99%
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4.3. Analysis of Transmission Error before and after Optimization

As above, the Monte Carlo method is used to calculate the transmission error of
RV reducers. Before and after the optimization, the sample data from the Monte Carlo
experiments is entered in Table 9 and fitted to the curve as shown in Figure 14. The
distribution curve of the transmission error value tends to be Rayleigh-distributed. Before
optimization, the maximum value of transmission error can be 93.43′′, the mean value is
36.03′′, and there are 19,433 times within 60′′, accounting for 97.17%. After optimization,
the maximum value of transmission error can be 88.68′′, the mean value is 34.17′′, and
there are 19,704 times within 60′′, which is 98.52% of the time. Based on the comparison
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of the numerical results of the transmission error before and after the optimization, the
maximum value of the transmission error is reduced by 5.08% after the optimization, the
mean value is reduced by 5.16%, and the number of times it is within 1′ is improved by
1.35% compared to that before the optimization.

Table 9. Number and percentage of transmission error with 1.5′ before and after optimization.

Number of Transmission Error within 60′′ Proportion

Before optimization 19,433 97.17%
After optimization 19,704 98.52%
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4.4. Analysis of Torsional Stiffness before and after Optimization

As can be seen from Table 7, before and after optimization data, the torsion angle at
the output end of RV machine before optimization is 105.2′′, and the torsion angle after
optimization is 95.84′′, which is reduced by 8.9%. This reflects that the torsional rigidity
of the RV is improved after optimization, and the transmission accuracy of RV reducers is
improved when the load is driven.

Based on the equivalent torsional stiffness model of the cycloid pinwheel in Section 2.3.2,
the changes in the equivalent torsional stiffness of the cycloid pinwheel pair before and
after optimization are obtained (Figure 15), and the equivalent torsional stiffness of each
pair of teeth is filled in Table 10. From the data in Figure 15 and Table 10, it can be seen
that the phase angle interval of the meshing tooth pair before optimization is 18◦~72◦, with
7 pairs of teeth participating in engagement. The equivalent torsional stiffness for each pair
of engaging teeth ranges from 4.26 × 108~6.1 × 109 N·mm/rad, and the total equivalent
torsional stiffness is 3 × 1010 N·mm/rad. The phase angles of the optimized meshing pairs
of teeth ranged from 18◦ to 72◦, with seven pairs of teeth engaged. The equivalent torsional
stiffness of each pair of meshing teeth ranged from 7.7 × 108~1.02 × 1010 N·mm/rad, with
a total equivalent torsional stiffness of 5.01 × 1010 N·mm/rad. The number of meshed
tooth pairs remains the same after optimization, but the total equivalent torsional stiffness
is increased by 67.39% compared to the pre-optimization. Consequently, the load-bearing
capacity of the cycloid-pin gear mechanism is improved.

Table 10. The equivalent torsional stiffness before and after optimization.

The Equivalent Torsional Stiffness × 109 (N·mm/rad)

1 2 3 4 5 6 7 Summation

Before optimization 0.426 1.69 6.08 5.98 5.69 5.29 4.8 29.96
After optimization 0.773 3.46 10.17 9.89 8.37 8.66 7.85 50.15
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To further analyze the change in torsional stiffness, based on the calculation model for
the torsional angle of the arm-bearing in Section 2.3.3, the variation in radial force on the
turning arm bearing with the crankshaft angle before and after optimization is obtained
(Figure 16). The maximum radial force on the turning arm bearing before optimization is
5173.1 N, and after optimization, it is reduced to 5039 N, a decrease of 2.59%. The reduction
in the maximum force on the bearing indicates a decrease in the contact stress between the
cylindrical rollers of the turning arm bearing and the inner and outer rings. This situation
is beneficial for improving the service life of the turning arm bearing.
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5. Conclusions

In this work, a multi-objective optimization model used in the manufacturing and
processing parameters of the cycloid-pin gear in RV reducers has been proposed. The
model is optimized for backlash, transmission error, and torsional stiffness.

(1) With the backlash, transmission error, and torsion angle as the optimization objectives,
the geometric parameters, dimensional accuracy, and modification amount of cycloid-
pin gear pairs as the design variables, the multi-objective optimization model is
established from the constraints of geometric parameters and the requirements of
design criteria.

(2) Based on the AGA algorithm and DE algorithm, an improved PAGA-DE algorithm
is proposed. By comparing with the GA algorithm, it is concluded that the PAGA-
DE algorithm has improved its solving efficiency and optimization ability, which
proves that the computational efficiency and convergence accuracy of the PAGA-DE
algorithm to solve the optimization model basically achieve the expected effect.

(3) After optimization, the proportion of backlash within 1.5′ is 99.99%, and the reliability
of return difference is increased by 8.24%. Transmission error within 60′′ accounted
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for 98.52%, an increase of 1.35%. The torsion angle of the whole machine is reduced to
95.84′′, which is reduced by 8.9% compared with before optimization. The driving
performance and service life of RV reducers are improved. The design guidance of the
macro and micro angle of the transmission system is realized. It lays a theoretical foun-
dation for the engineering practice of precision transmission. By comparing the data
of the three major performance indexes before and after optimization, the established
optimization model achieves the improvement of the transmission performance of
the reducer after solving, which is in line with the expected goal.

This paper has essentially achieved error control in the transmission system and pro-
vided design guidance for geometric dimensions. Moreover, the established optimization
model and proposed improvement algorithm offer theoretical support for research in the
optimization of reducers, providing a solid foundation for further studies.

First of all, according to the mathematical model of manufacturing and processing
parameters and transmission performance established in this paper, the parameters of the
cycloid-pin gear pair, the involute gear system, and the planetary carrier can be further
optimized. This will enable a more comprehensive optimization design, providing more
precise data support.

Secondly, on the basis of the research in this paper, more optimization objectives can be
considered to establish a more comprehensive optimization model. For instance, transmis-
sion efficiency, originally treated as a constraint, can be transformed into an optimization
objective. This transformation enables optimization design considering complex operating
conditions such as transmission accuracy, load-bearing performance, and energy utilization
efficiency. The use of a quality loss function in this paper to characterize the processing
cost of dimensional accuracy may not precisely calculate actual processing costs. Therefore,
introducing a processing cost function on the basis of this paper can optimize design with
considerations for both cost and performance requirements.

Certainly, as the number of objective functions and design variables increases, further
research is needed on how to more effectively solve the optimization model. The improved
PAGA-DE algorithm in this paper makes a contribution to such research.
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