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Abstract: Field-programmable gate array (FPGA)-based real-time simulation plays a crucial role in
testing power–electronic dominated systems with the formation of controller hardware-in-the-loop
(CHIL) or power hardware-in-the-loop (PHIL). This work describes an efficient implementation of
computation time and resource usage in the FPGA-based study of a modular multilevel converter
(MMC) with detailed electromagnetic transients. The proposed modeling technique can be used
in continuous control mode (CCM) and discontinuous control mode (DCM) for high-switching
frequency semiconductor technologies. An FPGA-based designed solver structure is also presented
to take advantage of the parallel features of FPGAs to achieve an ultra-fast calculation speed. In
addition, two different switch modeling techniques are discussed with a five-level MMC case study.
Experimental results on the NI PXIe platform show the feasibility of the proposed implementation,
and a time step of 100 nanoseconds is achieved.

Keywords: real-time simulation; FPGAs; electromagnetic model; modular multilevel converter
modeling

1. Introduction

Modular multilevel converters (MMCs) are widely applied in power transmission and
conversion in power grids and electrified transportation. However, testing MMCs with
high power is a great danger due to the high voltage and current involved. In addition,
the prototype is prone to be damaged without precautions. On the other hand, hardware-
in-the-loop simulation (HiLs) serves as an effective form of testing and validation of the
prototype by simulating the power electronic system using a digital real-time simulator
(DRTS) [1]. This can minimize the developing period and reduce the danger of damaging
and destroying prototypes [2]. However, the design of HiLs depends on the mathematical
model of the MMC, the calculation time of which will affect the stability of the real-
time system.

In a power-electronic-dominated system simulation, the choice of the time step relates
to the typical application and the implementation hardware. A relatively low time step is
required to maintain numerical stability for studying power systems or electrical machines.
A time step ranging from 50 µs to 200 µs is necessary to consider the effect of the third or
fifth harmonic in the power system [3]. This time step can provide acceptable results for
electromagnetic transients up to 1 kHz. This can be implemented on a simulator using
CPU/DSP as the core computational engine [4]. A power system involving multiple
power electronic systems requires a time below 50 µs to perform the transient analysis of
power systems.

For time steps below microseconds, FPGAs have to be involved [5]. This time step
presents a detailed representation of electromagnetic transients and high frequencies inside
power electronic systems. A higher-order numerical solver can achieve greater precision.

Energies 2024, 17, 591. https://doi.org/10.3390/en17030591 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en17030591
https://doi.org/10.3390/en17030591
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://doi.org/10.3390/en17030591
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en17030591?type=check_update&version=1


Energies 2024, 17, 591 2 of 15

The transient process of the switch devices, similar to the IGBT, can be simulated [6].
Compared with processor-based studies, the FPGA-based simulator can affect the system’s
behavior by sampling the controller’s signals with an ultra-high resolution. This gives an
acceptable accuracy with an interpolation method compensating for the internal switch
events [7].

From this discussion, we can conclude that an FPGA simulator is essential for achiev-
ing a time step with hundreds of nanoseconds. In addition, the discrete solver and the
modeling of the power switch are two main parts. In discrete solver design, paper [6]
presents an FPGA-based DRTS environment for analyzing the electromagnetic transients of
power systems, including multiple power electronic converters. Different subsystems are
divided by utilizing the Switching-Network Partitioning (SNP) method. Using the parallel
calculation of FPGAs enables sub-microsecond simulation time steps. Paper [7] utilizes
the LabVIEW Platform 2021 and implements the power converters model using LabVIEW
FPGAs. LabVIEW provides a single-cycle time loop structure and achieves a time step of
hundreds of nanoseconds. Paper [8] presents a general implementation of the FPGA-based
simulation of photovoltaic applications. After representing the system with ODEs using
Xilinx system generator tools, a time step below 1 microsecond is obtained.

However, this solver is restricted by sequential calculation, and parallel solving can
improve the solving speed [9,10]. Paper [11] proposes a similar approach to real-time simu-
lation using a multi-rate structure. By modeling the power electronic system using different
time resolutions, the solving is not sequential, and all subsystems can be solved simultane-
ously. Paper [12] proposes apredictor–corrector parallel solver for FPGA implementation.
An independent solving process is obtained after separating the solving relationship be-
tween the predictor and corrector calculation. After implementing LabVIEW FPGAs, the
time step is significantly reduced to 100 nanoseconds. The other decoupling method is a
multi-rate simulation with a different solver [13,14]. A parallel process can be achieved
by partitioning the whole system using different time steps. However, the latency among
different subsystems and the synchrony of the subsystem are two potential problems.

The other key factor that affects the calculation speed is the judgment of the switches.
In general, the ideal switch function model [15], the Ron/Roff model [16], and the associated
discrete circuit model [17] are three commonly used models for system-level simulations
with a detailed representation of the switch steady-state effect. Although the transient state
of the switch can further improve the system accuracy, the model size is largely limited
due to the hardware resource of FPGAs [18]. In system-level simulations, similar to the
DCM condition, an iteration is required to maintain the stability of the real-time model.
Paper [19,20] utilizes the iteration process to find the value when the current reaches zero.
The maximum iteration times are defined to avoid overrun under the real-time constraint.
On the other hand, paper [21] proposes a zero-crossing method seeking the current value
when the MMC’s bridge is in the blocked mode. The zero-crossing method forces the
current value to zero once the transmission from CCM to DCM is captured. This avoids the
complex iteration process and can be used for CCM and DCM statutes.

This paper aims to develop a highly efficient MMC model using FPGAs. The rest of
this article is organized as follows: Section 2 describes the FPGA solver design, including
the ODE-solving and switch judgment processes. Section 3 presents the system model of
MMCs using the ideal and Ron/Roff switch models. Section 4 offers the conclusion.

2. FPGA Solver Design

In this section, the solver of a power electronic system is illustrated. Three factors are
involved. One is the discrete integration solver. The second part is the judgment of the
switch status. The last is the circuit implementation on FPGAs.
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2.1. ODE Solver Design

In power electronic simulations, the ordinary differential equation (ODE) form in
Equation (1) can be used to describe the system behavior.

.
x = f (tn, xn)
y = Cx + Du

(1)

where u is the input vector, x is the state vector, f (tn, xn) is the derivative function, and
f (tn, xn) = Ax + Bu, y is the output vector. A, B, C, D is the coefficient matrix containing
the system parameters.

In general, the solving of (1) involves the integration method. One commonly used
method is the Backward Euler (BE) method. In the n-th time step, (1) is rewritten using BE
as Equation (2) [22],

x(n) = h· f (tn, xn) + xn−1 = h·Ax(n) + h·Bu(n) + xn−1
y(n) = Cx(n) + Du(n)

(2)

To solve x(n), two methods have been used in the literature. One is the iteration
method. The other is the direct solution [23]. The error should be defined in the iteration
method to end the calculation loop in each time step. The maximum iteration times are
restricted so that real-time constraints can be met. One type of iteration is the improved
Euler method, with the formation in Equation (3)

x̂(n) = h· f (tn, xn−1) + xn−1
x(n) = h· f (tn, x̂(n)) + xn−1

y(n) = Cx(n) + Du(n)
(3)

where x(n)′ is the value first calculated with the forward Euler method, and it is used to
approximate the value of x(n). Then, in the backward Euler formation, x(n) is replaced
with x(n)′ to finish the calculation. This significantly saves the calculation time without
much iteration time. The other method is the direct solution. In this method, Equation (2)
is deduced from Equation (4),

x(n) = (1 − h·A)−1(h·Bu(n) + xn−1)
y(n) = Cx(n) + Du(n)

(4)

Equation (3) is a direct solution to Equation (2). Since (1− h·A)−1 exists in Equation (4),
x(n) has value with the condition that (1 − h·A)−1 ̸= 0. Compared with the iteration
method in Equation (2), the direct solution requires more mathematical power and calcula-
tion time to solve the inverse matrix of (1 − h·A). So, usually, the iteration process with
limited iteration time has the advantage of fast calculation. However, iteration is a sequen-
tial process, the calculation time of which can be further accelerated with a parallel process.

As shown in Figure 1, the parallel structure calculates the value x̂n+2 at time point tn
with a time step of 2h. At the same time, xn is calculated with the value x̂n obtained from
the time step of tn−2. The value of x̂n is calculated and known at the beginning of time step
tn. Thus, the calculation of xn does not need to wait for the calculation of x̂n at the time step
of tn. Since the solving of x̂n+2 and xn is independent, they can be calculated at the same
time. This method can be effectively used when the simulation time step is relatively small.

The parallel solving process can be written as shown in Equation (5),

x̂n+2 = yn + 2·h· f (tn, yn)
x(n) = h· f (tn, x̂(n)) + xn−1

y(n) = Cx(n) + Du(n)
(5)
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Compared with Equation (4), the solving process is independent. The implementation
of Equation (5) will have a speed advantage.
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2.2. Switch Status Update and DCM Modeling

One of the essential elements in the power electronic system is the power semiconduc-
tor device. The number of possible topologies in one power electronic system relates to
the number of switches. If N is the switch’s total number, the potential power electronic
system’s combination is 2N . This time-varying feature of the power electronic system is one
of the biggest challenges in modeling. For instance, if N = 10, the size of the data required
to store all the statuses of the circuit elements can be enormous.

For non-controlled switches such as diode elements, its state depends on iswitch or
Vswitch as input for the current calculation step. In Table 1, the three basic subsystem types
of switches are summarized. In the parallel calculation structure, the calculation of Iswitch
has to be associated with the inductor connected to it. When the diode is in parallel with
an insulated gate bipolar transistor (IGBT), its status will also be decided by the injection
current as long as the drive signal is equal to zero. The switch state update comes after the
value of the predictor or corrector is calculated.

Table 1. Switch judgment.

Subsystem Type Iswitch > 0 Iswitch < 0 Gate Signal
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------ ------ S1 = 1 S2 = 1

The system modeling separates the switch’s status from the inductor or the capacitor.
The circuit partitioning with the switch is shown in Figure 2, with the formation of a
tow-port subsystem. In one time step, since the current flowing through the inductance
or the voltage between the capacitance is constant, the connected capacitor is treated as
the voltage source, and the inductance is treated as the current source. After obtaining the
switch statutes from Table 1, the calculation of the unknown value [Vout, Iin] is deduced
from Equation (6). [

Vout
Iin

]
=

[
Sswitch 0

0 Sswitch

][
Vin
Iout

]
(6)
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From Table 1, the value of Iswitch decides the switch statutes and acts as the guard
function describing the time-varying feature in one bridge. The value of Iswitch is calculated
using Equation (5). Three different derivative functions can be used to describe the time-
varying topology in both DCM and CCM. A basic model is shown in Equation (7).

dx
dt

=

{
f1(tn, xn) i f g(tn−1, xn−1) ̸= 0
f2(tn, xn) i f g(tn−1, xn−1) = 0

(7)

where g(tn−1, xn−1) is the guard function, f1(tn, xn) is the derivative function of CCM, and
f2(tn, xn) are the derivative functions of DCM. When the power electronic system translates
from CCM statues to DCM statues, the zero-crossing function has to find the zero point
tr meeting g(tr, xn−1) = 0. To reduce the calculation burden in simulation, g(tr, xn−1) = 0
can be approximated with a defined neighborhood |g(tn−1, xn−1)| ≤ α. Thus, (3) can be
rewritten as

dx
dt

=

{
f1(tn, xn) i f |g(tn−1, xn−1)| > α

f2(tn, xn) i f |g(tn−1, xn−1)| ≤ α
(8)

Combining (8) and (5), the calculation of the corrector xn and xp
t+h are shown in

Equations (9) and (10), respectively.

xn =

xn−1 + h· f1

(
t, xp

n

)
i f |Iswitch

p
n| > α

xn−1 + h· f2

(
t, xp

n

)
i f |Iswitch

p
n| ≤ α

(9)

xp
n+1 =

{
xn−1 + 2h· f1(t, xn−1) i f |Iswitchn−1| > α
xn−1 + 2h· f2(t, xn−1) i f |Iswitchn−1| ≤ α

(10)

Once |Iswitch
p

n| ≤ α is met, the next step is to obtain the numerical value of f2(tn, xn).
However, f2(tn, xn) and f1(tn, xn) are different. Different iteration equations will be in-
volved, which will require more hardware resources.

For a bridge with two switches, f1(tn, xn) indicates that the switch status of [S1, S2]
is [ON, OFF] or [OFF, ON], f2(tn, xn) is the DCM indicating that the switch [S1, S2] is
[OFF, OFF]. With the defined boundary α, here, we define the point translating from
f1(tn, xn) to f2(tn, xn).

• Condition I: gp(tn, xn) > α&&g(tn−1, xn−1) < −α;
• Condition II: gp(tn, xn) < −α&&g(tn−1, xn−1) > α.

When switch [S1, S2] is [OFF, OFF], Iswitch ≈ 0. Here, the value of Iswitch during the
DCM conditions is limited to a small value β that can be neglected.

f lag(tn) =


1 Condition I
2 Condition II
0 else

(11)
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xn =


β f lag(tn) = 1
−β f lag(tn) = 2
−β f lag(tn−1) = 1
β f lag(tn−1) = 2

(12)

xp
n+1 =


−β f lag(tn) = 1
β f lag(tn) = 2
β f lag(tn−1) = 1
−β f lag(tn−1) = 2

(13)

At the time point tn, (12) and (13) are the calculations dealing with the predictor and
the corrector. The function f lag(tn) is used to monitor whether the system is in a chattering
situation. Once chattering is detected, the value xn and xp

n+1 in the chattering zone will be
assigned to β or −β using (16) and (17). Thus, in the next simulation step tn+1, since the
sign of xn and xp

n+1 are different, and the DCM will be recognized as the point crossing
zero. Therefore, the following point will continue to be recognized as the DCM points in
both the predictor and the corrector, but the value of xn+1 and xp

n+2 are set to −β and β,
which are negligible.

2.3. FPGA Implementation Structure

Figure 3 shows the FPGA implementation structure using the proposed zero-crossing
and predictor–corrector methods.
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Figure 3. Power electronic simulation with parallel calculation.

As shown in Figure 3, the system can be divided into independent subsystems by
using a current source, voltage source, and two ports as a division. In each predictor
calculation or corrector calculation process, the switch calculation and circuit solving have
a serial connection relationship. At the time step tn, the solver first uses Equation (5) to
calculate x̂(n+2) and x(n) after sampling the information of gate signals. x̂(n+2h) is a value
after two steps, and x(n+h) is the calculated system status. Because each variable in x̂(n+2)
and x(n) is independent, x̂(n+2) and x(n) can be calculated at the same time. Compared
with the forward Euler Method, the order in the parallel structure is improved to 2 [12,24].

These two values are further used to decide the system’s status in CCM or DCM using
Equations (11)–(13). Furthermore, in Equations (11)–(13), the FPGA resources utilized in the
zero-crossing process only involve the comparison unit, and no math calculation is used.
As a result, the calculation speed is almost unaffected by the zero-crossing unit insertion.
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3. System Model and Experimental Results

In this section, we show the effectiveness and the general results of the proposed
method. The other case study of a five-level MMC is shown in Figure 4. Figure 4 divides
the system into two parts: N1 and N2. N1 is the subsystem with inductance and capacitance.
The N2 subsystem consists of the switches, which are made of a large number of power
electronic submodules (SMs). The related simulation parameters are shown in Table 2.
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Table 2. Simulation parameters.

Symbol Description Value

h Simulation step 100 ns
Ure f Single-phase sinusoidal reference signal 1 V, 50 Hz

fc Frequency of carrier waveforms 3 kHz
TTD Turn-on dead-time 30 µs
Vdc1 Voltage source 1000 V
Vdc2 Voltage source −1000 V
Ron Switch turn-on resistance 0.001 ohm
Ro f f Switch turn-off resistance 1000 ohm

C Capacitance 30 × 10−4 F
La1,Lb1 and Lc1 Capacitance 2 × 10−4 H
La2,Lb2 and Lc2 Inductance 2 × 10−4 H

RL Resistance 10 ohm

3.1. Real-Time Simulation with ISF Model

The switch device of the SM in the upper bridge is shown in Figure 5a. When S1 and
S2 operate in the dead zone, the switch function can be obtained with (14).

S1p_j =

{
0 i f Iin < 0
1 i f Iin ≥ 0

S2p_j =

{
1 i f Iin < 0
0 i f Iin ≥ 0

(14)

where p = A1, B1, and C1, which represent phases A, B, and C, respectively, and j is the
number of SM in the upper bridge.



Energies 2024, 17, 591 8 of 15
Energies 2024, 17, x FOR PEER REVIEW 8 of 15 
 

 

S2

S1

Vout

Iin

Uc

Ic

Iout

(a) (b)

S2

S1

Vout

IinUc

Ic
Iout

La1 Lb1 Lc1
LR

N

A1

A

A2

B1 C1

B2 C2

La2 Lb2 Lc2
ic

ib
ia B C

O

N2

N1

N2

(c)  

Figure 5. The system partitioning. (a) SM is in the upper bridge; (b) SM is in the lower bridge; and 

(c) the N1 and N2 subsystems. 

The output nodal voltage 𝑉𝑜𝑢𝑡  and the output current 𝐼𝑜𝑢𝑡  can be calculated with 

(15). 

𝑉𝑜𝑢𝑡 = 𝑆1𝑝_𝑗 ∙ 𝑉𝑐_𝑝_𝑗
𝐼𝑜𝑢𝑡_𝑝_𝑗 = 𝑆2𝑝_𝑗 ∙ 𝐼𝑖𝑛 + 𝑆1𝑝_𝑗 ∙ 𝐼𝑖𝑛

𝐼𝑐_𝑝_𝑗 = 𝐼𝑖𝑛 ∙  𝑆1𝑝_𝑗

 (15) 

Thus, the current and voltage relationship in the upper bridge can be calculated with 

(16) 

𝑉𝑝1_𝑁 = 𝑉𝑑𝑐1 −∑ 𝑉𝑜𝑢𝑡_𝑝_𝑗
4

𝑗=1

𝐼𝑖𝑛_𝑝_𝑗 = 𝑆2 ∙ 𝐼𝑖𝑛_𝑝_𝑗 − 𝑆1𝑗 ∙ 𝐼𝑖𝑛_𝑝_𝑗
𝐼𝑖𝑛_𝑝_𝑗 = 𝐼𝑜𝑢𝑡_𝑝_(𝑗−1)

 (16) 

where 𝐼𝑜𝑢𝑡_0 = 𝑖𝐿𝑝1. 

With the same method, the current and voltage relationship in the lower bridge (A2, 

B2, C2) can be calculated with (17)–(19). 

𝑆1𝑞_𝑗 = {
0 𝑖𝑓 𝐼𝑖𝑛 < 0
1 𝑖𝑓 𝐼𝑖𝑛 ≥ 0

  𝑆2𝑞_𝑗 = {
1 𝑖𝑓 𝐼𝑖𝑛 < 0
0 𝑖𝑓 𝐼𝑖𝑛 ≥ 0

 (17) 

𝑉𝑜𝑢𝑡_𝑞_𝑗 = 𝑆1𝑞_𝑗 ∙ 𝑉𝑐_𝑞_𝑗
𝐼𝑜𝑢𝑡_𝑞_𝑗 = 𝑆2𝑞_𝑗 ∙ 𝐼𝑖𝑛 + 𝑆1𝑞_𝑗 ∙ 𝐼𝑖𝑛

𝐼𝑐_𝑞_𝑗 = 𝐼𝑖𝑛 ∙  𝑆1𝑞_𝑗

 (18) 

𝑉𝑝2_𝑁 = 𝑉𝑑𝑐2 +∑ 𝑉𝑜𝑢𝑡_𝑝_𝑗
4

𝑗=1

𝐼𝑜𝑢𝑡_𝑝_𝑗 = 𝑆2 ∙ 𝐼𝑖𝑛_𝑝_𝑗 + 𝑆1𝑗 ∙ 𝐼𝑖𝑛_𝑝_𝑗
𝐼𝑖𝑛_𝑝_𝑗 = 𝐼𝑜𝑢𝑡_𝑝_(𝑗−1)

 (19) 

where 𝑞 = 𝐴2, 𝐵2, and 𝐶2, which represent phases A, B, and C, respectively, j is the num-

ber of SM in the upper bridge, and 𝐼𝑜𝑢𝑡_0 = 𝑖𝐿𝑝2. 

After obtaining 𝑉𝑝1_𝑁 and 𝑉𝑝2_𝑁, the voltage relationship inside the N1 subsystem 

can be expressed with KVL as shown in (20), 

𝑉𝑝1_𝑁 − 𝑉𝐿𝑝1 = 𝑉𝑝𝑁 = 𝑉𝑝𝑂 − 𝑉𝑁𝑂
𝑉𝑝2_𝑁 − 𝑉𝐿𝑝2 = 𝑉𝑝𝑁 = 𝑉𝑝𝑂 − 𝑉𝑁𝑂
𝑉𝑁𝑂 = −(𝑉𝐴𝑁 + 𝑉𝐵𝑁 + 𝑉𝐶𝑁)/3

𝑉𝑝𝑂 = 𝑅𝑙𝑖𝑝

 (20) 

Using (20), 𝑉𝑁𝑂 , 𝑉𝐿𝑝1, and 𝑉𝐿𝑝2 can be obtained. Then, the status of the inductances 

can be calculated with (21): 

Figure 5. The system partitioning. (a) SM is in the upper bridge; (b) SM is in the lower bridge; and
(c) the N1 and N2 subsystems.

The output nodal voltage Vout and the output current Iout can be calculated with (15).

Vout = S1p_j·Vc_p_j
Iout_p_j = S2p_j·Iin + S1p_j·Iin

Ic_p_j = Iin· S1p_j

(15)

Thus, the current and voltage relationship in the upper bridge can be calculated
with (16)

Vp1_N = Vdc1 − ∑4
j=1 Vout_p_j

Iin_p_j = S2·Iin_p_j − S1j·Iin_p_j
Iin_p_j = Iout_p_(j−1)

(16)

where Iout_0 = iLp1.
With the same method, the current and voltage relationship in the lower bridge (A2,

B2, C2) can be calculated with (17)–(19).

S1q_j =

{
0 i f Iin < 0
1 i f Iin ≥ 0

S2q_j =

{
1 i f Iin < 0
0 i f Iin ≥ 0

(17)

Vout_q_j = S1q_j·Vc_q_j
Iout_q_j = S2q_j·Iin + S1q_j·Iin

Ic_q_j = Iin· S1q_j

(18)

Vp2_N = Vdc2 + ∑4
j=1 Vout_p_j

Iout_p_j = S2·Iin_p_j + S1j·Iin_p_j
Iin_p_j = Iout_p_(j−1)

(19)

where q = A2, B2, and C2, which represent phases A, B, and C, respectively, j is the number
of SM in the upper bridge, and Iout_0 = iLp2.

After obtaining Vp1_N and Vp2_N , the voltage relationship inside the N1 subsystem can
be expressed with KVL as shown in (20),

Vp1_N − VLp1 = VpN = VpO − VNO
Vp2_N − VLp2 = VpN = VpO − VNO
VNO = −(VAN + VBN + VCN)/3

VpO = Rl ip

(20)

Using (20), VNO, VLp1, and VLp2 can be obtained. Then, the status of the inductances
can be calculated with (21):

Lp1
dip1
dt = VLp1

Lp2
dip2
dt = VLp2

(21)
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Its discretization formulation with the predictor–corrector method can be expressed
as (22),

ip
p1(n+2) = ip1(n) +

(
2h
Lsp

)
VLp1(n)

ip1(n+1) = ip1(n) +
(

h
Lsp

)
Vp

Lp1(n+1)

ip
p2(n+2) = ip1(n) +

(
2h
Lsp

)
VLp2(n)

ip2(n+1) = ip1(n) +
(

h
Lsp

)
Vp

Lp2(n+1)

(22)

For the capacitance in each SM, the mathematical model can be described as (23):

C
dUc

dt
= Ic_p_j (23)

Its discretization formulation with the predictor–corrector method can be expressed
as (24),

up
c(n+2) = uc(n) +

(
2h
C

)
·Ic_p_j(n)

uc(n+1) = uc(n) +
(

h
Lsi

)
Ip
c_p_j(n+1)

(24)

With an FPGA Kintex-7 XC7K410T embedded in the National Instrument (NI, Austin,
TX, USA) PXIe-7975R FlexRIO PX, the model is implemented in the Express FPGA module
with the structure shown in Figure 6.
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Figure 6. Implementation on LabVIEW FPGA.

The model is implemented using the NI platform, as shown in Figure 6. The FlexRIO
PXI platform contains a Kintex-7 XC7K410T FPGA. The single-cycle time loop (SCTL) allows
all functions inside the loop to execute within a single tick [25,26]. The implementation of
FPGAs has four sequential steps. Firstly, based on (14) and (17), the driving signals and
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the predictor values ip
li1(n+1) and ip

li2(n+1) determine the switch status in the correction
process. Meanwhile, the driving signals and the corrector values ili1(n+1) and ili2(n+1)
determine the switch status in the prediction calculation process. Secondly, we substitute
the corresponding switch function into (15)–(16) and (18)–(19), so the nodal voltages and the
branch currents are calculated. Then, the port voltage and current are updated using (20).
Finally, (22) and (24) are computed in parallel.

After building on the FPGAs, the hardware resource utilization is shown in Figure 7,
which compares the P-C method with the zero-crossing method, the P-C method with-
out the zero-crossing method, and the forward Euler method. Although the P-C method
(with/without the zero-crossing unit) has the same calculation speed (−100 ns) as the for-
ward Euler method, the resource of the DSP48s is doubled in the P-C method. Furthermore,
it can be noted that the zero-crossing process only increases by 0.5% in the Slice L.U.T.s and
0.3% in the total slices. In the meantime, the zero-crossing unit does not cause an increase
in the time step or the DSP48s utilization.
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With a simulation step of 100 ns, the simulation results of iLa1 are shown in Figure 8.
Due to a long dead time of 30 µs in the PWM pulses, the current iLa1 is not continuous. In
the zero-crossing setup, the value of β is 1 × 10−7, and the value of α is 2 × 10−7. Figure 8a
compares the Simulink results with the proposed zero-crossing method. In the Simulink
results, when the current is close to zero and the MMC is in the blocked mode, the current
is calculated to a value that relates to the open voltage of the IGBT device. However, the
calculation of this current is a complex process. The Simulink model utilizes iteration
and zero-crossing methods to seek this point. This is an offline process requiring much
calculation time to finish. For a real-time simulation, the calculation burden is too heavy to
seek the point crossing zero.

Figure 8b shows the results of the method without using the zero-crossing method.
Although the system can work normally, high oscillation exists when iLa1 is close to zero,
which causes a potential unstable problem in the real-time simulation. Furthermore,
the high current oscillation also causes the blocked model’s virtual losses. However, in
the proposed MMC model, when the bridge is in the blocked mode and the current is
around zero, the proposed method can regulate the current oscillation with −1 × 10−7 and
1 × 10−7. It can also achieve a real-time simulation step of 100 nanoseconds. The proposed
zero-crossing method can reduce the error and improve the accuracy when the current is
around zero.
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3.2. Real-Time Simulation with the Ron/Roff Model

In the Ron/Roff model, the current flowing through the switch is calculated using (25)
with the value of the current Iin.

Ic_p_j = Iin· S1p_j (25)

where the status of S1p_j is updated by the direction of the current Iin. If Iin < 0, S1p_j = 0;
otherwise, S1p_j = 1.

As shown in Figure 9, based on Thevetin’s theorem, the SM is substituted with a
voltage source Veq in a series connection with a resistance Req. The value of Veq and Req can
be calculated with (29).

Req_p_j =
(h/C+Rs1)·Rs2
Rs1+Rs2+(h/C)

Veq_p_j = Uc
Rs2

Rs1+Rs2+(h/C)

(26)

where p = A, B, and C, which represent phases A, B, and C, respectively, and j is the
number of SM in the upper bridge.
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Figure 9. The system partitioning: (a) SM is in the upper bridge; (b) SM is in the lower bridge; and
(c) the N1 subsystem and N2 subsystem.

With Req_p_j and Veq_p_j, the equivalent voltage Vupper
eq and V lower

eq in the upper phase
and the equivalent resistance Rupper

eq and Rlower
eq can be calculated with (27).

Vupper
eq_p = ∑4

j=1 Veq__p_j Rlower
eq_p = ∑4

j=1 Req_p_j

V lower
eq_p = ∑4

j=1 Veq_p_j Rlower
eq_p = ∑4

j=1 Req_p_j
(27)

The current and voltage relationship in the upper and lower bridges can be calculated
with (27) and (28).

Vp1_N = Vdc1 − Vupper
eq_p − Rupper

eq_p ·ILp1
Iout_p_j = S2·Iin_p_j − S1j·Iin_p_j

Iin_p_j = Iout_p_(j−1)
Iout_p_0 = iLp1

(28)

Vp2_N = Vdc2 + V lower
eq_p + Rlower

eq_p ·ILp2
Iout_p_j = S2·Iin_p_j + S1j·Iin_p_j

Iin_p_j = Iout_p_(j−1)
Iout_p_0 = iLp2

(29)

After obtaining Vp1_N and Vp2_N , (25)–(27) can be further used to calculate the volt-
age/current status of the system. The implementation structure on the FPGA board
using LabVIEW is also based on Figure 10, where the SM update unit is calculated with
(28) and (29). The final FPGA resource utilization is shown in Figure 10.
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Compared with Figures 7 and 10, the ISF and Ron/Roff models can achieve a calculation
speed of 100 nanoseconds. And, because the calculation of (26) in the Ron/Roff model
requires more math operations, the Ron/Roff model occupies more FPGA resources than
the ISF model.

Figure 11 shows the simulation results of the current iLa1 in the Ron/Roff model.
In Figure 11a, the Simulink results reference the proposed zero-crossing method. The
proposed method can regulate the current oscillation with −1 × 10−7 and 1 × 10−7 when
the current is around zero. Compared with the P-C method without the zero-crossing
method (Figure 11b), the proposed zero-crossing method increases the stability and the
accuracy of the whole system simulation.
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comparison with the non-zero-crossing method.

4. Conclusions

This paper proposes an efficient real-time FPGA model of MMC to give a full represen-
tation of transient with a time step of 100 ns. Performance evaluations on different switch
models (ISF and Ron/Roff models) using a five-level MMC are carried out. Compared
with the traditional FPGA solver, the proposed solving structure keeps the same speed
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as the FE method, and the total calculation time is only 100 ns under the STCL of the
LabVIEW FPGA. When the PWM has a dead-time zone, and the switch operates in the
blocked mode, the proposed method can regulate the current to −1 × 10−7 and 1 × 10−7.
Furthermore, the proposed method has a strong generality, which can be used in the ISF
and Ron/Roff models.

The proposed solver for the power electronic system contains a parallel ODE-solving
structure and the zero-crossing method. The solver can enhance the robustness by allowing
the simulation of DCM and CCM with the same model. Implementing the FPGA will
further reduce the simulation step under 100 ns with the detailed representation of the MMC
electromagnetically transient. The ultra-fast speed advantage also allows for predicting
the system behavior as fast as possible. Thus, it can be further used in the digital twin
setup [27] and the model predictive control.
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