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Abstract: Nowadays, the industrial world is undergoing a disruptive transformation towards more
environmentally sustainable solutions. In the blue economy, this new approach is not only expressed
in the domain of actual vessels, but also in the development of charging infrastructure, displaying a
notable transition towards more eco-friendly solutions. The key focus lies in adopting flexible power
systems capable of integrating renewable energy sources and storage technologies. Such systems play
a crucial role in enabling a shift towards low-emission maritime transport. The emissions reduction
goal extends beyond onboard shipboard distribution systems, encompassing also the design of sup-
plying platforms and marinas. This study explores the implementation of a controlled DC microgrid
tailored to efficient management of power flows within a yacht marina. Once having established the
interfaces for the vessels at berth, the integration between the vessels, the onshore photovoltaic plant
and the battery storage unit is made possible thanks to the coordinated management of multiple
power converters. The overarching goal is to curtail reliance on external energy sources. Within
this DC microgrid framework, a centralized controller assumes a pivotal role in orchestrating the
power sources and loads. This coordinated management is essential to achieve sustainable operations,
ultimately leading to the reduction of emissions from both ships and onshore power plants.

Keywords: direct current; microgrids; yacht marinas; renewable energy; power management system;
energy storage; flexibility; optimization

1. Introduction

Environmental considerations are emerging as critical factors in the global develop-
ment of society. To actively contribute to a sustainable trajectory in this green transition,
both the scientific and industrial communities are directing their efforts towards the cre-
ation of flexible and resilient solutions, while also maximizing the utilization of existing
ones. Among the industrial sectors, transportation stands out as one of the most impactful,
both in terms of energy consumption and the emission of greenhouse gases [1,2]. In recent
years, there has been a notable surge in the advancement of electric transportation [3], ob-
served in both land-based and maritime applications [4]. Regarding the maritime sector, the
transition to greener electrification involves multiple dimensions, ranging from innovations
in onboard power systems [5–7] to the implementation of the cold ironing concept [8,9].
Foreseeing a rise in the number of electric ships, the latest electrical infrastructure in mari-
nas is being designed to accommodate this significant shift, spanning both recreational and
commercial sectors. To ensure comprehensive environmental benefits, the utilization of
sustainable energy from Renewable Energy Sources (RESs) is imperative. However, sources
like photovoltaic (PV) plants pose a challenge, as they do not guarantee a constant and
uninterrupted power supply, needing support from energy storage systems [10]. This ap-
proach allows storage of the surplus renewable energy during periods of excess production
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and its use when production falls short of demand. In the light of advancements in control
and management technologies, DC microgrids [11–13] emerge as promising solutions,
applicable in onboard distribution, ports, and marinas. These controlled power systems
have the capability to integrate the utilization of RESs, energy storage, and hybrid–electric
ships within a marina context [14]. In the pursuit of no-emission marinas [15,16], effective
management of these three elements is essential to achieve specific goals, either optimizing
power production and consumption or realizing economic benefits through the sale of
excess RES power. Consequently, the coordination of control tasks becomes of paramount
importance, leading to the development of strategies that prioritize both system efficiency
and green sustainability [17]. This topic has been introduced in [16], but techno-economic
evaluations were lacking. Therefore, the present paper starts from the application to an
existing marina in [16], while giving an additional, and essential, economic perspective
on the adoption of the proposed solution and control. To this aim, from some raw initial
data (e.g., annual irradiation profile for Trieste area, PV power plant sizing and loads to
be fed), the Homer optimizer is adopted to provide a techno-economic–environmental
evaluation. The latter can identify the most feasible solution in supplying the yacht marina
by renewable energy. Storage support is also considered in Homer analysis, thus com-
pleting the assessment results. The power system under study incorporates photovoltaic
(PV) modules, Battery Energy Storage Systems (BESSs) and multiple electrical connections
catering to docked ships. The microgrid is designed for the refurbishment of the existing
Port San Rocco marina, located near Trieste in northeastern Italy. To enhance the realism
of the proposal, the feasibility of integrating PV sources is evaluated using Homer Pro
software. This tool not only conducts a techno-economic analysis to assess environmental
benefits, such as emission reductions, but also evaluates the return on investment. Within
the designed DC microgrid, a connection to the main AC grid is established. This connec-
tion ensures a stable power supply in scenarios where green energy sources are unavailable,
such as during nighttime. Simultaneously, it facilitates the selling of excess energy when
the marina’s power production surpasses local demand. The adaptability and resilience
of the DC microgrid’s operation are overseen by a Power Management System (PMS),
responsible for coordinating power flows through power electronics converters. To validate
the proposed design, real-time emulations on the Typhoon HIL platform are employed.
This platform allows for testing the control mechanisms on the interface converters. The
results of a day-to-night transition are presented and discussed, demonstrating the marina’s
ability to efficiently manage the charging of docked vessels, even during periods without
sunlight.

2. The Green Yacht Marina

The increasing attention to reducing the environmental footprint of various economic
sectors has also hit the maritime industry, with a growing demand for intensifying efforts
towards the implementation of sustainable supply, production and logistics chains. In
this context, important players are represented by port and marina structures due to their
features and, particularly, their position. Indeed, they are often located in surrounding
areas near cities and natural environments and involve the traffic of numerous vessels. As
a result, favorable public opinion and acceptance is not an easy target to achieve [18], even
more for marinas that might be seen as unnecessary producers of atmospheric pollution (i.e.,
in an economy related to tourism/recreational purposes). To enhance their environmental
commitment, marinas around the world are implementing approaches and strategies
aimed at supporting sustainable planning and energy management [19,20]. Some of these
measures are explained in detail below and can find application in other touristic sites,
such as the Italian Yacht Marina in Porto San Rocco (Figure 1), located in Trieste, Italia.
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million pleasure crafts, yet only 13% are currently moored in equipped marinas [27]. For 
all these reasons, it is necessary that new generation marinas will evolve into Zero 
Emission Marinas (ZEMars), a concept consequent to Zero Emission Mode navigation. In 
comparison with standard berthing infrastructures, the ZEMar is thus designed to ensure 
advanced services. Firstly, the fast recharge of onboard energy storage systems is enabled. 
Secondly, the ZEMar can be managed in a sustainably optimized way by exploiting the 
local RES (like photovoltaic or wind power plants) in feeding the Shore Connection 
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buffer energy storage for the DSO grid). 
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marina/planimetria/, accessed on 20 January 2024).

2.1. Sustainability in Yacht Marinas

Marinas play a pivotal role in regions where the blue economy is a significant economic
driver. They are crucial for fostering tourism and recreational activities, leading to a
substantial increase in their number in recent years [21]. Given the set of services marinas
are expected to provide to customers and boat owners, they have become noteworthy
consumers of energy. Moreover, the propulsion and generation systems of pleasure craft
have undergone a profound transformation, with electrification becoming a predominant
trend in marine applications [22,23]. This shift towards electrification has consequently
increased the energy requirements of marinas, necessitating the exploration and integration
of new energy sources. The environmental aspect is also integral to this analysis, as green
energy production stands as a cornerstone and a significant challenge to Industry 4.0 [24].
Sustainability has emerged as a critical economic driver, influencing customer attention
and choices. In the context of marinas, the ultimate objective is to implement technologies
for low-impact energy production by renewable sources [25]. Smart marinas, capable not
only of acting as consumers but also as providers of energy, stand to gain economic benefits
by reducing berthing costs and offering additional services.

This approach positions a system, comprising marinas as energy hubs and electric
vessels, within the framework of the green logistics trend [26]. This not only contributes
to environmental sustainability but also enhances the overall image. From an economic
standpoint, the potential market is relevant, with the global nautical fleet boasting over
33 million pleasure crafts, yet only 13% are currently moored in equipped marinas [27]. For
all these reasons, it is necessary that new generation marinas will evolve into Zero Emission
Marinas (ZEMars), a concept consequent to Zero Emission Mode navigation. In comparison
with standard berthing infrastructures, the ZEMar is thus designed to ensure advanced
services. Firstly, the fast recharge of onboard energy storage systems is enabled. Secondly,
the ZEMar can be managed in a sustainably optimized way by exploiting the local RES (like
photovoltaic or wind power plants) in feeding the Shore Connection platforms. Finally, the
ZEMar can also guarantee additional ancillary services (e.g., local buffer energy storage for
the DSO grid).

2.2. Hosted Vessels

The electrification trend in transportation has extended to the motorboat sector, of-
fering notable advantages. Electric navigation provides a silent, clean, comfortable, and
relaxing experience with no vibrations and zero harmful emissions. The global market for
electric-powered boats reached $4.5 billion in 2020, demonstrating a fast-growing industry
with an estimated compound annual growth rate (CAGR 2021–2026) of approximately
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+12.65%. The COVID-19 pandemic initially hindered the electric boat and ship market
due to manufacturing facility closures and global trade restrictions [28]. However, as
governments ease restrictions to boost economic conditions, the market is expected to
rebound in the near future. With over 100 manufacturers in the electric boat and pleasure
ship sector, the market for hybrid and pure electric boats and ships is projected to exceed
$20 billion globally by 2027 for non-military versions. Recreational boats lead in sales
numbers, followed by underwater leisure and autonomous underwater vehicles. Despite
a long history, electric and hybrid watercraft occupy a relatively modest market share of
around 1–2% of the addressable market. All-electric propulsion systems involve an electric
motor powered by a battery pack, while hybrid–electric systems combine a fueled engine
with energy storage for either direct propulsion or battery charging. The choice between
these configurations is determined by the onboard storage system capacity, which varies
with the size of the boat or ship. In particular, Table 1 shows the average capacity of the
battery packs according to the overall length of traditional pleasure craft, while Table 2
shows the values for hybrid–electric propulsion boats. In the realm of smart marinas,
future developments should not only prioritize maintaining the battery packs of traditional
boats but also focus on providing enough energy for charging hybrid–electric propulsion
vessels. This category is indeed experiencing notable growth, particularly in the “up to
10 m” and “over 60 m” segments. Figure 2 shows the reference diagrams for the propulsion
and electrical generation systems of the various types of yacht considered. The former can
be found on small boats, while the latter represents the state of the art for most pleasure
boats, even large ones. The last two diagrams show integrated hybrid–electric propulsion
systems in series and parallel configuration, respectively.
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Table 1. Battery pack capacity for traditional pleasure craft.

Type of Pleasure Vessel Approximate Battery Packs Capacity (kWh)

Up to 10 m 5.0
From 10.01 m to 12.00 8.0
From 12.01 m to 18.00 12.00
From 18.01 m to 24.00 25.00
From 24.01 m to 35.00 75.00

Table 2. Battery pack capacity for hybrid pleasure craft.

Type of Pleasure Vessel Approximate Battery Packs Capacity (kWh)

Up to 10 m 15.0
From 10.01 m to 12.00 21.0
From 12.01 m to 18.00 42.00
From 18.01 m to 24.00 350.00
From 24.01 m to 35.00 700.00
From 35.01 m to 60.00 1500.00

Over 60.00 m 3000.00

3. DC Microgrid in Yacht Marinas

In the context of renewable marinas, this section presents an advanced electrical
distribution system to maximize the power exploitation from a PV field. In order to
increase the marina’s sustainability, a converter-dense [29] DC microgrid is envisaged to
optimize the power flows in the controlled grid. The wide employment of power converters
can increase the flexibility in microgrid operation, thus allowing the storage of green energy
in moored crafts. Marina management can also open interesting scenarios when selling the
PV energy to the main distribution system.

3.1. Controlled Power System

The DC microgrid in Figure 3 is designed to ensure efficient power management in the
marina. A smart strategy is to be conceived for both promoting the exploitation of the PV
source and the bidirectional power flow from/to the berthed vessels. These two outcomes
are well-received when fostering a marina with low environmental impact and the sale of
no-emissions energy to the DSO grid. Also important is the role of the embarked energy
storage, which is integrated onboard for the ship’s functioning and to enable a rewarded
power exchange with the external grid. On the other hand, charging from the grid can
follow a minimum price law to limit the economic burden for ship owners. In the 1 kV-DC
grid under consideration, eight power converters are installed to ensure power balancing
among sources, loads and storage. The converters’ data are defined in the table of Figure 3.
Three converters (i.e., C1, C2 and C3) are in the upper part of the power scheme. The C1 is
a unidirectional DC–DC boost converter to interface the PV field to the DC bus. Conversely,
the C2 is a bidirectional AFE rectifier to alternatively supply the harbored vessels from
outside, or to address the marina power surplus to the 10/0.69 kV-main grid. The marina
grid is also provided with a Battery Energy Storage System (BESS) to provide voltage
regulation and power buffering functionalities. This BESS is interfaced to the distribution
with its DC–DC converter, named C3. This is responsible for managing the charge and
discharge phases of the 500-kWh battery.

The lower part of Figure 3 introduces five converters, each sized based on the total
power of the jetties’ electrical sockets (dashed boxes) and a utilization-contemporaneity
factor of approximately 0.4. C4, situated on the moored vessel, is a bidirectional DC–DC
converter connecting mega-yachts with 1 kV-DC onboard distribution. C5 is another
bidirectional module, with AC serving as the interface to the shipboard grid. In contrast, C6
is a unidirectional DC–AC converter designed for charging both 3-phase and single-phase
sockets. Due to the complexity of managing a bidirectional power flow, a unidirectional
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interface (from grid to ship) is preferred for now. Lastly, C7 and C8 work to transmit
power in both directions. C7 is designed for DC ships, while C8, an AFE inverter, handles
bidirectional power exchange with AC vessels. All power grid data are comprehensively
presented in Figure 3. The “x” multiplied by a number is used to replicate the same
jetty for a specific number of times in the marina installation. Concerning bidirectional
converters, the capacity associated with each socket on the 1 kV DC mega-yacht corresponds
to 0.5–1 MWh of battery. This capacity is consistent for each socket supplied by C5. C7
features a smaller capacity, with 0.25–0.5 MWh per socket for DC ships. The capacity is
further reduced to 40 kWh for each socket supplied by the C8 converter.
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3.2. PV Plant Design

In this sub-section, a photovoltaic power plant is designed to sustainably feed the
yacht marina. By covering the parking area (80 m × 30 m is the surface), 2400 m2 are made
available for the PV modules. Then, an additional area on the buildings (40 m × 40 m)
gives another 1600 m2 to be exploited for the photovoltaic installation. By assuming a quite
standard efficiency for the PV technology (i.e., 125 W/m2 from the 1 kW/m2 incoming
radiation), the available surface of 4000 m2 can provide 500 kW for charging both vessels
charging and for energy selling to the DSO.

3.3. Optimization Assumptions

In the DC microgrid, three systems (PV, storage, interface converter) are combined
to pursue the sustainability goal. The Homer software can identify the most feasible
combination of these systems from a techno-economic point of view. The Return on
Investment (ROI) is thus evaluated by considering the presence/absence of each element.
Homer software starts its optimization from an initial simplified microgrid topology. The
latter is shown in Figure 4, where a double AC–DC distribution is adopted to interface
storage and PV power. Although the DC distribution in the marina is designed to charge
the batteries, as in Figure 3, some assumptions are specified here to exploit the optimization
engine. Firstly, the power demand from vessels is aggregated in an equivalent AC load,
albeit in reality the onboard batteries receive energy from the DC bus (Figure 3). The
AC grid in Figure 4 has an external input from AC distribution and a power converter
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to the DC section. The PV modules are modeled to provide 500 kW, while the storage
system is sized as 500 kWh. In Figure 4, the DC distribution is interfaced to the AC by an
equivalent AC/DC converter to be modeled in Homer. The economic analysis takes in both
installation and replacement costs. To this aim, the unit price of PV modules is $900/kW,
while that for the converter is $200/kW. Finally, Li-Ion storage costs $800/kWh. To quantify
the convenience of PV-storage installation, average costs for purchase ($0.361/kWh) and
sale ($0.040/kWh) of energy from/to the DSO are also to be considered. The optimization
analysis is fulfilled for two load scenarios, as in Table 3. For each month, the load power to
be fed is expressed as kW value or as percentage of the total power demand (i.e., 3250 kW
on charging units). In the first HI scenario, the microgrid feeds the entire charging load on
the vessels. Instead, the profile LO considers a reduced load amount. Other input data for
the energy optimization are the yacht marina position as latitude–longitude (45.75–13.75).
From this information, the daily radiation for each month can be estimated (Figure 5) on
the NASA database to later define the average energy production from PV.
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% 10 10 15 20 35 60 75 70 50 30 15 10 
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3.4. Techno-Economic–Environmental Evaluation

The Homer optimizer provides conclusions from economic and techno-environmental
points of view. The first analysis compares three cash flows, as in Figure 6. The Standard is
the scenario where the marina is entirely powered from DSO. Then, PV is the solution where
only PV contributes to supplying the marina. Finally, Hybrid is the case where both PV
and marina battery work to charge the shipboard storage. This solution is evidently more
advanced, as the land Li-Ion storage can provide a buffering support. By hypothesizing a
25-year life for the system, the minimum LCOE optimizer elects the basic PV solution as
winner, being smaller in its investment return (6.9 yrs.). In the optimized solution, on the
one hand, the Homer engine disregards the storage as unfavorable (red line in Figure 6),
and on the other imposes the converter’s rated power, equal to 500 kW. Conversely, as
the Hybrid solution should also amortize the Li-Ion battery cost, its return time is larger
(about 10 yrs.). Once the PV solution is chosen as winner, other analyses are developed to
clarify the energy balance and the purchase–sale of energy in a reference-year. Although
the study is performed for both load profiles, for simplicity only the results for the HI case
are here reported. The same conclusions could also be transferred to the LO configuration.
Particularly, Figure 7 depicts the monthly balance between the energy purchased from the
grid and that produced by the PV system. It is remarkable how the PV installation can
greatly contribute to marina powering (i.e., about 65% of total annual energy). Figure 8
depicts the power purchased from the grid for one year. Evidently, the larger purchase
(about 135 kW) is in the night hours of the summer months, when the power request is
higher from charged ships. Next, Figure 9 provides the power that is sold to the DSO. In this
case, the best PV contribution is during lunchtime, when the sun is stronger. To complete
the study, environmental results are also provided. From the emissions for the Standard
case (293,656 kg/yr. CO2, 1273 kg/yr. di SOx, 623 kg/yr. NOx), the environmental benefits
are undeniable when evaluating the performance for the PV case (167,295 kg/yr. CO2,
725 kg/yr. di SOx, 355 kg/yr. NOx). The tons of CO2 equivalent not emitted in the PV case
(about 170 tons each year) are noteworthy in the context of system sustainability. Similar
results are shown for the Hybrid case.

3.5. Final Considerations

Although the study shows how the PV solution is able to provide impressive techno-
environmental results with shorter ROI, a final remark rehabilitates the Hybrid plant.
Similar time to recover the investment (∆ = 3 yrs.), extended flexibility, redundancy, and
back-up power are the most important reasons to install a storage system as in the next
sections.
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4. Coordinated Power Management

The flexible DC microgrid is smartly controlled to ensure a time-varying power
management, thus increasing marina sustainability. The power exchanged with the main
distribution grid is managed by considering the PV field power availability, as well as the
operating needs of the berthed vessels. The simultaneous utilization of photovoltaic RES
and battery storage serves to reduce reliance on energy procurement from the primary
grid. Moreover, the combination of RES and energy storage opens up the possibility of
selling emission-free energy, generated by the marina during periods of low demand
for charging vessels. To explore the marina’s capabilities in supporting environmentally
friendly initiatives, a particular scenario is envisioned. This scenario revolves around a
night-to-day transition, during which the PV power plant is carefully regulated to initiate
power supply to the managed electrical grid.

4.1. Advanced Control Strategy for Flexibility

The operation of the green marina in Figure 3 is managed by a centralized [30] Power
Management System (PMS) that receives all the signals from the field components and
coordinates the power flow to/from each converter. The PMS optimizes the power produc-
tion and consumption inside the microgrid, guaranteeing both economic benefits to the
ship owners and the proper exploitation of green energy. To this aim, the PMS sends the
change in control signal and power references to the different converters. In this work, the
focus is on how to manage the night–day transition by using the C2 grid converter and the
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C3 BESS converter. These operate to balance the available power, while maintaining steady
bus voltage [31]. Both converters can be operated in power or DC bus voltage control mode.
If the power control mode is selected, the central controller sends the power reference
to the converter. Instead, if the bus voltage control is chosen, the PMS sends the voltage
reference and the eventual droop signal. If both the converters are in voltage control mode,
the power sharing is managed by changing the droop signal.

The droop control law is expressed in Equation (1), in which the main 1 kV DC bus
voltage, VBUS, is reduced from the desired reference value, VBUS*, of a quota that is directly
related to the converter current, thus I2 or I3, and its respective droop coefficient, Rd2 or Rd3.
By managing the two droop coefficients, thus Rd2 for converter 2 and Rd3 for converter 3,
it is possible to tune the power output of each converter, while stably regulating the DC
bus voltage. Working on Equation (1), the relation between the droop coefficients and the
converters current is expressed in Equation (2). By multiplying and dividing Equation (2)
for the bus voltage, the ratio between the output powers of the two converters is derived,
as in Equation (3). When the PMS modifies the droop coefficients, consequently the power
output from the two converters in charge of bus voltage regulation is tuned. These droop
values, indeed, can either be fixed, if the ratio between the output power of the two
converters is envisioned to remain constant in all the operating conditions (e.g., equal
droop coefficients), or they can be changed according to the need of the power system. For
this purpose, the change can be done in a sharp way by modifying the droop coefficient
with a step. However, a better way to carry out this functionality is by performing a smooth
transition from the initial value to the final one, thus by using the so-called dynamic
droop [32,33]. In the present work, it has been decided to modify the droop coefficients
using a ramp. The droop control does not need any additional communication line, and it
is favorable for stability since it adds a steady-state additional damping to the system with
the direct introduction of virtual resistances.

Indeed, by observing the wide presence of high-bandwidth controlled converters and
LC filers in the yacht marina’s DC microgrid, additional stabilizing signals could be added
to compensate for the possible Constant Power Loads instability [6]. To conveniently ensure
DC system stability, further stabilizing contribution during critical perturbations (e.g., load
steps, generator disconnections) can be obtained when the droop effect is transiently
modified by a transfer function [34]. During critical perturbations, this control approach
can provide large droop resistances (i.e., high values on the Bode diagram’s high-frequency
zone) to force the poles’ transition in the Gauss left-half complex plane, thus ensuring stable
behavior, while reduced droop resistances (i.e., small values on the Bode diagram’s low-
frequency zone) are tuned to properly subdivide the power contribution among paralleled
converters in a steady-state condition. This is not performed in this work, the focus lying
more on coordinated control than on voltage stability; however, the introduction of the
active damping could be interesting for future work.

VBUS = V∗
BUS − Rd2 · I2 = V∗

BUS − Rd3 · I3 (1)

I2

I3
=

Rd3
Rd2

(2)

P2

P3
=

Rd3
Rd2

(3)

The BESS converter is always demanded by the bus voltage control. Indeed, the
batteries work to absorb the voltage fluctuations in the DC feeder [35] and to assist the
microgrid operations during transitions from one operating condition to another. As the bus
voltage is always regulated, the other converters can operate in power control mode, and
their power reference is increased with a ramp-rate of 100 kW/s. In the test described in the
next Section, the night-to-day transition of the green marina is hypothesized. Before the sun
starts to rise, the bus voltage is controlled in droop mode by the C2 and C3 converters, the
PV converter is disconnected, and the ships’ converters are all power controlled. Some ships
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are supplying the bus and others, instead, are being charged. The amount of generating
power that is lacking is fully supplied by the grid. This option is ensured by properly
setting the droop gain ratio between C2 and C3. By foreseeing the oncoming sunrise, the
droop ratio between the voltage-controlled converters is changed dynamically, to smoothly
switch the power supply from the grid to the batteries. At this point, the sun is up and
the PV converter is connected. Its power output exceeds the needs of the load, therefore
this excess of power is automatically delivered to the batteries. When these storages are
sufficiently charged, they are capable of regulating the bus voltage without the assistance
of the external AC grid. In such a condition, the extra power can, indeed, be sold. To this
purpose, the grid converter is switched to power control mode and the excess of power is
sent to the main AC distribution grid.

4.2. Scenario under Test

The proposed scenario envisions a coordinated power control strategy for the DC
microgrid. During the 60 s under consideration, the controlled grid is anticipated to adjust
its operation to harness renewable energy from the rising sun through PV sources. In the
initial steady-state condition, during the night the C1 converter remains idle, and the main
grid (C2 converter) supplies 100 kW to cater to two aggregated loads (800 kW) through
the action of the C5–C6 converters. The remaining 700 kW is sourced from bidirectional
operations of the C4–C7–C8 converters, utilizing the stored energy in the onboard batteries
of the moored vessels. Starting at 1.2 s, the PMS intervenes to redirect the 100-kW supply
to the C3 battery-converter, effectively eliminating the need to purchase energy from
the main grid. Upon reaching the second steady-state at t = 3 s, an extended pause of
32.5 s is introduced to verify and ensure the availability of solar energy. At 35.5 s, the C1
power-controlled converter is engaged to supply 400 kW from the PV source, adhering to a
ramp-rate of 100 kW/s. Once the second transient state concludes at 39.5 s, a portion of the
PV energy (100 kW) is allocated to power the charging vessels, while the remaining 300 kW
is stored in the microgrid battery. Following a dead-time of 16 s, the C2 power-controlled
converter initiates a 100 kW/s ramp-rate to the main system at 55.5 s. Ultimately, at 58.5 s,
the C2 converter starts selling its entire 300 kW of green power to the external grid, marking
the completion of the battery’s buffering function.

4.3. Hardware in the Loop Platform

To validate the coordinated power control, the DC microgrid of the marina is simu-
lated using the Typhoon HIL 604 real-time platform. Employing the Software-In-the-Loop
approach, the eight controlled converters illustrated in Figure 3 are integrated into the
schematic editor to assess the microgrid’s functionality. In this simulation environment,
seven core couplings divide the numerical tasks into eight cores, ensuring real-time tran-
sients with a time-step of 1 µs. After compiling the system-control code, real-time emula-
tions are executed to illustrate the regulated switching behavior of the power converters, as
depicted in Figures 10–21.
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4.4. Tests on HIL Platform

The behavior of the DC microgrid during the night-to-day transition is illustrated
through 12 figures, categorized into three groups to depict the voltage-power transients
triggered by three significant actions of the PMS. The starting point of the test is a steady-
state condition in which the main grid (through converter C2) is supplying the loads with
100 kW of power. Since the sun is starting to rise, the idea is to let the battery handle the
transition (through converter C3), by changing the droop coefficients. Therefore, the first
PMS activity involves the smooth inversion of droop coefficients on two parallel-controlled
supplying converters, C2 and C3. In the night configuration, a large droop coefficient
on C3’s voltage control resets the power contribution from the battery, while C2, with a
tiny droop coefficient, forces the entire load supply from the external grid during no-sun
hours. After the first transient, the droop values swap in about 0.4 s (Figure 11) to cut off
the power from the main grid without consequences for the bus voltage (Figure 10). At



Energies 2024, 17, 521 15 of 18

2 s, the battery autonomously provides the power requested by the loads (100 kW), and
the bus voltage regulation is still delegated to the C2–C3 parallel-connected converters.
Ships interfaced by C4–C7–C8 provide their power quota to the DC microgrid, as shown
in Figure 12. In contrast, C5–C6 converters behave as loads while charging the battery on
hosted vessels (Figure 13). After confirming the availability of PV energy, at 35.5 s, the PMS
initiates the second transient. The C1 power-controlled converter begins supplying the
system with a 100 kW/s ramp-rate. The battery inverts its operation, storing the 300-kW
surplus energy at the end of PV entry. This operation change is evidenced by a slight
increase in the filtered bus voltage value (about 1%), influenced by the input current to the
BESS (Figure 14). Battery charging reaches a steady-state condition at 39.5 s (Figure 15).
The coordinated control’s capability to avoid power perturbations is demonstrated in both
supplying (Figure 16) and load converters (Figure 17). In the final transients, the PMS
enforces a power injection into the external grid, indicated by the negative voltage droop
in Figure 18. At 55.5 s, the available power from PV is dynamically split between the
battery and the C2 converter (Figure 19). Now, the C2 converter is power-controlled to
provide 300 kW after 3 s (i.e., 100 kW/s). The input power to the BESS is, accordingly,
reduced to zero. Figures 20 and 21 show no effects on the generating-load converter’s
power, confirming the viability of the coordinated power control in managing the yacht
marina DC microgrid. These tests have proven the efficacy of the power system design
and control choices. What is particularly relevant is the use of a well-established and easy
to implement control algorithm, which is the droop control. This control is beneficial for
the stable operation of the power system (adding damping to the system), as can be seen
in the voltage transients of Figures 10, 14 and 18. The other advantage is its ability to
control the bus voltage without the need of an additional communication interface between
converters. Therefore, if there is a sudden disconnection of a load, the system is able to
operate continuously thanks to the automatic action of the C2 and C3 converters (e.g., see
the transients in Figures 15 and 19).

4.5. Results and Discussion

Before moving to conclusions, a summary discussing the effectiveness of the con-
trol choices is here provided. One of the main goals in a properly designed power sys-
tem is to guarantee safe and continuous power supply to the loads. As is shown in
Figures 13, 17 and 21, the load supply is always provided and guaranteed. Meanwhile,
Figures 10, 14 and 18 shows that the bus voltage is inside the values suggested by the
standards and the transient evolution of the voltage is always stable. Another goal of the
control strategy is to exploit as much as possible the energy generated and available inside
the marina; this is done in Figure 15 by switching the power supply from the external main
grid to the BESS present in the microgrid. Then, when the sun is available, the PV source is
both able to supply the desired loads and to recharge the battery (Figure 15). The final goal
is to be able to sell energy to the main grid in order to provide economic benefits to the
ship owners, which is achieved by changing the control mode of converter C3, as shown in
Figure 19.

5. Conclusions

This paper has presented a coordinated power control system for a DC microgrid to
improve the flexibility and resiliency of a green marina. The yacht marina of Porto San
Rocco (Trieste, Italy) is taken as case study, and some techno-economic–environmental
evaluations are made before emulating the controlled DC system on an HIL platform.
From an analysis with Homer software, the PV installation presents a ROI between 7 and
10 years, depending on the additional presence of a dedicated storage system. Despite
the larger ROI, the chosen configuration is finally oriented to land battery installation in
order to ensure notable advantages for the power system operation (e.g., enhanced RES
exploitation, flexibility, resiliency, redundancy, back-up functionality). Important efforts
have been put into designing the PMS, which is responsible for ensuring efficient system
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management. The PMS logics on the DC microgrid are conceived and tested in a real-time
emulation environment to increase correspondence with reality.

Significant efforts are invested into designing the PMS, serving as a centralized con-
troller for efficient system management. The PMS logics on the DC microgrid are conceptu-
alized and tested in a real-time emulation environment to enhance realism. This proposed
PMS functions as a centralized controller to optimize marina operations. By dynamically
adjusting control settings on multiple power converters based on power-voltage field
measurements, the PMS ensures reliable vessel charging and bidirectional energy flow
from hosted ships, thereby enhancing the marina’s sustainability. To demonstrate the con-
trolled DC microgrid’s ability to manage sources, loads, and storage, various transients are
simulated on the HIL platform. The emulation of a night-to-day transition illustrates how
the PV plant not only provides sustainable energy for vessel charging, but also generates
additional income for the marina by selling excess green energy to the main grid. This
control strategy has only been applied to this specific case study and certainly needs more
investigations for other operating conditions. Moreover, the strategy is not automatized
and need the introduction of another control layer, and thus an Energy Management System
(EMS), to properly optimize the energy flowing from/to the main grid. Future analyses
will delve into studying the power flow throughout the day, developing strategies for days
with no PV power output, and optimizing nighttime operations.
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AFE Active Front End
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