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Abstract: The challenges currently faced by network operators are difficult and complex. Presently,
various types of energy sources with random generation, energy storage units operating in charging
or discharging mode and consumers with different operating characteristics are connected to the
power grid. The network is being expanded and modernised. This contributes to the occurrence
of various types of network operating states in practice. The appearance of a significant number
of objects with random generation in the power system complicates the process of planning and
controlling the operation of the power system. It is therefore necessary to constantly search for new
methods and algorithms that allow operators to adapt to the changing operating conditions of the
power grid. There are many different types of method in the literature, with varying effectiveness,
that have been or are used in practice. So far, however, no one ideal, universal method or methodology
has been invented that would enable (with equal effectiveness) all problems faced by the power
system to be solved. This article presents an overview and a short description of research works
available in the literature in which the authors have used modern methods to solve various problems
in the field of power engineering. The article is an introduction to the special issue entitled Advances
in the Application of Methods Based on Artificial Intelligence and Optimisation in Power Engineering. It is
an overview of various current problems and the various methods used to solve them, which are
used to cope with difficult situations. The authors also pointed out potential research gaps that can
be treated as areas for further research.

Keywords: power engineering; artificial intelligence; optimisation; neural networks; renewable
energy; probabilistics

1. Introduction

This article is an introduction to the special issue entitled Advances in the Application
of Methods Based on Artificial Intelligence and Optimisation in Power Engineering, one of the
authors of which is the guest editor. The purpose of this special issue is to consider
and analyse various, real and, above all, current problems faced by contemporary power
systems. Modern methods can be used to solve these problems. There are all kinds of
problems in today’s power systems. They occur both at the stage of power grid operation
and in its planning. At virtually every level of network voltage, operators must deal
with various states of its operation, contributing to, for example, current and voltage
exceedances, problems with power balance, stability, faults, problems resulting from errors
in forecasting, etc. Additionally, network operators impose their own requirements, which
result from the specific nature of their network’s operation. All this makes it necessary to
use increasingly advanced methods to solve problems. Examples of such methods include
methods based on artificial intelligence and optimisation methods. Figure 1 shows the
general division of these methods.
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Figure 1. An example of a general division of methods that can be used to solve problems in power 
engineering: artificial intelligence (a) and optimisation (b) [1]. 

Actual network problems result, among others, from the connection of new facilities 
(loads, sources, energy storages) and changes in the network structure related to operator 
procedures, construction of new lines and installation of new transformers. Emergency 
situations are also very important. Due to dynamically changing operating conditions 
caused by variable loads and variable generation of renewable energy sources (RES), it is 
necessary to search for new methods and procedures to eliminate the negative impact of 
these facilities on the operation of the power system. The development of IT systems and 
the ever-increasing computing capabilities of computers enable the implementation of 
new, advanced algorithms and mathematical methods in power engineering, improving 
work, ensuring optimal solution of complex problems in real time and contributing to 
better planning of the development of power systems. However, there are real problems 
whose exact solution time, using previously known and used methods, is too long and 
unacceptable to operators in practice. Therefore, it is reasonable to look for meth-
ods/techniques based on artificial intelligence and optimisation that will significantly 
reduce the time to obtain results and can be used in real time or in planning the devel-
opment of the power system. It is therefore necessary to perform an in-depth review of 
the literature on the topic under consideration, to thoroughly identify these methods and 
to determine the possibility of their application in solving current, real problems occur-
ring in power engineering. Areas of possible application of modern methods include 
various analyses of power systems. The scope of analysis may cover areas such as the 
following: 
• Transmission and distribution of electricity; 
• Generation of electricity; 
• Electricity storage; 
• Reliability; 
• Forecasting; 
• Power quality; 
• Faults; 
• Planning and development; 
• Operation; 
• Economic issues; 
• The impact of sources, energy storage, loads and other elements on the operation of 

the power grid. 
The proposal of using advanced methods based on artificial intelligence and opti-

misation in power engineering results from the need to solve difficult problems that 
currently occur within the power system. Optimisation is the activity of searching for the 
optimal solution from the point of view of the considered objective function. Optimisa-

Figure 1. An example of a general division of methods that can be used to solve problems in power
engineering: artificial intelligence (a) and optimisation (b) [1].

Actual network problems result, among others, from the connection of new facilities
(loads, sources, energy storages) and changes in the network structure related to operator
procedures, construction of new lines and installation of new transformers. Emergency
situations are also very important. Due to dynamically changing operating conditions
caused by variable loads and variable generation of renewable energy sources (RES), it is
necessary to search for new methods and procedures to eliminate the negative impact of
these facilities on the operation of the power system. The development of IT systems and
the ever-increasing computing capabilities of computers enable the implementation of new,
advanced algorithms and mathematical methods in power engineering, improving work,
ensuring optimal solution of complex problems in real time and contributing to better plan-
ning of the development of power systems. However, there are real problems whose exact
solution time, using previously known and used methods, is too long and unacceptable
to operators in practice. Therefore, it is reasonable to look for methods/techniques based
on artificial intelligence and optimisation that will significantly reduce the time to obtain
results and can be used in real time or in planning the development of the power system. It
is therefore necessary to perform an in-depth review of the literature on the topic under
consideration, to thoroughly identify these methods and to determine the possibility of
their application in solving current, real problems occurring in power engineering. Areas
of possible application of modern methods include various analyses of power systems. The
scope of analysis may cover areas such as the following:

• Transmission and distribution of electricity;
• Generation of electricity;
• Electricity storage;
• Reliability;
• Forecasting;
• Power quality;
• Faults;
• Planning and development;
• Operation;
• Economic issues;
• The impact of sources, energy storage, loads and other elements on the operation of

the power grid.

The proposal of using advanced methods based on artificial intelligence and optimisa-
tion in power engineering results from the need to solve difficult problems that currently
occur within the power system. Optimisation is the activity of searching for the optimal
solution from the point of view of the considered objective function. Optimisation has
been a key aim of electrical power engineering for a long time. Work on this topic ini-
tially addressed issues related to optimal power flow (OPF). The issues considered were
aimed at the optimal selection of generating units (unit commitment—UC) and the optimal
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distribution of power generated in sources (economic dispatch—ED). If the issues also
include ones related to the limitations and operational safety of the power system in, e.g.,
emergency conditions, then the analysed task can be defined as security-constrained opti-
mal power flow (SCOPF). Currently, due to the presence in the power grid of a significant
number of sources and loads with a random nature of operation and the requirements of
network operators, the optimisation issues considered can be called SOPF (special optimal
power flow).

Solving these types of problems requires the use of advanced software. In the past,
classical optimisation methods were mostly used, the disadvantage of these is that they
work only when the objective function has one optimum. If there are more optima, there is
no certainty that the classical method will find the global optimum. The advantage of these
methods is the short time it takes them to obtain a result with high accuracy. Currently,
metaheuristic methods are increasingly being used; these allow the global optimum to
be found with a certain probability. They can be used when a function has many optima
and even when its form is unknown. Their advantages include their easy implementation,
universality, flexibility and effectiveness. The main disadvantage of these methods is the
long time needed for them to obtain a solution. To obtain relatively high accuracy and
to significantly shorten the time taken to obtain the result, methods based on artificial
intelligence can be used. For example, a previously trained machine allows a solution to
a problem to be found with appropriate accuracy in an acceptable time. Computational
difficulties that may be encountered when performing work related to the analysis of the
power system prompt the search for new methods and alternative solutions.

This article is organised in the following way: Section 1 presents the issues of the
special issue. Section 2 presents an in-depth review of the literature in the field of artificial
intelligence-based methods. Section 3 presents a review of the literature in the field of
optimisation methods. Section 4 presents a list of the methods described and used in the
literature, along with the frequency of their use. Research gaps and possible areas of future
application of methods based on artificial intelligence and optimisation were also indicated.
Section 5 contains a summary.

2. Literature Review in the Field of Methods Based on Artificial Intelligence

In the chapter below, the authors will present examples of research from the literature
covering issues related to the use of methods based on artificial intelligence and optimi-
sation to solve various problems in the power system. This is a topic quite widely found
in the literature; general problems related to power engineering can be divided into those
related to the following: renewable energy and energy storage, identification of faults in
the operation of the power system, ensuring the security of the power system, stability
issues and optimisation of network operation.

Sections 2.1–2.7 contain a literature review on various problems in power engineering
along with their solutions using various methods based on artificial intelligence. Particular
emphasis has been placed on this type of algorithm due to its increasing popularity and
effectiveness in solving problems, among others, in the field of power engineering. In
general, the following methods based on artificial intelligence can be distinguished, which
can be used to solve problems in the field of power engineering [1]:

• Machine learning (e.g., supervised learning, unsupervised learning);
• Deep learning, reinforcement learning, artificial neural network (e.g., deep networks

for supervised or discriminative learning, deep networks for unsupervised or genera-
tive learning, deep networks for hybrid learning);

• Fuzzy logic-based approach (e.g., fuzzy logic systems);
• Expert system (algorithms for modelling expert systems);
• Hybrid approach, searching and metaheuristic optimisation (hybrid algorithms, com-

bining different algorithms).

The main advantages of methods based on artificial intelligence include the follow-
ing [1]:
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• Process automation;
• Quick decision making;
• Easy handling of large data sets;
• Increase in productivity;
• No human errors.

The main disadvantages of methods based on artificial intelligence include the follow-
ing [1]:

• Lack of creativity and unconventional thinking, work according to fixed schemes;
• Implementation cost;
• Unexpected behaviour of the machine when operated by inappropriate persons;
• No possibility of making corrections—artificial intelligence works on the basis of

possessed data and algorithms.

2.1. Renewable Energy and Energy Storage

As examples in the literature relating to our first topic, we mention positions [2–25], in
which the authors dealt with issues related to the uncertainty of the operation of power system
arisings as a result of the increasing number of connected renewable sources. Solar and wind
energy are the two most frequently used sources of renewable energy. Unfortunately, the high
unpredictability of these sources significantly complicates the management of energy supply
and demand in the national power system. This is a serious challenge for the system, as it
is necessary to ensure reliable supplies while making optimal use of sources. An increasing
number of energy storage facilities are installed in order to stabilise the operation of the
power system; these are crucial to maintaining the power balance in the system and ensuring
appropriate energy quality [2].

Liu et al. [3] proposed a method for ultra-short-term forecasting of wind power and
speed based on the Takagi–Sugeno (T–S) fuzzy model, which is presented in Figure 2.
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Meteorological data are used as input data for this model, and the parameters are
identified using fuzzy clustering, the recursive least-squares method and the fuzzy C-means
(FCM) method. The results obtained using this model were compared with those from
other contemporary models based on machine learning using a support vector machine
(SVM) and a back-propagation neural network (BPNN). The results obtained show that
the model proposed by the authors can effectively improve the short-term forecast of wind
power and speed, which can be used effectively in capacity planning in the power system
from wind sources. Learning based on long short-term memory (LSTM) can also be used
to forecast wind power and speed. This solution was used in the work of Almutari and
Alrumayh [4]. The research has shown that the model proposed based on this architecture
can effectively predict changes in the power generated in a wind farm, taking into account
various random parameters, such as direction or speed. The main limitation observed
in this method is the long computational time necessary for appropriate training. Wind
speed is also predicted in articles [5,6] using the artificial neural network (ANN) method.
The results obtained in this work confirm the thesis that this is a very effective forecasting
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method. Another commonly used method to predict wind speed is SVM [7]. In their work,
Wu, Wang and Cheng [8] used the extreme machine learning (EML) algorithm to predict
wind speed. They checked the effectiveness of the proposed method not only through
simulations in the laboratory, but also on a real wind turbine.

In article [9], the authors use artificial intelligence (AI) and an artificial neural network
to predict current demand in order to optimise the storage and distribution of electricity.
The solution proposed by the authors can improve energy efficiency by making renewable
energy sources more available and sustainable. ANN is one of the most frequently used
machine learning techniques; a graphical representation of the frequency of its use was
presented by Qadir and his team [10].

The authors of [11] propose an approach involving the use of deep learning (DL)
to predict periods of energy production limitations, as well as the optimal use of energy
storage systems and alkaline water electrolysers and their hybrid connection, which may
minimise the effects of energy production limitations. According to the authors’ research,
it is possible, using the DL algorithm, to accurately predict periods in which there will
be limitations in energy production in wind and photovoltaic power plants with minimal
forecast error. As a result, with appropriate use of the battery energy storage system
(BESS), it is possible to guarantee uninterrupted continuity of energy supplies. In modern
power systems, hydrogen is becoming a key element and is used as an energy storage
system, increasing the stability and reliability of the system. When there is a surplus of
energy production, it is converted into hydrogen in electrolyser installations and is then
stored. During times of increased energy demand, the reverse process occurs. These
operations require the implementation of various systems that facilitate the connection
of fuel cells and electrolysers to the power system. For this purpose, the authors of [12]
present the use of machine learning in the form of the adaptive neuro-fuzzy inference
system (ANFIS). It is also important to ensure the proper operation and efficiency of
energy storage systems for their proper use within the power system. This issue was
discussed in [13], where the authors used a machine learning technique in the form of
the decision tree (DT) algorithm and support vectors to explain the impact of cooling air
on temperature distribution and to predict the safety of battery modules. A decision tree
algorithm is used to separate the relationship between cooling air and battery temperature
distribution, while a support vector machine is used to predict the safety of the BESS.
The conducted research shows that the air flow rate has a significant impact on both the
maximum temperature and temperature differences of the batteries, while the air inlet
temperature only affects the maximum temperature of the cells. The machine learning
algorithm used by the authors enables an increase in the efficiency and, above all, the
security of BESS warehouses, and therefore also contributes to ensuring greater stability in
the power system. Flywheel energy storage systems (FEES), similarly to the use of BESS
storage, improve the stability of network operation [14]. In [15], Yin and Liu propose the
use of fuzzy vector reinforcement learning (FVRL) to control generation in a power system
taking into account FEES. Hierarchical energy optimisation of the system to use flywheel
storage to smooth the output power of wind farms based on the deep reinforcement
learning (DRL) algorithm was proposed in [16]. Bearings are often damaged in warehouses
of this type, therefore an attempt to solve this problem was proposed in [17,18]. In order to
diagnose bearing damage, He and Liu [17] proposed a method based on the optimisation
of energy parameters, while in [18] an original method was proposed where the prediction
of bearing life is based on the Kriging model.

Microgrids are a solution that increases security and improves energy quality and
operation in the power system. However, due to the large dispersion of these sources,
optimal energy management is necessary. A machine learning approach was proposed
in [19], where the authors used machine learning based on support vector regression (SVR).
The connection of microgrid operation with battery energy storage systems using long
short-term memory was also discussed in [20]. The use of energy storage in combination
with machine learning based on an artificial neural network was also focused on in [21]. The
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authors of this work, based on supervised learning, created a selectively coherent model of
converter system control for an LV grid (SCM_CSC), and then, using an ANN, trained the
objective function, which consisted in maintaining the required voltage conditions for the
LV grid and minimising the power flow to the MV line.

Near real-time small signal stability analysis (SSSA) is crucial to properly integrating
large numbers of renewable energy sources. However, SSSA based on traditional computa-
tional methods is a time-consuming task, and therefore does not allow the assessment of
the stability of the system in real time; this is why the authors of [22] propose an approach
based on machine learning in the form of an artificial neural network. The speed and
accuracy of the proposed solution were tested on a 9-node test network, and the results
obtained prove that the calculation time can be drastically reduced without a significant
loss of accuracy of the results. A solution to this problem using machine learning was also
attempted in [23,24], using the K-means method. Jizhe Liu and his team also focused on
the issue of stability of the power system operation as a result of connecting a large number
of renewable sources. Their article [25] describes their original method based on graph
neural networks (GNN). The proposed solution was tested by the authors on two network
models, and from the obtained results it can be concluded that the proposed method can
make emergency load shedding (ELS) decisions at the level of a few milliseconds, which
makes it very useful for controlling system stability.

The authors of [26] propose a novel adaptive optimisation based on machine learning
using K-mean clustering and density-based spatial clustering of applications with noise
(DBSCAN). This optimisation aims to flexibly and accurately capture the uncertainty
space of renewable wind energy forecast errors with decoupled structures. Compared
to the classic “one size fits all” method, the authors’ approach requires over 75% less
computational time for the same problem. Table 1 provides a summary of the artificial
intelligence techniques used in this section.

Table 1. Summary of the methods used in the literature under consideration in issues related to
renewable energy and energy storage.

Artificial Intelligence

Machine learning

Supervised learning

Deep learning [4,11,16,18,20,24]
Neural networks [3,5,6,8–10,12,21,22]

Regression [19]
Classification [3,7,13]

Unsupervised learning Clustering [3,23,24,26]

Reinforcement learning Q-learning [15]

2.2. Forecasting Generation and Load in the Power System

Machine learning can be used to forecast both short-term and long-term generation.
Short-term forecasting of PV output power is extremely important not only to ensure
system stability, but first and foremost its safety.

The issue of short-term forecasting was described by Wang et al. [27] For this purpose,
the authors proposed a novel hybrid model based on ensemble empirical mode decomposi-
tion (EEMD) as well as on the relevance vector machine (RVM). EEMD is used to divide a
sequence of photovoltaic output power into several intrinsic mode functions (IMFs) and
into several residual components. The sample entropy algorithm is used to reconstruct
these components. The obtained results prove that the model proposed by the authors has
a high forecasting accuracy.

Short-term forecasting of the power of photovoltaic power plants is also dealt with
by Jakoplić et al. [28]. For this purpose, an innovative method is proposed, consisting
in continuous photographing of the sky above the installation. Then, a hybrid convolu-
tional neural network (CNN) and a long short-term memory model is used to analyse the
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photographs. Based on the analysis of the results, it can be concluded that the model is
characterised by 74% prediction efficiency in relation to the actual future generation values.
The long short-term memory model was also used by Elsaraiti and Merabet in [29]. Their
proposed model was trained and tested using real electricity data from Halifax, Canada
from 1 January 2017 to 31 December 2017. The obtained results were compared with the
multi-layer perceptron (MLP) algorithm, which is a frequently used forecasting method.
As can be seen in the tables below, the LSTM method presents better results in each of the
tested performance parameters.

In order to forecast solar generation for seven locations in Spain, Gala Y. and her
team [30] propose the use of hybrid machine learning based on several techniques: support
vector regression, gradient-boosted regression (GBR), random forest regression (RFR) and
a hybrid method combining them to further improve forecasting. An original model for
forecasting generation from renewable sources is also proposed in [31], where an artificial
neural network and a dynamic learning algorithm are used for this purpose. The proposed
algorithm is compared, among others, with advanced particle swarm optimisation (APSO)
and with the fine-tuning metaheuristic algorithm (FTMA); the results obtained are sat-
isfactory. In [32], Fadare focused on predicting generation from photovoltaic sources in
Nigeria using an ANN. Based on the results obtained, the author concluded that this model
is promising and can be successfully used to forecast photovoltaic generation anywhere
in the world. Also, in [33] an artificial neural network was used to predict photovoltaic
generation. The main innovation in the proposed method in this case is the use of mete-
orological forecasts as input data. Meng and Song in [34] focus on the forecast of winter
photovoltaic generation in North China using the random forest (RF) method. The research
was conducted at the Zhonghe photovoltaic station from 1 November to 31 December 2018.
The obtained results show that in the event of unfavourable weather conditions such as
rain or snow, the forecast error increases from 2.83% to 3.89%. In [35] the authors analyse
seven learning algorithms used in ANNs by using the nonlinear autoregressive models
with exogenous inputs (NARX) architecture to estimate the generated active power from
photovoltaic sources. The research shows that the best results were achieved using the
Bayesian regulatory method. Another method for estimating generation from photovoltaic
sources can be found in [36], where an algorithm based on the least absolute shrinkage and
selection operator (LASSO) was used, which predicted energy generation based on a small
amount of historical data. According to the authors’ research, this method achieved much
better accuracy compared to other analysed methods. The LASSO algorithm required the
use of much less training data than the other tested algorithms. A solution to the problem
of uncertainty in forecasting the power supplied from RESs may be the virtual power plant
(VPP) concept, which can be implemented in modern smart grids. In order to efficiently use
the capabilities of a virtual power plant, a system is need that can predict generation from
renewable sources and their impact on the energy system. The authors of [37] attempted to
solve this problem and proposed the use of artificial intelligence in the form of machine
learning based on long short-term memory, which is a type of recurrent neural network
(RNN). The method of combining these two methods (RNN-LSTM) was used in [38], where
the accuracy of forecasting photovoltaic generation hourly in advance was tested and was
then compared with, among others, the ANN and SVR methods. This method turned out to
be the most accurate one in predicting energy production for each of the tested photovoltaic
power plants.

In opposition to short-term memory learning, the authors of [39] propose an original
algorithm for predicting the output power of PV systems called the powerful deep convo-
lutional neural network model (PVPNet), which is based on a deep convolutional neural
network (DCNN). The model can generate predicted 24 h output powers of PV sources
based on meteorological information, such as temperature and solar radiation, as well as
on historical data. According to the authors’ research results, their algorithm is significantly
superior to those created based on LSTM or MLP learning. According to the authors, the
use of their algorithm can significantly reduce expenditure on monitoring and long-term



Energies 2024, 17, 516 8 of 42

maintenance costs of photovoltaic installations, and therefore can also reduce the operating
costs of the power system.

The authors of [40] dealt with the issue of predicting wind energy generation, in which
they propose an original forecasting system based on the learning ability of a deep neural
network (DNN), as well as the transfer learning (TL) concept. In their deep neural network-
based meta-regression and transfer learning (DNN-MRT) model, they use auto-encoders as
the base regressors with the deep belief network (DBN) as the meta-regressor. According
to the authors, the applied ensemble learning concept facilitates decisive decision making
on the test data set, while the base regressors together with the meta-regressors enable
a significant increase in the performance of their proposed model. The deep learning
algorithm in wind energy was also used by Manshadi in [41]. He proposed using machine
learning to predict generation from wind turbines in a specific location. The author’s
method proved effective, with an approximate accuracy of 0.96. In [42], Troncoso and
his team performed a comparative analysis of eight different types of regression tree (RT)
algorithms for short-term wind speed prediction. An approach using both SVM and
decision tree (DT) was used in [43]. Wang et al. [44] proposed a deep learning approach
to forecast wind energy production in the power system, while Wen et al. [45] proposed
the use of a deep recurrent neural network (DRNN) combined with LSTM to forecast solar
energy production in the system.

In [46], three different models based on artificial neural networks were used to forecast
the generation of wind sources. These are the “Feed Forward Back-Propagation (BP)”,
“Radial Basis Function (RBF)” and “Adaptive Linear Element Networks (ADALINE)”
models. Typical topologies of these networks are shown in Figures 3–5.
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The effectiveness of individual models varied depending on the given input data, so a
solid method of combining forecasts from different models is needed to obtain a complete
picture of generation from wind sources. Wind generation forecasting based on the RBF
neural network scheme was also proposed in [47]. In [48] the general regression (GR)
method and back propagation were used. The authors compared the results obtained using
both models, and it resulted that the BP method obtained better prediction results than
the GR method. In [49], Saigustia and Pijarski used the eXtreme gradient boosting over
decision trees (XGBoost) algorithm to forecast photovoltaic generation trends in Spain. The
model proposed by the authors makes it easier to optimise the operation of the power
system; by adapting generation to the periods of peak customer demand, the flexibility and
reliability of the network increases.

Correct load forecasting is also very important for the proper operation of the power
system. This load may be influenced by various external factors, which involves a high
degree of uncertainty. This issue can be found in the literature, for example, in [50–59]. The
authors of [50] discuss the three most frequently used machine learning methods for load
forecasting: the support vector machine method, random forest and the long short-term
memory method. The article analyses the features of the above-mentioned methods and
proposes an original forecasting model that combines the advantages of SVM, RF and LSTM.
This model, combining the advantages of the above-mentioned techniques, allows data
pre-processing and a multi-stage forecasting strategy, significantly improving the accuracy
of the results obtained. In order to improve the precision of short-term load forecasting, an
artificial neural network was used in [51], in which the back-propagation algorithm is used
to train samples. The proposed method does not require much computational time, and the
patterns used in network training have a large impact on the forecasting accuracy. In [52]
the possibility of building a medium-term load forecasting model for the power system
was considered based on the following methods: support vector regression, decision tree
regression, random forest, gradient boosting over decision trees and adaptive boosting over
decision trees (AdaBoost). The model proposed by the authors allows for the forecast of
the load in an isolated power system one week in advance. The best results were obtained
using a model based on adaptive boosting over decision trees, which combined four linear
regressions into one model. Via the increasing use of smart energy meters, it is becoming
possible to accurately forecast the load even one day in advance [53]. Chen and his team
used the deep neural network for this purpose. In [54], the artificial neural network method
was used to forecast the load in the Greek power system. However, in [55] a hybrid model
combining an artificial neural network and various combinations of Kalman filtering (KF)
was used for short-term load forecasting. Zou et al. [56] proposed a combined MFF-SAM-
GCN model in order to predict the short-term load in the system, which uses multi-feature
fusion (MFF) and a self-attention mechanism (SAM) to form a multi-feature fusion structure.
However, thanks to the use of a graph convolutional network (GCN), features such as
wind strength and direction are extracted. In the summary, the authors emphasise that the
simulation results show better prediction performance than the reference models. In [57], a
hybrid method combining a deep neural network is proposed for weekly load forecasting.
For the purposes of correct load prediction, expert systems are also used, as proven by
references [58,59].
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Article [60] proposed its own load modelling scheme via peak detection and then used
this information for forecasting purposes. This was done by mapping time-series data;
peaks were defined as load levels equal to or greater than 99 percentiles in the first case, 95 in
the second and 90 in the third. These variants were modelled using classification algorithms
and their results were used to improve forecasting models. The best results were obtained
with SVM for peak classification and ANN for prediction. According to the authors, this
approach is able to predict over 90% of energy demand with a margin of error between
2–3%. A support vector machine and Gaussian process regression (GPR) methods for
forecasting photovoltaic generation were used in [61]. As a result of comparing the results
obtained using these methods, it can be concluded that SVM is much less efficient compared
to GPR, which provided an appropriate combination of accuracy and the required time
for calculations.

Zong Woo Geem and William Roper [62] dealt with forecasting electricity demand in
South Korea. For this purpose, they used an ANN model with the back-propagation error
algorithm, the momentum process and data scaling. In [63], an innovative optimisation
method based on an artificial neural network was proposed to forecast the energy demand
in the system. However, in [64] Ekonomou used an artificial neural network to predict long-
term energy consumption in Greece. The issue of energy use was also dealt with in [65].
The authors addressed the power system in Turkey and used the support vector machine
and least-squares support vector machines (LS-SVM) for this purpose. In [66], the authors
proposed a model combining long short-term memory with particle swarm optimisation
(PSO) to forecast electricity demand. In [67] a DNN model was developed for this purpose,
and in [68] the authors tested the performance of three regression-based prediction models:
persistence-based auto-regressive (PAR), seasonal persistence-based regressive (SPR) and
seasonal persistence-based neural network (SPNN). Guo Feng Fan and team [69] used a
support vector machine for short-term forecasting of electricity demand. The SVM model
is also used in [70,71]. In [71], a novel PSO and RVM approach was proposed for real-time
load prediction. In order to improve the decision-making process in power systems, the
current energy demand and the current production capabilities of photovoltaic and wind
sources should be forecasted. Such an attempt was made by Maciejewska and her team [72].
Ahmad et al. [73] proposed the use of the nonlinear autoregressive model (NARM), which
uses stepwise regression and the random forest method. Gou and team also used deep
learning for short-term load forecasting, and compared their results with the random
forest and gradient-boosting machine models [74]. In [75], Chena proposed the use of
deep residual networks (DRNs) for short-term forecasting. Several works also note the
use of hybrid methods to increase the accuracy of load forecasting in the power system.
For example, Rafiei and team [76] proposed a method including, among others, extreme
machine learning, and Ribeiro [77] proposed forecasting based on wavelet neural networks
(WNN). In [78], the authors used fuzzy logic and an artificial neural network for short-term
load demand forecasting. In [79], a hybrid model consisting of wavelet transform, neural
networks and an evolutionary algorithm was proposed for short-term forecasting. The
proposed method was tested on three power systems and compared with some of the
forecasting algorithms used. A hybrid method using, among others, wavelet transform
and long short-term memory for both short-term and long-term forecasting was proposed
by Memarzadeh and Keynia [80]. A schematic of their hybrid model is shown in Figure 6.

In [81], both artificial neural networks and deep learning techniques were used to
forecast electricity demand. The study was conducted for each of short-term, medium-term
and long-term forecasting. The above work contains a comparison and evaluation of the
above-mentioned techniques. In [82], Hassan, along with Khosravi and the rest, plotted
a combination of fuzzy logic and extreme machine learning. The authors additionally
conducted a comparative analysis of their proposed model with traditional models such as
the adaptive neuro-fuzzy inference system (ANFIS), among others.
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Table 2 presents a summary of the artificial intelligence techniques used in forecasting
generation and load in the power system.

Table 2. Summary of the methods used in the literature under consideration in generation and load
forecasting issues.

Artificial Intelligence

Machine learning

Supervised learning

Deep learning [28,29,37–41,44,45,50,53,56,57,66,67,74,75,80,81]

Neural networks [29,31–33,46,47,51,54,55,60,62–64,68,76–79,81,82]

Regression [30,36,42,48,52,61]

Classification [43,50,52,60,61,65,69–71]

Bayesian methods [27,35,70]

Ensemble methods
Bagging [34,50,52,73]

Boosting [30,49,52]

Expert system [58,59]

Fuzzy logic [78,82]
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2.3. Power Quality

Monitoring energy quality is an important issue due to the increasing number of
installed sensitive power electronic devices, energy storage facilities and the increasing
number of distributed energy sources [83]. Unfortunately, connecting these devices to the
system makes power quality issues increasingly difficult to maintain at an appropriate
level [84–86]. Therefore, artificial intelligence and machine learning are increasingly used
to maximise energy quality indicators in the power system.

Liu et al. [87] proposed an innovative approach to classifying power quality distur-
bances in the system using a deep convolutional neural network, multi-class support
vector machine (MSVM) and segmented and modified S-transform (SMST). The test results
showed that this method is characterised by high efficiency. A CNN-based quality event
classification method was used in [88,89]. The classification of quality disturbances is
also the main goal in [90]. For this purpose, the authors proposed a hybrid architecture
combining CNN with LSTM. Additionally, they checked the performance of various deep
learning architectures, such as reinforcement neutral network, identity-recurrent neural
network (I-RNN) or gated recurrent units (GRU). A high accuracy rate for detecting and
classifying disturbances was achieved in [91], where Shen et al. proposed an algorithm
based on principal component analysis (PCA) and a convolutional neural network. This
model achieved an accuracy of over 96%.

In [92], Le et al. achieved interference classification accuracy of over 99%. Accuracy
of over 99% using RNN for noise classification was also obtained in [93–95]. In [93] an
optimised RNN algorithm was proposed, in [94] a method for detecting and classifying
voltage dips in real time was proposed, while in [95] the authors developed their own
hybrid method based on a combination of wavelet transform, principal component analysis
and RNN.

A frequently used type of machine learning is generative adversarial networks (GAN).
The reader can see examples of its use to classify power quality disturbances in the system
in [96–98]. In [96], an accurate and computationally efficient algorithm was developed
based on GAN using phasor measurement units (PMU) data. This method achieved an
accuracy of over 97%, making it accurate and suitable for real-time event detection. In [97],
the GAN architecture was used to generate real data for training a classifier to detect power
quality disturbances. Oliveira and colleagues [98] discussed the use of GAN-based machine
learning for the classification of quality events and also highlighted its high accuracy.

Short fluctuations in photovoltaic power can lead to degradation of power quality
because the use of regulatory reserves to compensate is usually very expensive. This issue
was focused on by Golestaneh and his team in [99], who used extreme machine learning
to establish quantile regression. In [100], Wan and his team developed an approach that
combines quantile regression with extreme machine learning to determine prediction
intervals for the quality of generated power.

The issue of classifying power quality disruptions through machine learning based on
LSTM, which is a type of RNN, is also described in [101–108]. In [108], an LSTM method
combined with a CNN method was proposed, which achieved an accuracy of 97.3%.
Models with similar accuracy were proposed in [101,102]. In [101], an algorithm based
on a hybrid combination of convolutional neural network with bi-directional long short-
term memory (Bi-LSTM) was used for correct classification. This model uses spectrogram
images for its operation. However, in [102] the classification method is based on LSTM
and achieves an accuracy of 97.7%. Even greater accuracy was achieved by the method
proposed by Abdelsalam et al. [103]. They used LSTM to categorise quality events and
a feature extraction method based on wavelet packet transform (WPT). Their proposed
method achieved an accuracy of almost 99%. In [104], three different models based on
architecture were analysed: CNN, LSTM and a CNN-LSTM hybrid. The results showed that
the CNN-LSTM method had the highest accuracy, achieving an accuracy of 98.9%. Exactly
the same accuracy was achieved by the LSTM method developed by Chiam et al. [105].
The method developed by Rajiv [106] demonstrated the highest accuracy among those
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discussed in this work. Their approach, which was based on a hybrid combination of LSTM
and CNN, achieved an accuracy of over 99%. The least accurate of the presented works
was the one by Rodriguez et al. [107], which was based on the Hilbert–Huang transform
and the use of LSTM. Their proposed method achieved an accuracy of 95.4%.

Another quite commonly used machine learning method is the self-organising map-
ping (SOM) method, which is a type of ANN. In this review, we will focus only on a few
articles selected by the authors, because this issue is described quite widely in the literature.
The SOM method was used by Bentley et al. [109] to identify sources of PQ interference; the
accuracy of their method was 95%. A much more accurate method was proposed in [110],
where an accuracy of 97.2% was achieved. We can therefore notice that this method is
characterised by much lower accuracy in classifying interference sources than the methods
discussed earlier.

The issue of electricity quality was also described by Kwack and his team [111]. He
used fast Fourier transform (FFT) and discrete wavelet transform (DWT) for these purposes.

Rajeshbabu and Manikandan [112] proposed the use of an expert system to classify
various types of power quality disturbances occurring in the energy system due to integra-
tion with renewable sources. To verify the results, the authors used real-time sample data.
The expert system can also be used for power system planning and analysis [113,114].

Table 3 lists all artificial intelligence techniques used in this section.

Table 3. Summary of the methods used in the literature under consideration in power quality issues.

Artificial Intelligence

Machine learning

Supervised learning
Deep learning [87–98,101–108]

Neural networks [99,100,109,110]
Classification [87,90]

Expert system [112–114]

2.4. Power System Security

The continuous economic development of the world and the people’s comfortable
lifestyles cause a constant increase in the demand for electricity [115]. In order to meet
this demand, and due to the need to be low emission, an increasing number of renewable
energy sources are being installed in the power system, in combination with the liquidation
of conventional energy generating sources. This solution leads to a significant reduction in
system inertia, which has a negative impact on safety and proper, i.e., stable operation of
the system.

Quick detection and correct classification of electrical disturbances are extremely
important for the proper operation of the system [116]. Due to the usually large scope and
complexity of power systems, quick detection of disturbances is still a complicated issue
and requires further work to speed it up. Machine learning was used for this purpose
in [117,118]. Chen et al. in [117] use extreme machine learning to classify faults and locate
them. As their research results show, this machine is computationally efficient and fully
self-learning. In [118], Chothani and his team developed a fault identification method
based on SVM enabling the identification of initial faults located inside and outside the
busbar protection zone.

Stefenon et al. [119] focused on using machine learning to detect faulty insulators or
those that may cause failure in the near future. Adaptive neuro-fuzzy inference system was
used for time-series forecasting, and the Fourier transform was implemented to improve
forecasting performance.

The authors of [120] focused on aspects related to the security of machine learning
and the operation of the power system. The authors present a number of guidelines that, in
their opinion, will ensure compliance with the stringent security requirements that must be
met during machine learning related to the proper operation of the system. Security issues
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were also discussed in [121], in which the authors presented the increasingly common use
of machine learning based on supervised and unsupervised learning to ensure the ability
to dynamically detect the state of insecurity resulting from short circuits. The authors
suggest that by using machine learning for dynamic safety forecasting, it is possible to
eliminate the need to use complex dynamic models of synchronous generator-based DER
(SGBDER) and inverter-based DER (IBDER), which may significantly facilitate the use
of precise safety criteria. An example of supervised learning used in [122] is GAN and
in [123,124], where the multi-class support vector machine (multi-SVM) method is used.
The issue of dynamic assessment of the security of power systems in real time was also
discussed in [125,126]. In [125], an ensemble model based on a hybrid learning machine was
developed, and in order to increase the forecasting accuracy of their algorithm, the authors
used the Levenberg–Marquardt backpropagation mechanism and applied a weighted
averaging technique based on particle swarm optimisation. The proposed algorithm was
tested on a 39-node and 68-node test network. The research shows that the algorithm
proposed by the authors has 100% accuracy in classification and 97% accuracy in predicting
TM values for a 39-node system and 100% accuracy in classification and 99.7% accuracy in
predicting TM values for a 68-node system. However, in [126] the decision tree, artificial
neural network and entropy network (EN) methods were used. These techniques were
integrated with the actual driver of the security system module used for the island of Crete,
helping to identify operating conditions that may lead to impaired system performance.
Initially, interpretable rules were extracted from large sets of simulated examples using DT,
and then they were used to determine the output variables for ANN, which ensured better
performance. Finally, the EN network method was used, which was intended to combine
the advantages of previously used methods, i.e., the transparency of the DT method and
the accuracy of the ANN method. The research shows that each of these methods is able to
provide the operator with better accuracy in classifying potential threats, giving an accurate
estimate of the minimum frequency values in the event of certain disturbances.

Dynamic assessment of the operational security of the power system is a key aspect of
the work of Petar Sarajcev [127,128]. The authors of [127] provide an introduction to the
special issue and the author introduces the reader to the techniques currently selected to
ensure the correct dynamic assessment of system security. In [128] Sarajcev et al. present
a literature review of the most important machine learning methods used in this issue.
Particularly noteworthy are [129–131], in which the authors focused on ensuring system
security through reinforcement learning. The assessment of the transient stability of energy
systems using ML techniques was also discussed in articles [132–136]. For this purpose,
CNN was used in [132], RNN was used in [133] and LSTM was used in [134,135].

Stability is one of the basic requirements for power systems. Low-frequency oscil-
lations that are commonly observed in systems can cause their instability; this is why it
is so important to detect them quickly and suppress them. For this purpose, an original
approach to tuning the parameters of the power system stabiliser was proposed in [136].
To perform it, the ensemble learning method was used, which combines many machine
learning techniques, namely extreme machine learning, neurogenetic (NG) system and
multi-gene genetic programming (MGGP). Various load conditions of the system were
tested: light, medium and heavy to check the reliability of the method. The obtained results
confirmed the effectiveness of the proposed solution and show that this method can fully
stabilise the power system after an emergency. The key advantage of this solution is its
ability to immediately predict the parameters of the power system stabiliser (PSS). The
issue of predicting the transient stability of the power system was focused on in [137],
which used a method based on extreme machine learning using synchrophasors. The
correct operation of the algorithm was checked on a 39-node system, and the proposed
method proved able to correctly and effectively predict the state of transient stability of the
power system.

Sedghi and his team in [138] proposed and developed the DCNN method to estimate
the transient stability index of the power system. According to the authors, the greatest
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advantage of their method is the reduction of the time needed for calculations to determine
the critical clearing time (CCT) index, thanks to which transient stability can be determined
in real time.

The issue of optimising the power system by eliminating unfavourable phenomena
was dealt with in [139], where machine learning in the form of an artificial neural network
was used to determine overvoltages in the system. In this method, voltage was used to
classify the occurring overvoltages into two separate groups: switching overvoltages and
fast overvoltages. It was shown that the peak value of the overvoltage, the duration of
the overvoltage, and the total harmonic distortion (THD) are the most important factors
for accurate classification. The extreme machine learning method with a modified genetic
algorithm (GA) was used to optimise the operation of hydropower plants in [140]. When
there are many hydroelectric power plants in a given area, they may be affected by similar
weather conditions, so their tributaries cannot be independent. Therefore, according to the
authors, for their proper operation it is necessary to accurately estimate their dependencies
and joint distribution. The authors use a genetic algorithm for this purpose and handle the
uncertainty of the power system using random constraints.

Due to the integration of renewable sources, as well as the need to respond to changing
demand levels, for example due to the charging of electric vehicles when the system is
more loaded, it is necessary to correctly estimate the state of the power system. In [141],
three machine learning algorithms were used for this purpose: ANN, DT and XGboost.
They were tested on networks of 14 and 30 nodes. Based on the results obtained, it can
be concluded that all three algorithms demonstrate high accuracy, but the artificial neural
network algorithm turned out to be the most effective method.

Liu and his team [142] used fuzzy logic combined with a weather model to predict
the impact of hurricanes on the reliability of the power system, and the proposed method
is effective, efficient and flexible. In [143], the use of fuzzy logic was proposed to clas-
sify emergency situations in the power system. The purpose of the authors’ proposed
study is to quickly and accurately propose potential failures from a large list of potential
emergency events. In [144], this technique was used to optimize and improve the energy
management system.

An expert system is a special type of computer software created by experts. This system
contains extensive knowledge and experience in the operation of power systems [145,146].
The knowledge that the system has is usually stored separately from the procedural part
of the program and is usually stored in the form of decision trees, models or frameworks.
The issue of expert systems was dealt with several decades ago [147–154]. In the 1990s, the
expert system was used, among others, to control the operation of power supply systems
in individual power plant units [151], or even to control power flows in the system, as
presented by Chowdhurry and his team in [150]. Expert systems have also been used
to plan network maintenance [155–159]. Tanaka et al. [149] focused on the prospects for
the development of expert systems on the example of Japan. This is a valuable article
because it provides the opportunity to look at how the use of this technology in the future
was imagined over 30 years ago. It should be remembered that in order to use the expert
system, several conditions must be met. First of all, there must be specialist knowledge
available about the field in which the expert systems are to be used. Secondly, the expert
system must be able to explain the solution to a given topic. The final condition is that
search and inference based on an expert system must be fast and reliable [160]. Therefore,
expert systems are currently used slightly less frequently than before, but they are still
used to support decision making regarding, for example, the control of reactive and active
power [161]. The solution proposed by the authors was tested on a 30-node test network,
and the results obtained are satisfactory. In order to increase the security of the power
system, Hong [162] proposes the use of an expert system with fuzzy logic. He proposes its
use to control the power flow in the line. The proposed solution was tested on a 30-node
closed test network, as well as on a practical 265-node system in Taiwan. Sobajic and his
team propose using an expert system to examine how a computer program is able to help
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the operator assess the system’s security. For this purpose, the consequences of individual
exclusions are examined [163]. The integration of an expert system to assess the safety of
energy management system operation can also be found in [164]. An expert system can
also be used to restore the energy system after a disaster [165,166].

A summary of all artificial intelligence techniques used in energy system security is
summarised in Table 4.

Table 4. Summary of the methods used in the literature under consideration in issues related to
security in the power system.

Artificial Intelligence

Machine learning

Supervised learning
Deep learning [121,122,132–135,138]

Neural networks [117,119,126,137,139–141]
Classification [118,123,124,126,141]

Reinforcement learning Q-learning [120,129–131]

Ensemble methods Bagging [125,136]

Expert system [145–166]

Fuzzy logic [142–144]

2.5. Identification and Analysis Related to Power System Disturbances

Nowadays, the power system is undergoing constant modifications and expansions in
order to adapt it to be as flexible and reliable as possible. For this purpose, it is also neces-
sary to constantly improve diagnostic systems for detecting and eliminating undesirable
operating conditions in the system as quickly as possible. For this purpose, machine learn-
ing techniques are increasingly used to help facilitate the operator’s work. The literature is
quite extensive on this issue, and below are selected articles that, according to the authors,
best illustrate the rapid progress of machine learning in the field of disturbances in the
power system. The authors of [167] discuss the deep learning neural network technique
for fault diagnosis in power systems. The work presents a method of data processing
and then, using machine learning, their appropriate division in order to classify damage.
The issue of appropriate diagnosis of faults in the system was also dealt with in [168–173].
In [173], fault diagnosis was proposed based on noise-assisted multi-variate empirical
mode decomposition (NA-MEMD) and multi-level iterative–LightGBM (MI–LightGBM).
The obtained results proved that the proposed diagnostic method can achieve a satisfactory
learning speed, but only when the classifier provides adequate performance. Appropriate
diagnostics and quick action in the event of fault section diagnosis (FSD) are essential for
the proper operation of the power system. The authors of [172] proposed a diagnostic
model designed for extreme learning. In the authors’ work, hierarchical extreme learn-
ing machines (HELM) are responsible not only for performing diagnostics of the internal
sections of the subsystem themselves, but also for performing diagnostics of adjacent
connections. According to the authors, the proposed method is characterised by higher
accuracy and lower error than other module systems used for diagnostics. HELM was also
used in [174], and its effectiveness in efficient fault finding was tested on the Siping power
grid in China. A review of fault identification to protect the system from cascading faults
when a fault occurs is dealt with in [171]. The authors first summarise the currently used
machine learning algorithms, such as ANN and SVM, and then move on to the methods
that, in their opinion, as a consequence of the need to process large amounts of data in the
shortest possible time, will be used more and more often: DL, RL and TL. In [170], a hybrid
artificial intelligence system was presented that combines neural networks with fuzzy logic
to help the operator locate disturbances in power systems quickly and accurately. When
the neural network detects a disturbance, fuzzy logic starts analysing it. According to
the authors, the research results presented by them clearly prove that the hybrid model
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they used is an extremely efficient and reliable machine for finding and analysing existing
problems in system diagnostics. The problem of interference identification is also extremely
important in the case of microgrids. Such networks often experience a lot of faults during
power distribution. In [169], a discrete wavelet transform-based probabilistic generative
model is presented to explore accurate solutions for fault diagnosis. The model was trained
using an unsupervised learning approach, in which the artificial neural network algorithm
is designed to optimally tune the model to minimise the error between the real and pre-
dicted classes. The effectiveness of the model was tested by changing the input signal and
sampling frequency. The obtained results prove that the proposed model is able to correctly
detect and classify disturbances. An artificial neural network was also used in [168], where
their potential use was discussed with an emphasis on showing how ANNs can support
operators in quickly making error-free decisions.

Machine learning is also used to locate faults in photovoltaic farms and to detect
interference in the photovoltaic cells themselves. In [175,176], a method for detecting pho-
tovoltaic cell damage using a multi-layer perceptron (MLP) neuron network was proposed.

The MLP architecture was also used by Cherifa [177]. In her work, she integrated
MLP with neural network back propagation in order to identify short circuits in the
photovoltaic system.

For the purpose of identifying faults in photovoltaic sources, the probabilistic neural
network (PNN) architecture is also commonly used [178,179]. In [179], Akram proposes an
original method for monitoring the condition of photovoltaic sources, which detects and
classifies short circuits in real time. A similar solution was used in [178]. In this paper, a
PNN-based method is used to diagnose faults on the DC side of a photovoltaic system and
then compared with artificial neural network classifiers.

To ensure reliable operation and to avoid unannounced failures, proper management
and maintenance of network assets is necessary. In [180], the authors use the deep learning
method to detect anomalies in the operation of energy system devices.

Artificial intelligence in the form of fuzzy logic can also be used to determine the time
needed to remove a failure, as well as to determine the shutdown rate [181]. Relationships
to determine them are shown in Equations (1) and (2):

rE =
λN ·R·rN + λA·(1 − R)·rA

λN ·R + λA·(1 − R)
(1)

λE = λN ·R + λA·(1 − R) (2)

where rE is the time needed to remove the failure and λE is the activation rate. The failure
removal time indicator is given in hours, while the number of outages is given in relation
to historical data.

The fuzzy logic form of artificial intelligence can also be used to diagnose and classify
failures in transmission networks. This solution was proposed by Bouchiba et al. in [182].
In their work, they used 209 cases, of which 147 were used for training, 31 for validation
and 31 for testing. The research was carried out on a test network of 14 nodes, and based on
the results obtained, it can be concluded that the deep learning algorithm is more effective
and more accurate than fuzzy logic. The general architecture of fuzzy logic systems is
presented in [183].

In order to diagnose faults in systems, Ray and his team [184] proposed diagnostic
methods based on SVM. This method is used to identify types of interference depending
on its location. The SVM method was also used by Rudsari and his team [185]. He used
this algorithm to locate faults for high-voltage circuit breakers. In [186], the authors used
SVM to diagnose and classify system failures.

Lee et al. [187] propose the use of an expert system for power system diagnostics to
detect disturbances. Abdelsalam et al. [188] used a fuzzy expert system in combination with
discrete wavelet transform and the Kalman filter to identify and classify disturbances in the
power system. Based on the research and analysis of the results, the authors concluded that
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this hybrid combination is able to effectively identify and classify disturbances with high
accuracy and in a short computation time compared to other methods. Position [189] dealt
with analyses of nuclear power plants and an appropriate expert system was designed for
this purpose. Table 5 lists all artificial intelligence techniques used in this section.

Table 5. Summary of the methods used in the literature under consideration in power system
disturbance issues.

Artificial Intelligence

Machine learning

Supervised learning

Deep learning [167,180]

Neural networks [168–172,174–179]

Classification [173,184–186]

Expert system [187–189]

Fuzzy logic [170,181–183]

2.6. Stability Issues in the Power System

Stability testing is a significant and important issue from the point of view of the
operation of the power system. It is estimated that the failure that occurred in 2003 in
the USA and Canada led to a power outage in up to 50 million households [190]. Voltage
stability was analysed, among others, in [191]. Voltage stability margin (VSM) on the
receive bus can be calculated as follows [192]:

VSM =
Pmax − Pcurrent

Pmax
(3)

where Pmax is the maximum supplied power and Pcurrent is the current demand for active
power. Voltage stability margin is expressed in relative units.

The phenomenon of voltage instability is attributed to the operation of the power
system at its maximum allowable power, reactive power deficiency and inadequacy of
reactive power compensation tools [193,194]. In [194], the author proposes a technique
based on the use of artificial immunity systems, which is used to predict the state of voltage
stability of the power system. Moreover, a comparative study was performed between
an artificial immune systems (AIS)-based system and an ANN-based system for voltage
stability prediction. Based on the results obtained, it can be seen that the AIS method is
characterised by a smaller mean square error and a better correlation coefficient. However,
the AIS method needed 2 min more to perform the same calculations, so it is slower than
the method based on an artificial neural network.

Voltage stability can be considered in terms of short-term stability or in terms of
long-term stability [195]. The issue of short-term stability was addressed by Zhang and
his team [196]. They proposed a hierarchical and self-adaptive data analysis method for
short-term voltage stability in real time. The proposed method used a machine for extreme
machine learning, and the results obtained are satisfactory. In practice, the proposed
method can be used to detect a rapid voltage drop or to detect abnormal voltage behaviour
after a disturbance.

The issue of short-term voltage stability (SVS) was also addressed in [197], where a
model combining an incremental learning machine and a class-unbalanced learning ma-
chine was used for this purpose. The proposed solution was tested on the Nordic test sys-
tem, and it was shown that the model is adaptive and resistant to new, unknown situations.

The issue of monitoring long-term stability in the power system using EML was
addressed in [198]. The model proposed by the authors allows to predict the loss of voltage
stability in the system caused by limitations in the transmission of reactive power, and
provides a warning when there is a deficit of this power in one of the system areas.
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Malbasa V. et al. [192] proposed an active machine learning technique for monitoring
voltage stability in transmission systems. This approach makes it possible to improve exist-
ing machine learning algorithms, such as SVM, DT and ANN, through active interaction
with online forecasts. The research presented by scientists proves a significant reduction in
training time, prediction time and reduces the number of measurements necessary in order
to obtain satisfactory prediction accuracy. In [199], machine learning based on artificial
neural networks was proposed for this purpose, and then the performance of the model
was tested on 14-, 30- and 118-node systems, as well as on a real 62-node section of the
Indian power grid under various load variants. The artificial neural network approach was
also used by Bahmanyar and Karami [200], Ashraf et al. [201] and is found in [202,203].
Further, in these cases, the effectiveness of the proposed solution was tested on a 39-node
power system in the case of Bahmanyar and on 14- and 118-node systems in the case of
Ashraf. The obtained results demonstrate that the proposed models are efficient and allow
for effective and accurate estimation of VSM. The flowchart of the procedure proposed by
Ashraf is shown in Figure 7.
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In [204], in order to determine the voltage stability of the system, a hybrid model
based on machine learning techniques such as RF and LSTM was proposed. Then, in order
to verify the proposed method, a simulation analysis was performed on a 68-node system.
The obtained results show that the proposed method provides better accuracy than two
other methods that the authors chose for comparison.

Gomez et al. [205] proposed the use of the SVM method to accurately and, above all,
quickly predict transient instability in the power system after a failure. The authors showed
that data such as the bus voltage value or the generator rotor speed taken immediately
after the failure was removed can be used as input data for SVM. The algorithm was tested
on a 39-node network and showed over 97% prediction accuracy. In order to solve the
voltage instability problem, Xu and his team in [206] proposed the use of multi-agent
deep reinforcement learning (MA-DRL). The solution was tested on a 33-node closed
test network.

The increased share of renewable energy sources in the system also increases its suscep-
tibility to frequency instability, which in turn leads to increased challenges in maintaining
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its desired value [207,208]. In [207], the authors propose the use of logistic regression (LR)
and the support vector machine to classify failures with unmaintained frequency values.
Both proposed methods were tested on the energy system of the Spanish island of Las
Palmas, and the results obtained by the authors indicate that their methods are charac-
terised by accuracy and high flexibility. In [209] the authors propose the use of DL for this
purpose, and in [210] a MA-DRL-based model is proposed. Xingyum et al. [211] proposed
an algorithm based on XGBoost to predict frequency stability. The authors compared their
proposed algorithm with others based on SVR, DL or CNN, and the results obtained prove
that the XGBoost algorithm has better prediction performance.

In [208], the authors focus on accurate estimation of the frequency nadir, which is
important in order to prevent large fluctuations in the frequency itself. For this purpose,
they propose using five different machine learning methods and comparing their results:
linear regression, gradient boosting, support vector regression, artificial neural network
and XGBoost. The best results were obtained using gradient boosting and XGBoost, the
objective functions of which are presented in Equations (4)–(7):

• Gradient Boosting:

Fo(x) = argmin
γ

n

∑
i=1

L(yi, γ) (4)

Fm(x) = Fm−1(x) + argmin
hmϵH

n

∑
i=1

L(yi, Fm−1(xi) + hm(xi)) (5)

where, F and H are the learning functions and L is the loss function. The parameters x and
y are the input variable and the output variable, respectively, and γ is the initialisation.

• XGBoost:

Lt =
n

∑
i=1

l(ŷi, yt) + ∑
k

Ω( fk) (6)

Ω( f ) = γT +
1
2
⋋ ∥ w ∥2 (7)

where L is the loss function that measures the difference between the forecast ŷi and the
read value yi. Function 7, on the other hand, is used to smooth the learned final weights to
avoid overfitting.

Table 6 summarises the artificial intelligence techniques used in issues related to the
stability of the energy system.

Table 6. Summary of the methods used in the literature under consideration in issues related to
power system stability.

Artificial Intelligence

Machine learning

Supervised learning

Deep learning [204,206,209,210]
Neural networks [192,194–196,198–203,208,211]

Classification [192,197,205]
Regression [207,208]

Ensemble methods Bagging [204,208]

2.7. Aspects Related to Forecasting Energy Prices

Another important topic is forecasting energy prices in the power system [212–215].
As Fraunholz [216] presents in his work, increasing the accuracy of forecasting market
prices by just 1% can bring multi-billion savings for operators.
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An algorithm based on long short-term memory was used in [217] where stock market
profits were forecasted one day in advance. Tschorna in [218] tested several machine
learning methods for forecasting electricity prices. Their observations show that the best
learning methods among the proposed ones are DNN and SVR. Kapoor and Witchitaxorn
in [219] test the use of generalised autoregressive conditional heteroskedasticity volatility
(GARCH) and stochastic volatility (SV) machine learning models combined with LASSO for
daily electricity price forecasting in New Zealand. In [220] support vector regression was
used to forecast energy prices in the eastern region of Saudi Arabia. The results obtained by
the authors confirm that this method is also characterised by high forecasting accuracy. The
SVM method is used by Singh and Mahapatra [221] and by Damaluri and his team [222].
In [221], the authors tested their model on the power systems of Great Britain, France
and Germany, obtaining mean percentage absolute errors (MAPE) of 3.58, 3.96 and 5.37,
respectively. Deep learning techniques were used in [223], where the authors carried out
research on a 33-node IEEE network, and the results obtained were characterised by high
efficiency. In [224], the DRNN algorithm was used for one-day-ahead forecasting. The
authors used real English data for research purposes and compared the results obtained
using their proposed model with an SVM and an improved hybrid machine based on SVM.
The research confirmed that the model proposed by the authors achieved an accuracy
that was 29.7% higher than a single SVM and 21.04% higher than a hybrid machine based
on SVM.

Short-term forecasting of energy prices is a key issue for consumers. The authors
of [225] used the LSTM algorithm for its correct prediction. For prediction purposes, the
proposed model analyses input time series of different scales and processes each of them.
The proposed method was tested on one of the real energy systems in the United States
from April 2013 to December 2014. Ghimire and his team in [226] propose the integration
of LSTM, CNN and the variational mode decomposition (VMD) algorithm to estimate half-
hourly electricity prices. The solution they proposed was tested on a system in Australia,
and the results obtained are satisfactory and exceed the reference values. Yang, Sun and
the rest of the team in [227] propose the use of ELM, average values of mean absolute error
(MAE), root-mean-square error (RMS), mean absolute percentage error, index of agreement
and Theil’s inequality coefficient give grounds to believe that this is a promising method
and that its use can lead to accurate price forecasting.

In [228], transfer learning, a deep learning technique, was used to predict energy prices.
The authors checked the correctness of their method on two real energy systems. Forecast-
ing in the French energy system improved by 7% compared to other solutions used, and in
the German energy system by 3%. Forecasting based on an artificial neural network was
proposed in [229,230]. In reference [229], an approach based on a boosted neural network
(BooNN) was proposed, where the following formula was used to calculate MAPE:

MAPE =
100
T ∑T

t=1
|yt − ŷt|

yt
(8)

where: yt is the actual value of the occurring load, ŷi is the predicted load value and T is
the total number of samples used. MAPE error is expressed as a percentage.

The obtained results show that a low forecasting error can be achieved when the
number of models for which calculations are performed is greater than or equal to 20. As
the number of analysed models decreases, the forecasting accuracy decreases.

Table 7 summarizes the application of artificial intelligence techniques used in energy
price forecasting issues.
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Table 7. Summary of the methods used in the literature under consideration in energy price forecast-
ing issues.

Artificial Intelligence

Machine learning

Supervised learning

Deep learning [217,218,223,225,226,228]
Neural networks [218,224,227,229,230]

Classification [218,222]
Regression [219–222]

3. Literature Review of the Application of Optimization Methods in Power Engineering

The second group of methods and algorithms taken into account in the special issue
considered are optimisation methods that enable the search for optimal solutions from the
point of view of various criteria (objective functions) [231–234].

This section presents a description of optimisation methods that can be used to solve
problems in power engineering, along with examples of work in which they were used.
These methods are presented separately to show their division and advantages and disad-
vantages. Due to the very wide application of these methods, they are presented collec-
tively. They can be used in virtually all areas of research in the field of power engineering,
for example:

• To improve the stability of the power system;
• To eliminating line overloads;
• To forecast the generation of solar and wind sources;
• Optimization of voltage profiles in nodes;
• Forecasting;
• Storage;
• Improving the power quality;
• Disturbance analysis.

Additionally, they can also be used for the optimal selection of hyperparameters in
methods based on artificial intelligence. The previous chapter also contains works in which,
in addition to methods based on artificial intelligence, optimisation methods were used,
which often support and improve the computational process.

As previously mentioned, the appearance of an increasing number of random objects
in the system, such as RESs, consumers and unpredictable disturbances, causing, e.g.,
changes in the network operation configuration, branch overloads, voltage exceedances or
balance problems, causes the modern power engineering to grapple with problems it has
never faced before. It is therefore necessary to use advanced methods, such as optimisation
(classic and ever more often used heuristic and metaheuristic optimisation), thanks to which
it is possible to eliminate them. There are many optimisation methods and algorithms. The
general division of optimisation methods that can be used in power engineering is shown
in Figure 8.

Classic optimisation methods include the following [1]:

• Linear programming (simplex method, dual simplex method, interior point method);
• Nonlinear programming (Newton–Raphson method, unconstrained optimisation

methods, methods with a penalty function);
• Quadratic programming (trust region reflective algorithm, modified simplex method);
• Mixed-integer programming (branch and bound method, cutting-plane method, Go-

mory’s mixed-integer programming).

The advantages of classical methods include high accuracy and the short time taken
to obtain a solution. The disadvantage of these methods is that they can only be used in
situations where the objective function has essentially one optimum. When the objective
function has multiple optimums, there is a high probability of finding a local optimum.
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Examples of works in the field of power engineering in which classical methods were used
are presented below.
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Detailed information on theoretical issues related to classical optimisation methods
that were used in the past and are currently used can be found in the books: Vasuki [235],
Rao [236] and Jin et al. [237]. Examples of work in which classic optimisation methods
were used are presented and briefly discussed below. Classical optimisation methods were
also presented and described in the book [238] by Jin, Wang and Sun; a more detailed
division can be found in [239]. As mentioned earlier, the significant advantages of classical
optimisation methods include high efficiency and accuracy of the results obtained, as
well as a relatively short time needed to obtain the results. The classical method also
has disadvantages; namely, it requires, among other things, knowledge of the form of
the objective function. Another disadvantage that may eliminate this method is the size
of the problem under consideration (the need to meet constraints in multi-dimensional
tasks). When solving a problem involving an extensive power system that has even several
tens of thousands of elements, finding a solution is significantly difficult, and often even
impossible [1]. More additional information about the classical method can be found
in [240,241].

As a result of the problems associated with the use of classical methods mentioned
earlier, the use of heuristic and metaheuristic optimisation algorithms is becoming more
and more common, which are used, among others, in [242–246]. These methods owe their
popularity, among others, to their universality, flexibility, simplicity and relatively high
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effectiveness [247,248]. The disadvantages include the fact that the obtained results with a
certain probability allow us to claim that the found optimum is global and the relatively
long computation time. Generally, these methods can be divided into the following [1]:

• Population-based methods (e.g., EA—evolutionary algorithm or SI—swarm intelli-
gence);

• Methods based on a single solution (e.g., SA—simulated annealing or TS—tabu
search).

When solving problems in the field of power engineering, it is also important that in the
event of, for example, a divergent calculation process, the network model can be reloaded
without losing the best solution found so far. Examples of works in the field of power
engineering in which classical and metaheuristic methods were used are presented below.

In [249], Jiaqing and his team used the weak robust method for scheduling power
systems with a large number of RES sources. Additionally, the authors used an improved
bacterial colony chemotaxis (BCC) algorithm, which can make the final model even more
efficient and environmentally friendly. This approach was aimed at minimizing operating
costs and reducing pollutant emissions. In [250], Guo and his team proposed the use of the
adaptive clustering-based hierarchical layout optimisation method of a large integrated
power system in order to better take into account the energy balance, transmission losses,
as well as the costs of its construction. Silveira, Tabares and the rest of the team [251]
used classical optimisation methods to reconfigure the network. Based on their research,
they concluded that the linear and conic methods are optimal for small and medium-sized
systems. In [252], the authors used nonlinear optimisation to propose an optimal strategy
for the distribution system operator (DSO) to provide flexibility services in areas with a
large amount of distributed renewable sources. The authors of [253] used a single-step
method for tracing power flows, which combines the accuracy of linear optimisation and
the speed of heuristic methods for removing current overloads in power lines. For this
purpose, they combined the optimisation method with the power flow tracking method.

Connecting several or more renewable sources in a given area may cause an overload
of lines or transformers located in the immediate vicinity or at a certain distance from
them. In order to reduce the occurrence of such overloads, it is possible to use simplex
optimisation, as presented in [254–257].

Optimisation using linear programming was proposed by Kumar [258], who used it to
determine the optimal location for the phasor measurement unit (PMU). These devices are
essential to fully observe the energy system. Zhang, Woo and Choi [259] decided to use the
same optimisation method. They used linear programming to analyse interval power flow
(IPF), which is a promising approach to dealing with the issue of uncertainty associated
with renewable energy sources in the system. In [260], linear programming was used to
optimize the management of off-grid systems. The authors consider the development of a
methodology for taking into account battery degradation processes in optimization models
by defining costs as an important contribution. Munteanu and his team [261] used linear
optimisation to optimise the control of wind energy systems. Munteanu also proposed
the use of nonlinear optimisation to optimise the behaviour of the variable speed wind
power system (WPS) [262]. Wen-Jing Niu et al. proposed the use of the classic quadratic
programming optimisation method to optimise the operation of a hydroelectric power
plant to reduce electricity shortages in the energy system [263].

In [246], the authors used a hybrid combination of metaheuristic optimisation in the
form of the tree growth algorithm (TGA) and analytical optimisation to minimise power
losses, as well as to improve voltage stability in the power system through the optimal
location of distributed generators. The proposed method was thoroughly analysed on two
test systems, i.e., IEEE 33 and IEEE 69-node networks, as well as on the actual 94-node
Portuguese network. The obtained results showed that the proposed method works effec-
tively, with very low power losses. Abdelinia et al. [245] used metaheuristic optimisation
in the form of shark smell optimisation (SSO) combined with an artificial neural network
to predict solar generation. This is necessary for the stable operation of the power sys-
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tem because unpredictable fluctuations in RES generation may lead to a loss of stability
and reliability of the system. For verification purposes, the authors compared the entire
proposed model to a real case, and also compared it with nine other forecasting methods.
Additionally, the authors checked the effectiveness of the proposed metaheuristic algorithm
by comparing it with six other optimisation methods for 24 test functions. In [264], a
hybrid method combining the PSO metaheuristic optimization method with fuzzy logic
was used to forecast solar and wind generation. The authors of [265], on the other hand,
presented the use of the eagle arithmetic optimization algorithm (EAOA) metaheuristic
combined with fuzzy logic to improve energy system management. Alasali et al. [244]
proposed a new optimisation algorithm, manta ray foraging optimisation (MRFO), which
aims to solve the problem of power flow from RESs. The authors defined four main ob-
jective functions related to optimal power distribution problems, which include, among
others, transmission power losses and voltage deviations. Additionally, the algorithm was
compared with six other modern metaheuristic optimisation techniques, and the results
achieved by MRFO were the most precise. In [243], optimisation methods such as genetic
algorithm, artificial bee colony (ABC) and grey wolf optimise (GWO) were used to tune
wind turbine blade-pitch control to improve generation. The authors presented compara-
tive studies of the proposed optimisation methods compared to conventional, commonly
used methods such as the Zeigler–Nichols algorithm and the simplex algorithm. Based
on the conducted research, the authors concluded that the method combining grey wolf
optimise with proportional–integral–differential (GWO-PID) is more efficient than ABC,
GA or conventional methods. In [266], the authors used intelligent genetic algorithms (IGA)
to control the output power of wind turbines by optimising the pitch of the turbine blades.
The authors tested the effectiveness of their method using the MATLAB program. Based on
the results obtained, they concluded that the IGA method is a more efficient optimisation
method than other genetic algorithms. The ABC algorithm was also used by Ravi with
Duraiswarmy [267] to improve the stability of the power system. The artificial bee colony
can also be successfully used to optimise the maintenance scheduling of generators in a
power plant [268]. Effective maintenance planning is an extremely important issue for
the operator to ensure stable and reliable operation of the entire system. The author’s
research has shown that the ABC algorithm is an extremely effective method for solving
problems with generator maintenance scheduling (GMS). Heuristic methods are also often
used in the case of PSS. For example, in [242] nondeterministic genetic sorting and the tabu
search method were used to adjust the parameters of power system stabiliser controllers.
Work on improving the operation of the PSS stabilizer was carried out in [269], where the
orthogonal learning artificial bee colony was used. This approach has proven to be effective
because it can improve the PSS system and fine tune its parameters. The authors of [270]
focused on the development of the particle swarm optimisation method to estimate the
optimal sizes as well as the most optimal location of energy storage systems. Compared to
traditionally used models, much faster computational capabilities have been demonstrated.
The proposed method was tested on a 24-node power system. In order to ensure reliable
and sustainable operation of the power system with a large number of renewable sources,
it is important to take into account the random nature of generation. The PSO method was
also used by Kennedy Eberhart et al. [271]. They described, among others, the relationships
between PSO, GA and AI. In [272], PSO was used to solve power system planning problems
with a large number of plug-in electric vehicles (PEVs). In [273], the PSO method was
used to optimize reactive power and active power to minimize the occurrence of active
power losses. In turn, the proposed algorithm was tested on a 33-node IEEE test network.
The ant colony optimisation (ACO) method is also successfully used to optimize active
and reactive power losses, the use of which was proposed and tested on a 39-node test
network in [274]. Ant colony optimization is also used for optimal scheduling of generating
unit overhauls [275] and for improving the optimization of power system operations to
reduce generated air pollution [276]. ACO is also used to optimize the routing of “overhead
power transmitting lines” (OHPTL). This method makes it possible to reduce costs by
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selecting a more optimal route [277]. Some of the energy problems that metaheuristics in
the form of the cuckoo search optimiser (CSO) also address include the optimisation of
photovoltaic systems to better match the output power to the current cell shading [278].
The CSO method combined with the optimisation methods teaching–learning-based opti-
misation (TLBO) was used by Peddakapu in [279] in an automatic approach to automatic
generation control (AGC). The cuckoo search optimiser was used to optimise the arrange-
ment of wind turbines in [280]. Yet another issue in which metaheuristics are used is
the optimisation of network topology in conditions of potential overload [281]. For this
purpose, Antoniadis used variable neighbourhood search (VNS). Heuristic methods, unlike
classical methods, do not need to know the derivative form of the goal, and in addition,
they are even faster than classical methods. In their work, Pijarski and Kacejko [282]
proposed the use of a new metaheuristic optimisation method, namely AIG. This method
corrects the previous solution in each iteration process using specially selected multipli-
ers. The advantage of the innovative shooter algorithm is its high accuracy and speed
in solving various problems. Kareem et al. [283] examined and compared metaheuristic
algorithms, including the GA, PSO, colony optimisation algorithm (ACO), simulated an-
nealing (SA) and differential evolution (DE) algorithm. Yesilbudak [284] compared several
optimisation methods, including the artificial hummingbird algorithm, artificial rabbits
optimisation, enhanced Jaya algorithm, flow direction algorithm and artificial gorilla troops
optimiser, to determine unknown parameters of photovoltaic cells. Based on the obtained
research results, the author concluded that the studied metaheuristic techniques are able
to estimate accurate and efficient design factors for photovoltaic systems. Pijarski and
Kacejko [285,286] also used a metaheuristic method in the form of the algorithm of the
innovative gunner (AIG) to optimise the voltage in the medium-voltage network. In [287],
metaheuristic methods were used to determine the impact of electric vehicle load on the
power system. The author attempted to minimise the harmful effects of vehicle charging
stations on the system and used eight well-known optimisation methods: teaching–learner-
based optimisation (MTLBO), JAYA, modified JAYA (MJAYA), ant-lion optimisation (ALO),
whale optimisation technique (WOT), grasshopper optimisation technique (GOT), modified
whale optimisation algorithm (MWOA) and hybrid whale particle swarm optimisation
(HWPSOA). He verified his research on the 33-node IEEE 33-test network using Matlab
software (https://www.mathworks.com/products/matlab.html, accessed on 16 January
2024). Other commonly used heuristic optimisation methods are the following: bacterial
foraging optimisation (BFO) [288], glowworm swarm optimisation (GSO) [289] and bat
algorithm (BA) [290]. In [291], Wang et al. used a combination of a bidirectional model for
deep learning and hyperparameter optimisation using a new metaheuristic method called
golden jackal optimisation (GJO). The authors of [292] focused on the issue of optimal
reactive power distribution on the example of the CIGRE test network using two meta-
heuristic optimisation techniques. For this purpose, they used the simulated annealing and
particle swarm optimisation method. In [293], the authors proposed a two-stage method to
eliminate power line overloads on the example of a modified IEEE 118-bus test network.
They used the algorithm of the innovative gunner to solve this problem. One can also
distinguish works where the authors deal with optimal management of power system
operation [294] and minimization of power losses [295].

More detailed information about metaheuristic optimisation methods can also be
found in [296–298] and in books by Kumar [299] and by Yang [300].

4. A General Summary of Methods and Possible Areas of Their Future Application

Based on a review of the available literature, it can be concluded that network op-
erators need advanced methods to solve difficult problems that currently appear in the
power system. The authors’ experience shows that operators expect new ways to improve
the management of the power system. The use of modern methods based on artificial
intelligence and optimization should take place both during the design, modernisation of

https://www.mathworks.com/products/matlab.html
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the network and during its operation. With such tools, network operators will be able to
make decisions more easily in conditions of high uncertainty.

Based on the extensive literature review presented in point 2, it can be concluded that
some of the calculation methods are used frequently and some are used less frequently.
Differences in the frequency of using them to solve real problems result, among others,
from their effectiveness, efficiency, popularity and the time needed to obtain a solution.
Based on the literature review, Figure 9 presents a general summary of the methods used
in the literature, taking into account the frequency of their use.
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Figure 9. A summary of various methods based on artificial intelligence and optimisation along with
the frequency of their use.

The graph presented in Figure 9 illustrates the general trend in the use of these
methods to solve problems in the power industry. Looking at Figure 9, it is also possible to
determine which methods are the most effective and efficient by analysing the frequency
of their use. By analysing the data contained in Tables 1–7, it is also possible to determine
which problems are most often considered in the literature. Additionally, methods can be
identified that are most often used for specific problems.

Based on the figure, it can be said that deep learning and neural networks are the most
frequently used methods. They have been used almost 70 times in the literature discussed.
Bayesian methods, Q-learning, boosting and clustering methods are used least often in the
literature considered. It is also worth paying attention to the optimisation techniques used.
It can also be noticed that classical methods prevailed in the past. Currently, metaheuristic
methods are being used increasingly, as can be seen in Figure 9. It should be noted that this
article provides only a general presentation of the problems considered and the methods
and algorithms to solve them. Also important are various types of computing platforms
that facilitate and improve computation, such as the “Edge Computing platform in Feeder
terminal unit (FTU) for distributed networks”, presented in [301]. Solving computational
problems in power engineering also requires the use of appropriate software or the de-
velopment of custom computer applications using various programming languages or
programming tools such as Python or Matlab, for example.

Of course, the articles presented in this review, which is an introduction to the special
issue, do not completely exhaust the topic, but they show a certain trend which methods are
most popular among authors and which are not appreciated often enough in the literature.

This extensive literature review also indicates certain areas that constitute the so-called
research gaps. They constitute potential topics for scientific development. These include,
among others:
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• Technical and economic analyses allowing to determine the probability of annual loss
of electricity generation from renewable energy sources;

• Eliminating overloads of power lines in a high-voltage network saturated with renew-
able energy sources and energy storage;

• Analyses aimed at examining the possibility of participation of RESs and energy
storage in the processes of rebuilding the generating capacity of power plants after a
catastrophic failure;

• Analyses for determining the connection possibilities of the power system;
• Minimising the difference in voltage phasor angles when power lines are switched on;
• Optimal redispatching of power with RES installations;
• Optimal selection of a compensation device for a wind or photovoltaic farm connected

to the power grid by cable;
• Cable pooling—optimal use of common network infrastructure by various types of

renewable energy sources;
• Optimal location of energy storage and electrolysis installations in the power grid;
• Optimal management of inverters of photovoltaic installations,
• Forecasting RES generated power or power demand using modern hybrid algorithms.

The research problems mentioned are examples of issues that can be solved using
modern methods based on artificial intelligence and optimisation. Other research areas are
certainly possible. This article, which is an introduction to the special issue, is intended as
an encouragement and inspiration for potential authors to prepare their future publications
that could concern the discussed topic.

5. Summary

As mentioned earlier, this article is an introduction to the special issue entitled Ad-
vances in the Application of Methods Based on Artificial Intelligence and Optimisation in Power
Engineering. The authors defined the goals and scope of the research topics. They also drew
attention to the constant need to deal with this topic due to the ongoing energy transforma-
tion and dynamic changes taking place in the field of electricity. It presents an extensive
literature review on the topic under consideration. Examples of research areas and modern
computational methods have been indicated that allow solving real, current problems faced
by current power systems. Some of them can be eliminated based on acquired experience
and engineering logic (engineering reasoning). Others, however, require the use of ad-
vanced methods and algorithms due to the degree of complexity, complexity and size of
the issue. It is therefore necessary to search for new methods and improve the existing
ones in view of the fact that no method has been found so far able to solve all the problems
faced by the power system. It is also worth mentioning the enormous progress in methods
and programs that allow their use online. Both problems and methods have been divided
into suitable groups. It is shown how often certain computational methods are used in the
literature. Some research gaps were also identified, which may constitute further areas
of application of methods based on artificial intelligence and optimisation. The subject
matter under consideration is extremely important from the point of view of the role of
the power system in the functioning of national and global economies, as well as from
the point of view of international cooperation and human security. Despite the relatively
large number of items devoted to this topic in the literature, it is still possible to identify
issues that require deeper research, a change in approach, the removal of simplifications or
a greater extension and consideration of the current requirements and conditions of the
operation of the power system.

Collaboration should be sought between experts from various scientific fields, e.g.,
artificial intelligence, optimisation, mathematics, computer science and power engineering.
Interdisciplinarity is therefore recommended. Cooperation between experts in the field
under consideration should take place through the exchange of experiences, joint problem
solving, meetings, participation in projects and conferences. Therefore, when planning
work related to solving problems related to the operation of the power system, the possibil-
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ity of involving various experts should be considered. Their role would be to recognise
the problem, propose appropriate methods and implement them, create a computational
model of the network, perform analyses and develop the most important conclusions.
In order for the proposed solutions to be used in practice, cooperation with operators is
also necessary. Network operators know best what problems occur in the power system.
They have up-to-date data and statistics and constantly monitor and manage the operation
of the power system. They know what the possibilities are of using advanced methods
in practice. Also, the cooperation of experts with network operators makes it possible
to achieve even greater effects and to learn about the possibilities of using the proposed
methods/algorithms in real-world situations.
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Nomenclature

T–S Takagi–Sugeno RBF Radial basis function
SVM Support vector machine BP Back propagation
BPNN Back-propagation neural network methods ADALINE Adaptive linear element networks
LSTM Long short-term memory GR General regression
ANN Artificial neural network RT Regression tree
ELM Extreme machine learning DT Decision tree
DL Deep learning XGBoost eXtreme gradient boosting
BESS Battery energy storage system AdaBoost Adaptive boosting over decision trees
AWE Alkaline water electrolysers GPR Gaussian process regression
ESS Energy storage system LS-SVM Least-squares support vector machines
ANFIS Adaptive neuro-fuzzy inference system PSO Particle swarm optimization
FESS Flywheel energy storage systems NARM Nonlinear autoregressive model
DT Decision tree MFF Multi-feature fusion
FVRL Fuzzy vector reinforcement learning SAM Self-attention mechanism
RNN Reinforcement neutral network GCN Graph convolutional network
SVR Support vector regression Bi-LSTM Bi-directional long short-term memory

VMD Variational mode decomposition 1D-CNN
One-dimensional convolutional neural
networks

SSSA Small signal stability analysis WT Wavelet transform
GNN Graph neural networks NN Neural network
ELS Emergency load shedding EA Evolutionary algorithm

DBSCAN
Density-based spatial clustering of
applications with noise

AI Artificial intelligence

EEMD Ensemble empirical mode decomposition ML Machine learning
RVM Relevance vector machine DCNN Deep convolutional neural network
IMF Intrinsic mode functions MSVM Multi-class support vector machine
CNN Convolutional neural network SMST Segmented and modified S-transform
SE Sample entropy I-RNN Identity-recurrent neural network
MLP Multi-layer perceptron GRU Gated recurrent units
GBR Gradient-boosted regression PCA Principal component analysis
RFR Random forest regression GAN Generative adversarial network
APSO Advanced particle swarm optimization PMU Phasor measurement units
FTMA Fine-tuning metaheuristic algorithm WPT Wavelet packet transform
RF Random forest SOM Self-organizing mapping
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NARX
Nonlinear autoregressive models with
exogenous inputs

FFT Fast Fourier transform

VPP Virtual power plant DWT Discrete wavelet transform

LASSO
Least absolute shrinkage and selection
operator

SGBDER Synchronous generator-based DER

EN Entropy network LR Logistic regression

PVPNet
Powerful deep convolutional neural
network model

IBDER Inverter-based DER

DNN-MRT
Deep neural network-based meta
regression and transfer learning

DSA Dynamic security assessment

DBN Deep belief network TM Time margin
CCT Critical clearing time RL Reinforcement learning
THD Total harmonic distortion LFO Low-frequency oscillations
DLNN Deep learning neural network PSS Power system stabilizer

NA-MED
Noise-assisted multi-variate empirical
mode decomposition

NG Neurogenetic

MI–
LightGBM

Multi-level iterative–LightGBM MGGP Multi-gene genetic programming

FSD Fault section diagnosis OLABC Orthogonal learning artificial bee colony
HELM Hierarchical extreme learning machines GA Genetic algorithm

PNN Probabilistic neural network CNN-LSTM
Convolutional neural network-long
short-term memory

VSM Voltage stability margin AIS Artificial immune systems
SVS Short-term voltage stability ILM Imbalance learning machine
MA-DRL Multi-agent deep reinforcement learning DDN Deep neural network

GARCH
Generalized autoregressive conditional
heteroskedasticity volatility

SV Stochastic volatility

MAPE Mean percentage absolute error DRNN Deep recurrent neural network
STPF Short-term price forecasting VMD Variational mode decomposition
BooNN Boosted neural network RES Renewable energy sources
MRFO Manta ray foraging optimization ABC Artificial bee colony
GWO Grey wolf optimizer IGA Intelligent genetic algorithms
FCM Fuzzy c-means DRN Deep residual networks
MAE Mean absolute error RMS Root-mean-square error
AIG Algorithm of the innovative gunner ACO Colony optimization algorithm

BCC Bacterial colony chemotaxis SCM_CSC
Selectively coherent model of converter
system control

DRL Deep reinforcement learning DNN Deep neural network
SPR Seasonal persistence-based regressive PAR Persistence-based auto-regressive
WNN Wavelet neural networks SPNN Seasonal persistence-based neural network

Multi-SVM Multi-class support vector machine GWO-PID
Grey wolf optimise with
proportional–integral–differential

OHPTL Overhead power transmitting lines DSO Distribution system operator
TGA Tree growth algorithm WPS Wind power system
GMS Generator maintenance scheduling SSO Shark smell optimisation
PEV Plug-in electric vehicles BA Bat algorithm
CSO Cuckoo search optimiser TLBO Teaching–learning-based optimisation
AGC Automatic generation control SA Simulated annealing
VNS Variable neighbourhood search DE Differential evolution

MTLBO
Modified teaching–learner-based
optimisation

ALO Ant-lion optimisation

MJAYA Modified JAYA WOT Whale optimisation technique
GOT Grasshopper optimisation technique GJO Golden jackal optimisation
HWPSOA Hybrid whale particle swarm optimisation BFO Bacterial foraging optimisation
MWOA Modified whale optimisation algorithm EAOA Eagle arithmetic optimization algorithm
SOMA Self-organizing migrating algorithm IPF Interval power flow
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