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Abstract: In response to global climate change, China has committed to peaking carbon emissions
by 2030 and achieving carbon neutrality by 2060, commonly known as the “30–60 Dual Carbon”.
Under the background of “30–60 Dual Carbon”, this article takes the electric power industry, which
is the main industry contributing to China’s carbon emission, as the research object, explores the
time and peak value of the carbon peak of the electric power industry, and analyzes whether carbon
neutrality can be realized under the peak method, so as to get the carbon neutrality path of the
electric power industry and serve as the theoretical basis for the formulation of relevant policies.
The Environmental Kuznets Curve inspection and the relationship analysis are carried out, then the
system dynamics model is constructed, the carbon emissions from 2020 to 2040 are simulated, and
the peak time is predicted. Three different scenarios are set to explore the path of electricity carbon
neutralization under the premise of a fixed peak. It is shown that Gross Domestic Product per capita
index factors have the largest positive contribution, and thermal power share index factors have the
largest negative contribution to electricity carbon emissions. Based on the current efforts of the new
policy, carbon emissions can achieve the peak carbon emissions’ target before 2030, and it is expected
to peak in 2029, with a peak range of about 4.95 billion tons. After the power industry peaks in 2029,
i.e., Scenario 3, from coal 44%, gas 9% (2029) to coal 15%, gas 7% (2060), where the CCUS technology
is widely used, this scenario can achieve carbon neutrality in electricity by 2060. Adjusting the power
supply structure, strictly controlling the proportion of thermal power, optimizing the industrial
structure, and popularization of carbon capture, utilization, and storage technology will all contribute
to the “dual carbon” target of the power sector.

Keywords: electricity carbon emission; stochastic impacts by regression on population, affluence,
and technology (STIRPAT) model; EKC; system dynamics; carbon neutrality

1. Introduction

The dominance of coal-fired power generation continues to characterize the Chinese
power industry, with carbon emissions consistently representing a substantial portion of the
total emissions. Consequently, achieving the ‘dual carbon’ goals within the power sector
holds significant importance in advancing the national carbon reduction strategy. Accu-
rately forecasting electricity-related carbon emissions stands as a fundamental prerequisite
for effective electricity energy planning and the attainment of carbon neutrality objectives.

In recent years, scholars have measured and analyzed China’s carbon emissions. A
study [1] had constructed a system dynamics model for forecasting carbon emissions within
the power sector. It conducted simulations and analyses on carbon emissions, emission
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coefficients, and emission intensity under three distinct scenarios spanning from 2005 to
2030. However, the identified policies in China are no longer aligned with the current
trajectory of rapid social development. Reference [2] had constructed the IPAT model
and used the scenario combination analysis method to predict and evaluate the medium-
and long-term energy carbon emissions and peak years in Shanxi Province. Reference [3]
used a combination of the scalable stochastic environmental impact assessment model and
scenario analysis to predict the emission peak of the whole industry and indicated that
China’s industrial sector can reach the emission peak in 2030 and suggested that carbon
peak management in this field. References [1,4] simulated the future carbon emissions
of the power sector. However, none of the methods used clearly analyzed the impact
boundary of the carbon emissions of the power sector, and the prediction time was only up
to about 2030 or only the time when the emission peak appeared, but no research on the
path of carbon neutrality in the next step was carried out.

In addition, clarifying the impact factors of electricity carbon emissions is an important
basis for research on the peak carbon emissions of electricity. The current analysis meth-
ods for carbon emission impact factors mainly include the general divisia index method
(GDIM) [5], logarithmic mean divisia index (LMDI) [6], structural decomposition analysis
(SDA) [7], Stochastic Impacts by Regression on Population, Affluence, and Technology
(STIRPAT) model [8], and geographically and temporally weighted regression (GTWR) [9].
Ding et al. constructed a hierarchical LMDI model and discovered that GDP per capita
exerted the most significant influence on electricity carbon emissions. Additionally, the
structure of electricity production emerged as a crucial factor in mitigating carbon emis-
sions within the electricity sector [10]. Youhua Kong et al. employed the STIRPAT model to
examine the influencing factors of industrial carbon emissions in Lanzhou. Their findings
revealed that labor productivity, total population, industrial energy intensity, energy struc-
ture, and enterprise size positively contributed to carbon emissions, whereas the level of
technological development played an inhibitory role [11,12]. These suggest that the energy
mix has a non-negligible role to play in both the industrial and electrical sectors and overall
carbon emissions.

There are roughly three types of prediction models for carbon emissions, namely,
traditional multiple linear models [13], simple intelligent prediction models, and combined
prediction models [14,15]. Traditional prediction models and single intelligent prediction
models require a large amount of data for training. When the training data are limited,
the fitting and prediction performance of the model will deteriorate [16]. Due to the
limited training data on carbon emissions, most scholars have adopted a combination
of intelligent prediction models for predicting carbon emissions. Reference [17] used an
improved particle swarm optimization algorithm to optimize the BP neural network for
carbon emissions’ prediction, and the improved particle swarm algorithm improved the
accuracy of the neural network model. Grey prediction methods [18] and support vector
machines [19] are very common in prediction models, but the above problems still exist.
Therefore, many articles use improved optimization algorithms to increase the accuracy
of the model. Reference [20] proposed an improved grey model to predict China’s carbon
emissions. Compared with linear models and ordinary grey models, the improved model
showed better simulation and prediction performance. However, the inner workings of
combinatorial optimization algorithms can be difficult to understand, and it is difficult to
make predictions about long-term electricity carbon emissions.

In opting for a system dynamics model over other models in predicting carbon emis-
sions, our decision is grounded in a thorough consideration of key factors, ensuring both
accuracy and applicability. Firstly, system dynamics models offer distinct advantages in
addressing dynamic changes within complex systems. Unlike static models, system dy-
namics models adeptly capture intricate relationships among carbon emissions and various
influencing factors, encompassing feedback loops and dynamic shifts. This model structure
enables a more precise representation of the inherent complexity of the system, facilitating
effective consideration of both spatial and temporal evolution of carbon emissions. More-
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over, system dynamics models excel in modeling causality. The model’s structure enables
precise modeling of intricate causal relationships between carbon emissions and individual
factors, enhancing our understanding of feedback mechanisms within the system. This not
only contributes to scientific research, but also provides robust support for the formulation
of strategic policies.

Existing system dynamics models face two primary challenges in predicting carbon
emissions: fuzzy modeling boundaries and unclear positioning. Furthermore, their predic-
tive timeframes often extend only until around 2030 or focus solely on the period when
carbon emissions peak, without conducting further research on the trajectory towards
carbon emission neutrality. This paper uses system dynamics modeling and combines the
analysis results of the influencing factors of the extended STIRPAT model to determine
the system boundary of carbon emissions in the power industry. When discussing the
peak issue of carbon emissions in the power industry, the time boundary of the model is
2020~2040, and carbon neutralization is carried out with path research.

Although there have been many articles on China’s carbon emissions that have studied
its influencing factors and their carbon emission predictions, most specific carbon emission
predictions are limited to traditional models, such as the BP neural network or STIRPAT
model, with large prediction errors. In addition, most of the existing studies are unilateral
analysis of influencing factors or carbon emission prediction and do not combine the results
of factor analysis with carbon emission prediction.

In order to achieve the goal of carbon neutrality, it is urgent to identify the peak of
carbon emissions and its timing as a theoretical basis for formulating relevant policies. This
work uses the Environmental Kuznets Curve (EKC) to analyze the relationship between
the economy and carbon emissions from electricity. Taking the core decision variables such
as economic scale and thermal power ratio (power structure) as controllable variables and
incorporating other factors such as industrial structure, urbanization rate, carbon capture,
utilization and storage (CCUS) technology scale, etc., the carbon emissions of the power
sector are predicted and the carbon peak time of electricity is given, and then based on
three scenarios, a clear path to China’s carbon neutrality is given.

2. Factor Decomposition and EKC Analysis of Carbon Emissions of Power Sector Based
on Extended STIRPAT Model
2.1. Analysis of the Impact of Carbon Emission Changes in China’s Power Sector

York [21] reconstructed the IPAT model into a STIRPAT model, which can be repre-
sented as I = aPbAcTde, by analyzing the random effects of the regression of the population
number P, wealth status A, and technical level T. The logarithm of this model can be
derived using Formula (1).

ln I = ln a + b ln P + c ln A + d ln T + ln σ (1)

where parameters a, b, and c in Equation (1) are model coefficients, and σ is the residual,
considering the non-linear and multi-feedback complex relationship between various
influencing factors of electricity carbon emissions and the actual situation that China’s
urbanization rate and the electrification rate in production and life are gradually increasing.
Based on Formula (1), this work considers the secondary and tertiary industries’ shares
Ain(2) and Ain(3) in GDP and adds the urbanization rate indicator Ru when considering
the population factor. Meanwhile, given the characteristics of the power sector itself, the
dominance of coal-fired power generation in China, and the differences in the carbon
emission intensity of different energy sources, the power energy structure is represented
by the proportion of coal-fired power generation consumption Te, which is related to the
coal consumption of power supply Tf, electrification rate Re, and other factors that are
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incorporated into the decomposition formula together to obtain the extended STIRPAT
model as shown in Formula (2).

ln C = ln a + b1 ln Pp + b2 ln Ru + c1 ln AGp + c2 ln Ain(2) + c3 ln Ain(3)
+c4 ln Re + t1 ln Te + t2 ln Tf + e

(2)

In Formula (2), C is the carbon emission of electricity, 100 million tons; Pp is the
population, ten thousand people; Ru is the urbanization rate, %; AGp is the GDP per capita;
Tf is the coal consumption of electricity, g/kWh; e is the random error term; b1~b2, c1~c4,
and t1~t2 are the coefficients.

In addition, this work adopts the multiple linear regression method to test the mul-
ticollinearity of the model (2) based on AGp, Pp, and other related data from 2005 to
2019 [22,23]. At the same time, this paper uses the variance inflation factor (VIF) as the
multicollinearity assessment index, such as VIF > 10, which indicates that there is mul-
ticollinearity among the independent variables; otherwise, there is no multicollinearity.
The relevant data in model (2) were first logarithmized, and then regression analysis was
performed using the Statistical Product Service Solutions (SPSS) software, version 26.0. The
results of the analysis are shown in Table 1, and the adjusted R2 is 0.939 (Table 2).

Table 1. Testing for multiple cointegration among factors influencing carbon emissions from electricity,
2005–2019.

Unstandardized Coefficients Standard
Coefficient t Sig.

Collinearity Statistics

B Standard Error Beta Tolerance VIF

Constant −120.002 26.309 −4.561 0.070
lnPp 9.139 2.110 1.296 −0.04 0.912 0.004 117.213
lnRu 0.860 0.483 0.525 7.446 0.874 0.005 124.361

lnAGp −0.147 0.166 −0.522 5.622 0.000 0.003 312.102
lnAin(2) 0.814 0.410 0.350 −0.405 0.227 0.021 37.634
lnAin(3) 0.757 0.416 0.407 0.526 0.545 0.016 44.312

lnAe 0.051 0.104 0.090 1.376 0.000 0.005 127.075
lnTe 0.185 0.136 −0.099 0.416 0.891 0.037 98.716
lnTf 1.227 0.497 0.438 −0.210 0.614 0.022 58.448

Table 2. Summary of regression analysis models.

R R2 Adjust R2 Standard Estimate Error

0.975 0.956 0.939 0.0514

It can be seen from Table 1 that the VIF value of each factor is greater than 10, indicating
that there is multicollinearity among them. Therefore, in order to avoid spurious regression,
this paper uses the ridge regression method to analyze the variables. It is found that when
the ridge parameter k = 0.10, the coefficient of the independent variable begins to stabilize,
and the corresponding standardized ridge regression equation is shown by Formula (3).

ln CD = 0.366 ln Pp + 0.418 ln Ru + 0.520 ln AGp + 0.0521 ln Ain(2) + 0.064 ln Ain(3)
+0.368 ln Re + 0.403 ln Te − 0.207 ln Tf

(3)

From Equation (3), it can be seen that the contribution of seven factors, including Pp,
Ru, AGp, Ain(2), Ain(3), Re, and Te, are all positive; so, they are positively correlated with
the carbon emissions of electricity, and Tf has a negative effect on the carbon emissions of
electricity. Among the positive correlation factors, the contribution of AGp is the largest,
reaching 0.520. Therefore, economic size is the most influential factor in promoting the
increase in electricity carbon emissions, indicating that China’s electricity carbon emissions
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are closely related to economic and social development. Furthermore, the contribution of
Te is 0.403, which means that every 1% increase in the share of coal consumption in power
energy consumption will increase the carbon emissions of the power sector by 0.403%.
Therefore, the power sector should adjust the power structure and reduce the proportion
of coal-fired power plants and increase the development and use of clean energy such as
wind, solar, and biomass energy. In addition, the coal consumption of the power supply is
negatively correlated with the carbon emissions of the power supply, and its contribution is
0.207, which shows that technological progress can effectively reduce the carbon emissions
of the power supply.

2.2. EKC Analysis

The Environmental Kuznets Curve (EKC) is a theoretical model that describes the rela-
tionship between economic development and environmental impacts. The EKC assumes
that in the initial stages of a country’s economy, environmental damage will increase as
incomes grow, but that when the economy reaches a certain level of development, the envi-
ronmental damage will begin to slow down and gradually diminish. The EKC also assumes
that the environmental impacts of a country’s economy will increase as incomes grow.

From the above contents, it is well known that analyzing the relationship between
economic scale and energy carbon emissions has practical significance in the whole concept
of sustainable development for planning economic development in the future while taking
carbon emissions into consideration. China is the second largest economy and the largest
carbon emitter in the world [24], but there is no coupling relationship between economic
development and changes in carbon emissions. Therefore, Environmental Kuznitz (EKC)
can be used to analyze the relationship between economic development and carbon emis-
sions [25]. The EKC theory teaches that the EKC curve shows an “inverted U-shaped”
relationship between economic growth and the environment. In recent years, interna-
tional scholars have verified the existence and universal applicability of the EKC through
quantitative and theoretical analysis methods [26]. When a country’s level of economic
development is low, its carbon emissions are also low; with the increase in AGp, economic
growth leads to an increase in carbon emissions. After economic development reaches a
certain level, the increase in carbon emissions gradually slows down. Hence, the associa-
tion between economic development and carbon emissions aligns with the Environmental
Kuznets Curve (EKC) theory. Building upon the preceding analysis, this paper validates
the EKC’s consistency through both data and model examination. Subsequently, the EKC is
employed to scrutinize the interplay between economic development and carbon emissions
in the electricity sector.

Drawing on the literature [27], this study compares the goodness of fit between the
cubic function and cubic logarithmic function. The model demonstrating a higher degree
of fitting is chosen as the EKC function model, confirming the EKC relationship between
economic growth and electricity carbon emissions. Here, China’s AGp from 2008 to 2020 is
used as a representative of the economic growth variables in the EKC model. Electricity
carbon emission intensity SC is the rate of change of electricity carbon emissions relative to
GDP. Referring to the EKC model between economy and environment, the three times AGp
and SC that are the functional and cubic logarithmic functional analytical models can be
expressed as Equations (4) and (5), respectively.

Sc = β1 AGp + β2 AGp
2 + β3 AGp

3 + ε (4)

ln(Sc) = β1 ln(AGp) + β2 ln2(AGp) + β3 ln3(AGp) + ε (5)

In the formula, SC is the carbon emission intensity of electricity, ton/10,000 yuan; β1,
β2, and β3 are the model parameters; ε is the random error term.

In order to avoid possible situations that do not conform to the basic form of the EKC,
this paper further conducts an EKC conformity test on the data required by the model to
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select the model with the highest degree of fitting and perform a fitting test. The data are
shown in Table 3.

It can be seen from Table 3 that Equation (5) fits the best fitting index between power
carbon emission intensity and per capita GDP, and R2 is 0.91734.

From the data in Table 4, the curve between SC and AGp shown in Figure 1 is also
obtained. It can be seen from Figure 1 that the EKC fitting curves of AGp and SC are
“inverted U-shaped”, and the period from 2010 to 2011 can be obtained from 2010 to 2011
as the inflection point. In 2010 and 2011, AGp is 30,808 yuan and 36,277 yuan, respectively.
After 2011, Sc decreases with the increase in AGp, and it is on the right side of the inflection
point since 2011, indicating that the low-carbon policies adopted by the state in the power
industry in recent years are more effective.

Table 3. Summary of regression analysis models.

Model Parameters Cubic Function log Cubic Function

β1 4.22825 × 105 ± 1.67644 × 10−6 5.52732 ± 1.1411
β2 −9.4007 × 1010 ± 6.63015 × 10−1 1.05056 ± 0.21418
β3 6.01733 × 10 −15 ± 6.24555 × 10−1 −0.0504 ± 0.01004
R2 0.80241 0.91734

Whether it is “inverted U” Yes Yes

Table 4. Summary of regression analysis models.

Time/Year GDP Per Capita/Yuan Electricity Carbon Intensity

2008 24,100 0.830
2009 26,180 0.790
2010 30,808 0.600
2011 36,277 0.620
2012 39,771 0.560
2013 43,497 0.534
2014 46,912 0.520
2015 49,922 0.530
2016 53,783 0.502
2017 5592 0.436
2018 65,534 0.443
2019 70,328 0.420
2020 72,000 0.410
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In conclusion, the EKC theory has guiding significance for the high-quality low-
carbon development of the power sector, and it can help the government to formulate
appropriate emission reduction policies. Although the carbon emission of the power sector
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has improved and the carbon emission intensity has reduced year after year, it is still
necessary to further control the carbon emission of the power sector in order to achieve the
“30–60 dual carbon” target on schedule.

2.3. Dynamics Modeling of Electricity Carbon Emissions

System dynamics (SD) models are widely used to study the influence mechanism
of complex relational network problems and deepen the problem analysis. SD modeling
must first determine the boundary of the system and then divide the system into parts
to study the causal relationship between them and then conduct an in-depth analysis of
the system. In this paper, based on the analysis results of the influencing factors of the
extended STIRPAT model in Section 2.1, the system boundary of carbon emissions in the
power sector is determined. The calculation step is 1 year. In order to establish the SD
model of carbon emissions in the electricity sector, the system flow diagram and the stock
flow diagram are constructed as follows.

2.3.1. Diagram of Electricity Carbon Emission System

The electricity carbon emission system is a relational complex system and is influ-
enced by various elements within the system. The system can be divided into macro-
environments, such as the economy and population, and sub-environments, such as the
share of thermal power and coal consumption for power generation and other power
sector-specific environmental parameters. The causal relationship between the main influ-
encing parameters is shown in Figure 2. A”

⊕
“ indicates a positive correlation effect on the

parameter, and a “ [−]” indicates a negative correlation effect on the parameter.

Energies 2024, 17, x FOR PEER REVIEW 8 of 23 
 

 

GDP Living 
standard

⊕ urbanization 
rate

⊕ 
electricity 

consumption of 
the whole 

society
⊕ 

electricity 
production

⊕ 

fossil fuel 
consumption

electricity carbon 
emission

emission 
reduction cost ⊕ ⊕ ⊕ 

[-]

GDP
technology 

input
technology 

level⊕ ⊕ 

⊕ 

Electricity Carbon 
Emission

Environmental 
Quality Policy[-] ⊕ 

[-]

Environmental 
Protection 
Investment

⊕ 

Carbon Sink ⊕ 

Electricity Carbon 
Emission

Environmental 
Quality Policy[-] ⊕ 

⊕ investment in 
technological innovation

new energy 

development
⊕ 

⊕ 

fossil fuel 
consumption [-] 

（1）

（2）

（3）

（4）

 
(a) Carbon emission subsystem of power system 

Environmental 
protection investment

Technical 
investment

Techinque 
level

GDP

Government 
policy

Carbon 
sink

New energy 
development

⊕

⊕

⊕

⊕
⊕

⊕ 

⊕

Standard of 
living

Electricity 
carbon emissions

[-]

⊕

Electricity 
consumption 
of the whole 

society

Coal 
consumption 

rate

Fossil fuel 
burning

⊕

[-]

⊕

Electricity 
production

⊕

⊕

⊕

[-]

Urbanization 
rate

⊕

⊕

Carbon intensity

Abatement 
costs

Environmental 
Quality

[-]

⊕

⊕

⊕

[-]

[-]

 

(b) Factors affecting carbon emissions 

Figure 2. Causal diagram of electric power carbon emission system. 

Figure 2. Cont.



Energies 2024, 17, 472 8 of 22

Energies 2024, 17, x FOR PEER REVIEW 8 of 23 
 

 

GDP Living 
standard

⊕ urbanization 
rate

⊕ 
electricity 

consumption of 
the whole 

society
⊕ 

electricity 
production

⊕ 

fossil fuel 
consumption

electricity carbon 
emission

emission 
reduction cost ⊕ ⊕ ⊕ 

[-]

GDP
technology 

input
technology 

level⊕ ⊕ 

⊕ 

Electricity Carbon 
Emission

Environmental 
Quality Policy[-] ⊕ 

[-]

Environmental 
Protection 
Investment

⊕ 

Carbon Sink ⊕ 

Electricity Carbon 
Emission

Environmental 
Quality Policy[-] ⊕ 

⊕ investment in 
technological innovation

new energy 

development
⊕ 

⊕ 

fossil fuel 
consumption [-] 

（1）

（2）

（3）

（4）

 
(a) Carbon emission subsystem of power system 

Environmental 
protection investment

Technical 
investment

Techinque 
level

GDP

Government 
policy

Carbon 
sink

New energy 
development

⊕

⊕

⊕

⊕
⊕

⊕ 

⊕

Standard of 
living

Electricity 
carbon emissions

[-]

⊕

Electricity 
consumption 
of the whole 

society

Coal 
consumption 

rate

Fossil fuel 
burning

⊕

[-]

⊕

Electricity 
production

⊕

⊕

⊕

[-]

Urbanization 
rate

⊕

⊕

Carbon intensity

Abatement 
costs

Environmental 
Quality

[-]

⊕

⊕

⊕

[-]

[-]

 

(b) Factors affecting carbon emissions 

Figure 2. Causal diagram of electric power carbon emission system. Figure 2. Causal diagram of electric power carbon emission system.

As shown in Figure 2, the main feedback loops of the electricity carbon emission system
are as follows. (1) GDP→⊕

living standard→⊕
urbanization rate→⊕

electricity consump-
tion of the whole society→⊕

electricity production→⊕
fossil fuel consumption →⊕

elec-
tricity carbon emission→⊕

emission reduction cost→[−] GDP; (2) GDP→⊕
technology

input→⊕
technology level→⊕

GDP; (3) electricity carbon emission→− environmental
quality→⊕

policy→+ environmental protection investment→⊕
carbon sink→[−] elec-

tricity carbon emission; (4) electricity carbon emissions→[−] environmental quality→⊕
policy→⊕

investment in technological innovation→⊕
new energy development→[−]

fossil fuel consumption→⊕
carbon emissions from electricity.

2.3.2. Stock-Flow Diagram of Electricity Carbon Emission System

The system stock-flow diagram consists of rate variables (representing the rate of
stock change), auxiliary variables (intermediate variables that describe the information
transfer and conversion process between state variables and rate variables), state variables
(accumulation, representing the state of the system), and constants (amount that does not
change with time). This work selects 50 variables, including 2 rate variables named as net
population growth (population increase—population decrease) and GDP increase; 2 state
variables named as GDP and total population; 4 constants such as coal carbon emission
coefficient, oil carbon emission coefficient, natural gas carbon emission coefficient, and
carbon capture rate; the rest are auxiliary variables. Figure 3 shows a schematic diagram of
the electricity carbon emission stock flow.

The main variables in the SD model include GDP, electricity carbon emissions, total
electricity consumption, total population, thermal power ratio (power structure), electricity
carbon emission intensity, coal consumption for power supply, and so on. Notably, electric-
ity carbon emissions are directly influenced by the consumption of fossil fuels, including
coal, oil, and natural gas, as well as the carbon emission coefficient in electricity generation.
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In addition, the Carbon Capture, Utilization and Storage (CCUS) technology in the
“carbon sink” will also directly affect the total carbon emissions of electricity, while other
influencing factors, such as GDP per capita, the proportion of various industries, urban
thermal power generation rate, power consumption intensity, etc., are promoted by in-
creasing the demand for electricity, which affects the power generation of thermal power
(without considering the line loss) and ultimately affects the carbon emissions of electric-
ity. The average standard coal consumption of the power supply of thermal power units
in cooperation with the technological progress factor, by controlling the standard coal
consumption of coal, oil, and natural gas in kilowatt-hour power generation, ultimately
contributes to the carbon emission of power. Obviously, the system stock-flow diagram
links many influencing factors through equations that can more intuitively reflect the
changes in electricity carbon emissions.
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Indeed, it is important to discuss the limitations of the model. Firstly, one of the limita-
tions of the model is related to the availability and quality of data. Despite our best efforts
to use reliable data, data related to carbon emissions from the power system may be limited
or not precise enough in certain regions or specific time periods, which may affect the
accuracy of the model to some extent. Secondly, the model may have some simplifications
in considering external factors. For example, factors such as policies and technological
advances have complex and varied impacts on power system carbon emissions, and our
model may not adequately capture the complexity of these external influences.

2.3.3. Model Equation of Electricity Carbon Emissions

Historical data such as birth and death rates, GDP growth rate, urbanization rate, and
industrial share in Figure 3 are mainly obtained from the National Bureau of Statistics, and
industrial electricity consumption intensity and thermal power share are mainly obtained
from the National Energy Administration. The carbon emission coefficients of coal, oil, and
natural gas refer to the carbon emission coefficients published by the Intergovernmental
Panel on Climate Change (IPCC). The main model equations used in this paper are shown
in Table 5, and the time-related functions such as birth rate, death rate, GDP growth rate,
and thermal power growth rate are represented by tabular functions.

Table 5. Model equations.

Variable Shorthand Operation Formula

GDP/trillion USD AG (111,398/12) + INTEG(rGDP × 0.14 × 111,398/12)
GDP increment/trillion USD ∆AGC AG × rGDP

Adjustment rate of the proportion of the
secondary industry/Dmnl rin(2)

(Ain(2) − DELAY1L(Ain(2), 1, 0.454))/DELAY1L(Ain(2), 1,
0.454)

Electricity consumption of secondary
industry/100 million kWh Uin(2) In(1) × Sein(2)

Industrial electricity consumption/
100 million kWh Uin Uin(1) + Uin(2) + Uin(3)

Total population/billion people Pp INTEG(−∆Ppi + ∆Ppc, Pp0)
Population growth/100 million people ∆Ppc Pp × rb

Population reduction/100 million people ∆Ppi Pp × rd
Population growth rate/100 million people rpop rb − rd

GDP per capita/person/10,000 USD AGp AG/Pp

GDP growth rate per capita/Dmnl rA
(AGp(2) − DELAY1L(AGp, 1, 0.71412))/DELAY1L(AGp, 1,

0.71412)
Urbanization Growth Rate/Dmnl rgu (Ru − DELAY1L(Ru, 1, 0.3671))/DELAY1L(Ru, 1, 0.3671)

Urban electricity consumption increase/Dmnl ∆Uur(2) Ue × rge
Urban electricity consumption growth

rate/Dmnl rge
0.156941 + rpop × 36.6383 + rgu × 5.6793 + rin(2) ×

1.68273 + rA × 0.76914
Domestic electricity consumption/

100 million kWh Ulife Ue+ Urural

Total electricity consumption/100 million kWh Uz Ulife+ Uin
Electricity intensity/(kWh/10,000 USD) Sue Uz/AG

Thermal power generation/100 million kWh Gfire Uz × tfire

Thermal power speed increase/Dmnl Fg
0.009597 + rpop × 0.16537 + rgu × 0.014037 + rin(2) ×

0.0197714 + rA × 0.0164598 − rfg × 0.0231657 − Tn × 0.3
Thermal power ratio adjustment rate/Dmnl rfg (tfire − DELAY1L(tfire, 1, 0.726))/DELAY1L(tfire, 1, 0.726)

Natural gas consumption/100 million tons of
standard coal Dgas Ggas × Tf

Oil consumption/100 million tons of
standard coal Doil Goil × Tf

Coal consumption/100 million tons of
standard coal Dcoal Gcoal × Tf

Technological progress impact factor/Dmnl Tt 0.99
Electricity carbon emissions/100 million tons C Dgas × f gas + Doil × f oil + Dcoal × f coal

Carbon capture/gigaton CC Gfire × α × β
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Table 5. Cont.

Variable Shorthand Operation Formula

Actual electricity carbon emissions/
100 million tons Cr C − CC

Electricity carbon emission intensity/ton/
10,000 USD SC Cr/AG

Carbon reduction policy/Dmnl N IF THEN ELSE(Time > 2015:AND:(SC − Cit) > 0, 1, 0)
Carbon reduction measures/Dmnl Tn N × 0.01

Note: Dmnl stands for dimensionless in system dynamics, and all subsequent texts have the same meaning.

In Table 5, AG0 is the initial GDP, trillion USD; rGDP is the GDP growth rate; In(2) and
Sein(2) are the value of the secondary industry and the electricity intensity of the secondary
industry, respectively; Pp0 is the initial value of the population, 100 million people; rb and
rd are the birth rate and death rate, respectively; Ru is the urbanization rate; Pu is the urban
population, 100 million people; Ue is the urban electricity consumption, 100 million kWh;
Urural is the rural electricity consumption, 100 million kWh; Ggas is the natural gas power
generation; Tf is the average standard coal consumption for power supply of thermal
power units; Goil is the oil power generation; Gcoal is the coal power generation; tfire is the
proportion of thermal power; f gas, foil, and f coal are the carbon emission coefficients of
natural gas, oil, and coal, respectively; α is the ratio of power generation using the CCUS
technology; β is the carbon capture and storage rate; Cit is the carbon intensity target;
DELAY1I is the first-order delay function; INTEG is the integral function.

In addition, when conducting the historical test of the power carbon emission index
parameters, it is necessary to first calculate the power carbon emission, obtain the actual
value, and compare it with the simulated value. In this paper, the emission coefficient
method [28] in the IPCC compilation guidelines is used, and its calculation formula is
shown in Formula (6).

C =
n

∑
i=1

Ei×ci × f (6)

Among them, C is the sum of CO2 emissions from different energy consumption; Ei is
the final consumption of the i-th energy; ci is the coefficient of conversion of the i-th energy
into standard coal; f i is the carbon emission coefficient of the i-th energy.

2.4. Scenario Analysis of Electricity Carbon Emissions Based on SD Model

To achieve the strategic goal of carbon neutrality on schedule, this paper uses the
proportion of primary, secondary, and tertiary industries (industrial structure), GDP growth
rate rGDP, urbanization rate Ru, technological progress impact factor Tt, thermal power
growth rate ∆Fg, and thermal power units. Average standard coal consumption ∆Tf and
other indicators are used as control variables for parameter setting [29]. Among them, the
proportion of primary, secondary, and tertiary industries and rGDP directly drive the growth
of social electricity demand. In addition, China’s urbanization rate Ru will be as high as
63.89% in 2021, and it will continue to increase, so Ru has also become an important factor
in increasing electricity demand [30]. At the same time, in order to promote the process
of carbon peaking, carbon emission constraints and electricity demand should be met
simultaneously, and “high electrification” will become a development trend. In summary,
this paper sets the parameters of each index under the premise of “high electrification”.

According to the strategic goals for economic development set by the state, China’s
GDP growth rate will be maintained at around 7%. In recent years, the proportion of
electricity consumption in the tertiary industry and residents’ living has continued to
increase, especially the growth rate of electricity consumption in the tertiary industry is
relatively high. In the future, China will continue to optimize the industrial structure and
increase the proportion of the tertiary industry [31]. The “Thirteenth Five-Year Plan for
Electric Power Development” proposes that “by 2020, the installed capacity of coal-fired
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power in the country will be controlled within 1.1 billion kW, and the proportion of coal-
fired power will decrease to about 55%” and “by 2030, the proportion of non-fossil energy
in primary energy consumption will increase to 20%”.

“China’s “14th Five-Year” Electric Power Development Planning Research” pointed
out that coal is the main source of carbon emissions, and the future energy development
should reduce the proportion of fossil energy such as coal and increase the proportion
of non-fossil energy. Based on this, this work fine-tunes the power sector in the scenario
analysis, wherein the proportion of coal consumption is reduced by 1.7 percentage points,
the proportion of natural gas is increased by 0.7 percentage points, and the proportion of oil
consumption is set to remain unchanged. According to the “Implementation Plan for the
Transformation and Upgrading of National Coal-fired Power Units”, the national average
coal consumption for thermal power supply will fall below 300 g standard coal/kWh by
2025. According to data released by the National Energy Administration, in 2019, the
standard coal consumption of thermal power units nationwide was 307 g/kWh, down
0.7 g/kWh year on year. Compared with 333 g/kWh in 2010, the standard coal consump-
tion for power supply decreased by 26 g/kWh, showing a significant downward trend.
With the advancement of low-carbon technology, coal consumption will be further re-
duced. According to the above different scenarios, this paper sets different average coal
consumption reduction rates for thermal power units, as shown in Table 6.

Table 6. Main parameters in each scheme.

Program Years rGDP ∆Fg ∆Tf ∆Tt ∆Ru

1

2020–2025
2026–2030
2031–2035
2036–2040

7.3%
6.8%
6.5%
6.0%

−0.19
−0.55
−0.85
−1.18

−0.4
−0.5
−0.6
−0.7

+0.2% +2.5%

2

2020–2025
2026–2030
2031–2035
2036–2040

7.1%
6.5%
6.3%
5.8%

−0.19
−0.55
−0.85
−1.18

−0.55
−0.6
−0.65
−0.75

+0.25% +2.5%

3

2020–2025
2026–2030
2031–2035
2036–2040

7.0%
6.3%
5.8%
5.5%

−1.0
−1.14
−1.52
−1.97

−0.7
−0.9
−1.0
−1.2

+0.3% +2.3%

4

2020–2025
2026–2030
2031–2035
2036–2040

6.8%
6.2%
5.5%
5.0%

−1.21
−1.4
−1.92
−2.2

−0.7
−1.0
−1.2
−1.3

+0.35% +2%

5

2020–2025
2026–2030
2031–2035
2036–2040

6.5%
6.0%
5.0%
4.5%

−1.55
−1.76
−2.26
−2.55

−0.8
−1.1
−1.3
−1.4

+0.5% +2%

Note: ∆ is the variation of each variable.

3. Results and Discussion
3.1. Model Validity Test

In this paper, the schematic diagram of the flow stock of the system in Figure 3 and
the relevant model formulas are used to simulate GDP, total population, and electricity
carbon emissions, and the validity of the model simulation results is tested by the method
of historical verification. The simulation time of the system is set to 2000~2019, and some
initial values of the starting time are in 2000. The model training period is selected from
2000~2015. The results of the training adjustment are shown in Figure 4.
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Furthermore, we set 2016 to 2019 as the years to be tested and selected four index
parameters such as GDP, population, total electricity consumption, and electricity carbon
emissions in the model as test variables to analyze the simulated and actual values and
calculate the corresponding the errors, which are listed in Tables 7 and 8, respectively.

Table 7. Error analysis of GDP and total population.

Year
GDP (Trillion USD) Population (100 Million People)

Actual Value Simulated Values Error % Actual Value Simulated Values Error %

2016 10.509 10.636 1.20 13.964 13.810 −1.1
2017 11.715 11.299 −3.54 14.001 13.902 −0.7
2018 12.943 12.001 −7.27 14.054 13.958 −0.68
2019 13.890 13.147 −5.35 14.100 14.027 −0.52

Table 8. Error analysis of total electricity consumption and electricity carbon emissions.

Year
Total Electricity Consumption (100 Million kWh) Electricity Carbon Emissions (100 Million tons)

Actual Value Simulated Values Error % Actual Value Simulated Values Error %

2016 59,168 61,203 3.44 37.33 61,203 5.57
2017 63,077 67,350 6.77 38.91 67,350 4.62
2018 68,449 72,114 5.35 40.75 72,114 3.09
2019 72,255 76,726 6.19 41.45 76,726 2.79

Tables 7 and 8 reveal that the largest absolute error between the simulated and actual
values occurs in GDP for the year 2018, amounting to 7.27%. In contrast, the smallest
absolute error is found in the population for 2019, registering at only 0.52%. The errors
for the remaining parameters are all below 7%, well within the acceptable margin, given
the SD model’s allowable error of approximately 15%. These results underscore the high
reliability of the model. Hence, the system stock-flow map developed in this paper can be
effectively utilized for carbon emissions’ prediction.

3.2. Prediction of Carbon Peaking

Predicting the carbon peak encompasses forecasting both the peak year and peak level.
Clearly, both the peak year and peak level will significantly influence the duration and
complexity of achieving carbon neutrality. Leveraging the established carbon emission SD
model, this paper predicts carbon emissions from 2021 to 2030, with the results presented
in Table 9. Simultaneously, Table 9 also displays pertinent parameters, such as GDP per
capita, corresponding to each year.

It can be seen from Table 9 that although the predicted value of electricity carbon
emissions from 2021 to 2030 has increased year after year, the carbon emission increment
has decreased year after year by 0.4587, 0.2593, and 0.1411 million tons. According to this
trend, it can be seen that there will be a turning point in the carbon emission peak after 2030.
Although the carbon emission forecast value from 2021 to 2030 can show the effectiveness
of all the current carbon emission reduction policies in our country, it still does not meet
the expectation of achieving carbon peaking before 2030. Therefore, further efforts should
be made to reduce carbon emissions and strengthen measures related to carbon sinks.
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Table 9. Main parameter variables in the 2021~2030 model.

Variable
Years

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

AG/trillion USD 15.573 16.801 18.007 18.817 19.455 20.167 21.114 22.324 23.548 24.358
AGp/USD 11,000.79 11,817.63 12,625.82 13,143.16 13,549.81 14,009.91 14,623.86 15,461.83 16,270.41 16,812.73

In(2)/trillion USD 4.9083 5.3266 5.4736 5.4985 5.6501 6.0158 6.4342 6.5811 6.6061 6.7577
Uin(2)/100 million kWh 55,343.7 58,399.71 59,846.61 61,450 64,492.0 67,548.0 68,994.9 70,598.3 73,640.3 76,696.3

Sein(2)/kWh/USD 1.12718 1.096012 1.09303 1.111915 1.141025 1.122494 1.071943 1.072369 1.1144 1.134564
Uin/100 million kWh 67,701.5 71,919.3 76,896.1 82,544.1 88,957.5 95,434.1 102,463 110,084 119,031 129,323

Sue/kWh/USD 0.4346 0.4279 0.4269 0.4385 0.4571 0.4731 0.4851 0.4926 0.5053 0.5307
Uz/100 million kWh 79,598.7 84,596.5 90,173.6 96,411.7 103,404 110,461 118,144 126,474 136,046 147,046

Ulife/100 million kWh 11,897.2 12,677.2 13,277.5 13,867.6 14,447.3 15,027.5 15,680.7 16,389.8 17,015.6 17,723.4
Urural/100 million kWh 9980.37 10,122.84 10,457.77 10,743.9 10,955.2 11,097.7 11,432.6 11,718.8 11,930.1 12,072.6

Ru/% 0.628 0.651 0.674 0.697 0.713 0.736 0.759 0.782 0.805 0.828
Pp/100 million people 14.1560 14.217 14.262 14.317 14.358 14.395 14.438 14.450 14.473 14.488

rb/% 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076
rd/% 0.00718 0.00718 0.00718 0.00718 0.00718 0.00718 0.00718 0.00718 0.00718 0.00718

tfire/% 67 66 65 64 63 61.86 60.72 59.58 58.44 57.3
Gfire/100 million kWh 53,331.13 55,833.69 58,612.84 61,703.49 65,145.02 68,331.55 71,737.40 75,353.57 79,505.63 84,257.70

Fg −1.0 −1.0 −1.0 −1.0 −1.0 −1.14 −1.14 −1.14 −1.14 −1.14
Tf /g/kWh 305.3 304.6 303.9 303.2 302.5 301.6 300.7 299.8 298.9 298

SC/ton/10,000 USD 2.81 × 10−4 2.67 × 10−4 2.56 × 10−4 2.49 × 10−4 2.46 × 10−4 2.4 × 10−4 2.32 × 10−4 2.21 × 10−4 2.11 × 10−4 2.05 × 10−4

C/100 million tons 43.7233 44.9202 46.0756 46.9587 47.7885 48.4465 49.03 49.4887 49.748 49.8891



Energies 2024, 17, 472 16 of 22

3.3. Predicted Carbon Emissions

The simulation forecast in Section 3.2 of this paper is used as the benchmark scenario
in the scenario simulation, i.e., Option 3. Based on Option 3, four different scenarios were
set up as comparison schemes. The parameters of Ru, rGDP, ∆Fg, ∆Tf, and other parameters
were adjusted respectively to explore the peak conditions under different scenarios.

Based on the five development scenarios in Table 6, the carbon emissions of electricity
under the five scenarios are projected and the corresponding carbon emissions’ projections
from 2020 to 2040 are obtained, as shown in Figure 5.
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Figure 5 shows that electricity carbon emissions peak in Options 3, 4, and 5, while
the carbon emissions from the other two systems increase. For baseline Scenario 3, carbon
emissions from electricity peak in 2035 at 5.01857 billion tons, later than the expected 2030.
Options 4 and 5 reach carbon peaks in 2030 and 2029, respectively, with peaks of 4.98786
and 4.95774 billion tons. Further analysis shows that there is little difference between the
peaks of Option 4 and Option 5, but the peak time of Option 5 is earlier compared to Option
4. It shows that if the economic GDP growth rate is controlled below 7%, by controlling the
proportion of thermal power generation, adjusting the energy power generation structure,
and using low-carbon energy-saving technologies to reduce coal consumption for power
supply under scientific and technological progress and innovation, the power sector can
achieve “30–60 dual carbon emissions”.

As for Option 5, the GDP growth rate should be controlled to slow down, but it will
basically remain above 5% before the completion of the “30 peak” task, and the proportion
of power generation from various energy sources will be further adjusted reasonably, so
that the peak target can be achieved in 2029, and the total peak carbon emissions will be
4.95774 billion tons. Compared to the report “China Carbon Peak Carbon Neutral Strategy
and Path” by the Chinese Academy of Engineering, the total peak carbon emissions of the
power sector in 2031 would be 5.06 billion tons. The peak time is earlier, and the predicted
peak carbon emissions are compared with the decrease of 0.10226 billion tons. Compared
to the 4.7 billion tons of peak carbon emissions in the power sector in 2028 proposed by
the China Electricity Council in the paper “Research on the Development Path of Carbon
Neutralization in the Electric Power Industry”, this paper predicts that the peak carbon
emissions will increase by 0.258 billion tons. Compared to the 4.64 billion tons of peak
carbon emissions in the power sector in 2025 proposed by the Energy Research Institute of
Peking University in the paper “Research on the Path and Policy of Carbon Emissions in
the Electric Power Sector”, this paper predicts that the peak carbon emissions will increase
by 0.318 billion tons. To sum up, the carbon peak years predicted in this paper are not much
different from the existing prediction results, and the carbon peak can be achieved around
2030, and the error between the carbon peak prediction results and the prediction results of
the authoritative research center can be kept below 7%; it further proves that the prediction
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results in this paper are correct to a certain extent, and the model built in this paper has a
certain practicability for predicting the peak of carbon emissions in the power sector.

3.4. Scenario Simulation of Electricity Carbon Neutrality Target

In order to further explore the path to carbon neutrality in the electricity sector, this
paper selects Option 5 as the baseline scenario for the next simulation stage. The model
time boundary is from 2029 to 2060, with 2029 as the starting year, and the simulated values
of each parameter (see Table 10) when Option 5 reaches its peak are the initial parameter
values of the second simulation stage.

Table 10. Simulated values of key parameters of electricity carbon emissions at peak in 2029 under
Option 5.

Stock Map Parameters Parameter Value Stock Map Parameters Parameter Value

GDP 18,648.8 hundred million
dollars Thermal power ratio 55%

GDP growth rate 0.0411 Dmnl Proportion of natural gas
power generation 9%

Proportion of
primary industry 5% Proportion of oil power

generation 2%

The proportion of
secondary industry 26% Proportion of coal power

generation 44%

The proportion of
tertiary industry 69%

Average standard coal
consumption for power

supply of thermal power units
2.8 Dmnl

Industrial electricity
consumption 12.9675 trillion kWh Residential electricity

consumption 1.8525 trillion kWh

Total population 1.4468 billion people Total electricity consumption 14.82 trillion kWh
Urban population 1.017 billion people Electricity carbon intensity 0.053 tons/10,000 USD
Urbanization rate 70.3% Electricity carbon emissions 4.95774 billion tons

Scenario projections are made on the premise of setting the peak carbon emissions of
electricity to assess whether the power sector can achieve the 2060 carbon neutrality target.
According to the above calculations, the carbon peak year is set at 2029, and the proportion
of coal power generation is 44% and the proportion of natural gas power generation is 9% as
the basis for formulating and adjusting the power energy structure. Reference [32] analyzed
the changes in China’s energy structure over the years and the proportion of coal power in
the energy structure and then proposed the proportion of coal power in the power structure
under the background of specific carbon emissions. Based on Option 5, this paper refers to
the gradual targets of low-carbon transformation of the power system mentioned in the
special report of academician Shu Yinbiao on the technical path of carbon peaking and
carbon neutralization [33] and adjusts the proportion of fossil energy in thermal power in
the power sector and applies the CCUS technology (see Table 11), setting up the following
three scenarios. Among them, in Scenario 1, the proportion of natural gas power generation
(gas power) remains unchanged at 9%, only the proportion of coal-fired power is reduced
to 26%, and CCUS technology is not applied; the proportion is reduced to 7%, and about
50% of coal-fired power units use CCUS technology; based on Scenario 2, Scenario 3 keeps
the proportion of gas power unchanged, further reduces the proportion of coal-fired power
to 15%, and all use CCUS technology.

Based on the above three scenarios, the carbon emissions from electricity from 2029 to
2060 are predicted, and the carbon emission trend chart is shown in Figure 6.

It can be seen from Figure 6 that, according to the Scenario 3 model, the electricity
industry can not only achieve carbon neutrality in 2060, but also achieve the carbon
neutrality target three years earlier, i.e., carbon emissions from electricity will reach “zero
carbon” around 2057, and the “carbon negative” of the electricity industry is also expected
to be achieved by 2060. Scenarios 1 and 2 require delays of 20 and 10 years, respectively,
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to achieve carbon neutrality in electricity. At the same time, it can be seen from Table 11
that the continued maturity of the CCUS technology has made a major contribution to
the carbon reduction target of the power sector in the later stage, which can enable the
power sector to retain a certain proportion of thermal power and mitigate the future high
penetration rate of renewable power generation. However, it can achieve “zero carbon” or
even “negative carbon”.

Table 11. Main parameter settings of electricity carbon emissions in different scenarios.

Scene Thermal Power Ratio CCUS Technical Scale

1 From 44% coal, 9% gas (2029) to 26% coal, 9% gas (2060) No CCUS technology
2 From 44% coal, 9% gas (2029) to 19% coal, 7% gas (2060) Partly using CCUS technology
3 From 44% coal, 9% gas (2029) to 15% coal, 7% gas (2060) CCUS technology is widely used
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4. Conclusions

Based on system dynamics and scenario analysis, this paper divides the carbon emis-
sions of the power industry into two parts: peak carbon emissions and carbon neutrality.
The following conclusions are drawn:

(1) The established extended system dynamics carbon emission forecasting model has
high forecasting accuracy. Calculations show that China’s economic development
and carbon emissions show an “inverted U-shaped” curve relationship, and the curve
inflection point appeared in 2011, indicating that the relevant policies implemented in
China after 2011 are conducive to reducing carbon emissions, but it is still unable to
achieve the 2030 goal of carbon peaking.

(2) From now until 2029 is the critical period for China’s carbon peak. If the economic
growth rate is maintained at about 6.0%, the average decline of thermal power is
maintained at 1.3~1.6 per year, and the growth rate of urbanization is controlled at
2%, it will enable China’s power sector. The carbon peak will be reached in 2029,
corresponding to a peak value of about 5 billion tons. The peak time of electricity
carbon in this article is in line with the government’s goal of carbon peak. Due to the
government’s lack of clear indication of peak carbon emissions, this article compares
it with the peak carbon emissions from reference [33]. Shu et al. predicted a carbon
peak of 4.5 billion tons in the zero carbon scenario, which is similar to the carbon
peak predicted in this article. Reference [34] used a grey neural network model to
predict carbon emissions in the United States, and it is expected that the country’s
carbon emissions will also peak before 2030. The estimated carbon emissions of the
United States in the next 30 years show a trend of first increasing and then gradually
decreasing year after year, with a clear inverted U-shaped curve, which is consistent
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with some conclusions in this article. These indicate that the variable parameters for
carbon peak in this article are reasonably set, providing a theoretical basis for the peak
path. Furthermore, the carbon emissions from electricity before reaching the peak can
serve as a constraint for optimizing the configuration of power sources before reaching
the peak, providing a basis for optimizing the configuration of power sources.

(3) The period from 2030 to 2060 is the deep low-carbon stage of the power sector.
The use of CCUS and other related carbon sink technologies can enable the power
sector to achieve carbon neutrality in 2057, assuming that 15% of coal-fired power is
maintained. If all coal-fired power plants use the CCUS technology, the corresponding
carbon emissions can be reduced by about 1.275 billion tons compared to a 50%
penetration rate.

Forecasting carbon emissions from electricity is crucial for sustainable energy planning
and environmental policy formulation. System dynamics model, as a method widely
used in complex system modeling, is used to try to predict the future development trend
of electricity carbon emissions. However, when applying system dynamics models for
electricity carbon emission predictions, we must be aware of some inherent limitations that
may affect the accuracy and applicability of the models.

Uncertainty about future government environmental policies is an important limita-
tion of system dynamics models. Models often assume government policies will remain
stable in the future, but in reality, policy changes can have profound effects on electricity
carbon emissions. The government may adjust carbon emission quotas, tax policies, etc.,
and these changes will directly affect the carbon emission level of the power industry.

The model’s performance in technological innovation is also limited. Although we
can expect that the introduction of new technologies may change the landscape of the
energy industry, the specific speed and impact of technological innovation are difficult
to determine in advance. Rapid advances in renewable energy technologies may exceed
model predictions, leading to inaccurate estimates of future electricity carbon emissions.

The instability of external factors also brings challenges to the construction of system
dynamics models. Fluctuations in global energy markets, such as changes in international
coal prices, may significantly affect carbon emissions from domestic power systems. Fluc-
tuations in such external factors can be difficult to accurately model in models, leading to
forecast uncertainty.

Therefore, we must handle these limitations carefully when using system dynamics
models for electricity carbon emission predictions.

5. Policy Recommendation
5.1. Synergistic Use of Power and Energy to Build a New Power System

Today, the power industry accounts for up to 70% of fossil energy production. The
contradiction between China’s huge coal power system and the scarce flexible resource
system is prominent, which directly leads to contradictory issues such as power aban-
donment. Therefore, the key point of the transformation is to implement gradual power
layout measures to accommodate the development of new energy power, integrate current
technology, resources, and system urgency. Taking differentiated measures to deepen the
flexibility of coal-fired power is the most important breakthrough in the transition to a
new power system in the medium term. In the process of achieving the “dual carbon”
target, the installed scale of coal power should be strictly controlled, and the transformation
of existing coal-fired power units to save coal and reduce consumption and flexibility
should be accelerated. We should also enhance the flexible regulation capacity of coal-fired
power and coordinate the development of coal-fired power with the preservation of supply
security and peak load regulation; increase the proportion of coal power units with high
parameters, low pollution, and large capacity in the installed coal-fired power capacity;
play a role in underwriting and peak regulation capacity through the implementation of
coal power unit flexibility transformation.
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5.2. Promote Low-Carbon Technology Innovation to Provide Multiple Options for Carbon Neutrality

From the perspective of technical feasibility, high renewable energy development and
fossil energy decarburization are the main low-carbon transition concepts and optional
strategies to achieve low-carbon transition of electricity in China in the future. Break-
throughs in large-scale energy storage technology should be applied to support a new form
of renewable energy-driven power system. Breakthroughs in the development of carbon
sink technology can eliminate the high carbon attributes of fossil energy and establish
an energy system dominated by both traditional and clean energy sources. Therefore,
government departments, research institutes, and power companies need to be encouraged
to grasp the scale and timing of technology incentives to drive technological progress in
related fields and achieve future breakthroughs in the integration of key revolutionary
technologies in carbon neutrality.

5.3. Playing the Coordinating Role of Market Mechanisms

Deepen the reform of the electricity system mechanism and promote the construction
of a national unified electricity market. Establish standardized and unified electricity
market trading rules and technical standards, and improve the mechanism for new energy
to participate in the market. Do a good job of implementing the market-based consumption
of new energy from the market mechanism and policy system. In the process of building a
national unified electricity market, it is necessary to give full play to the role of the market
mechanism in optimizing the allocation of resources, but also to prevent market failures.
Reduce the negative impact of the polarization effect of the regional economy and realize
the smooth progress of economic transformation work.

5.4. Encourage Various Social Entities to Participate in the Investment and Construction of
Low-Carbon Electricity Transformation

Carbon neutrality is a long-term strategic transformation work that requires the
participation of the whole society and requires the mobilization of enthusiastic contributions
from all segments of the power body and the promotion of the synergistic construction of
the power system. The role of small distributed systems and energy storage facilities is
being fully exploited. For example, the current investment and construction of electricity
facilities for urban customers has taken shape in distributed energy, electric vehicle charging
stations, and smart home appliances. The concept of green, low-carbon living is also being
promoted. However, rural areas are still more traditional in terms of infrastructure and
energy use and have great potential to reduce emissions. Social capital can be encouraged
to invest in the construction of new rural energy infrastructure through national financial
subsidies, tax incentives, financing support, and market economic incentives. Building an
energy supply system with decentralized new energy, biomass, gas, and other low-carbon
energy sources is useful.

5.5. How These Policy Recommendations Might Be Effectively Implemented

To ensure that the policy recommendations effectively contribute to the carbon neutral-
ity goal, the article proposes the following implementation and monitoring mechanisms.

First, the government and relevant stakeholders should formulate a clear and specific
policy framework that specifies the carbon neutrality target and details the implementation
path and timetable. At the same time, we suggest deploying an advanced monitoring sys-
tem to track key indicators such as energy production and consumption, carbon emissions,
and environmental benefits in real time. Such a system will help identify problems quickly
and make timely policy adjustments. At the same time, incentives, such as carbon markets,
carbon taxes, or other market mechanisms, should be set up to encourage enterprises
and individuals to adopt low-carbon behaviors. This will increase the speed at which
carbon neutral targets can be achieved and incentivize more innovation and investment.
Through these instruments, a robust policy implementation and monitoring system can be
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established to ensure that policies substantially contribute to the achievement of carbon
neutrality goals.

Second, to further promote the achievement of the carbon neutrality goal, we recom-
mend that the government actively promote technological innovation and support the
research and development and adoption of cleaner technologies to reduce carbon emissions.
The government should monitor the adoption of innovations and adjust support policies
according to the actual results. Promoting international cooperation is also important. The
government should actively participate in international cooperation mechanisms to share
best practices, experiences, and technologies to promote the realization of the global carbon
neutrality goal. Transparency is also key to successful implementation. Governments and
enterprises should develop transparent reporting standards to ensure clear and accurate
reporting to the public on the progress of achieving carbon neutrality. Finally, social partici-
pation and publicity and education are factors that cannot be ignored. Stimulating public
participation and raising social awareness of the carbon neutrality target will help to create
widespread support for and adoption of low-carbon lifestyles.

The combined implementation of the above measures will ensure that the policy
proposals are not only technically feasible, but also have sustainable and comprehensive
impacts at the social and economic levels, contributing to the realization of the carbon
neutrality target.
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