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Abstract: This paper presents a theoretical analysis of steady-state operation, control-oriented model-
ing for voltage control, and the experimental results of a DC–DC bidirectional converter based on
a Cuk converter using a voltage-doubler concept. Due to the voltage-doubler concept, the voltage
stress across semiconductors is reduced when compared with the conventional Cuk converter; this
allows for the use of semiconductors with reduced drain–source on-resistance. Moreover, due to the
input and output current source characteristics, the converter presents advantages, such as drain-
ing/injecting currents on both sides with low-ripple currents. Furthermore, the theoretical analysis is
verified by experimental results obtained from a proof-of-concept prototype designed with a 250 V
input voltage, a 360 V output voltage, 2 kW rated power, and 100 kHz switching frequency.

Keywords: DC–DC converter; bidirectional converter; Cuk converter; voltage-doubler; dynamic
model; voltage control

1. Introduction

In DC microgrids, the interactions between energy storage devices and renewable
energy sources have intensified in recent years, as these interactions result in stable, reliable,
and efficient systems [1–4].

Energy storage devices are crucial in the operation of DC microgrids. A battery is
a commonly used type of storage device and can be independently connected to a DC
microgrid or function as distributed power hybrid resources.

Figure 1 presents a block diagram of the power stage of a residential DC microgrid
where the battery energy storage system (BESS) and the bidirectional DC–DC converter are
highlighted. Between the BESS and the DC bus, there is a bidirectional DC–DC converter,
which can transmit energy in both directions. This converter is responsible for controlling
the direction of the power flow and for regulating the DC bus [5]. Figure 1 also presents
the typical voltage levels of each component of the DC microgrid and the DC bus for two
different grid voltage levels [6–10].

Research on bidirectional DC–DC converters for connection with DC microgrids has
been explored widely in recent years [11–15]. The bidirectional converter is generally
based on conventional topologies, such as Buck/Boost, Buck-Boost, Cuk, and SEPIC/Zeta
converters.
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In the solutions based on Buck, Boost, and Buck–Boost converters, the current that
charges the battery bank has a pulsating high-frequency component; this is because the
converters have an input/output with voltage source characteristic. Therefore, additional
filters must be used in the output of the bidirectional converter [13,16,17]. Moreover,
according to [18], the high-frequency AC component can reduce the battery life because it
can cause additional heat generation within the battery pack.
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Figure 1. Block diagram of the power stages of a residential DC microgrid.

Ideally, the battery should be charged and discharged with a continuous current
so the battery life will increase. The most appropriate converters for charging batter-
ies are those with natural inductors in the output, such as the Buck, Zeta, and Cuk
converters [19–28].

This paper aims to present the modeling and control of a DC–DC bidirectional con-
verter based on a Cuk converter using a voltage-doubler concept. This concept reduces the
maximum voltage level across semiconductors and allows the use of devices with lower
voltage ratings, which increases overall efficiency. As a disadvantage, the component count
is increased.

The proposal for the DC–DC bidirectional Cuk converter is presented in Section 2.
Section 3 of this paper describes a control-oriented model for output voltage control. A
compensator design is presented in Section 4. Finally, experimental results from a proof-of-
concept prototype are presented in Section 5.

2. The Proposed DC–DC Bidirectional Converter Based on a Cuk Converter

The DC–DC bidirectional converter based on a Cuk converter using the voltage-
doubler concept is shown in Figure 2. It is formed by three inductors, two capacitors,
and four switches, which operate in a complementary mode. The converter maintains the
characteristics of the current source on both sides, as is the case with the conventional Cuk
converter, draining/injecting currents with low ripple.

In a conventional Cuk converter, the average voltage in the capacitor is equal to the
sum of the input voltage with the output voltage. However, in the proposed topology, the
average voltage across the capacitors is equal to the sum of half of the input voltage and
half of the output voltage.
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Figure 2. Topology of the DC–DC bidirectional converter based on a Cuk converter: (a) direct mode; 
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voltage source V3 and vice versa. It is defined that when the power flows from voltage 
sources V1 and V2 to voltage source V3 it is the direct mode. Otherwise, when the power 
flows from voltage source V3 to voltage sources V1 and V2, it is the reverse mode. 

For each mode of operation, there are two operating stages in a switching period for 
continuous conduction mode (CCM). The operating stages are described as follows: 

1st Operating Stage—Direct Mode: This operating stage is illustrated in Figure 3a. It 
starts when switches S1 and S3 are turned on while switches S2 and S4 remain blocked. 
During this operating step, source V1 transfers energy to inductor L1 through switch S1, 
source V2 transfers energy to inductor L2 through switch S3, and inductor L3 is also charged 
with the energy of capacitors C1 and C2. 

2nd Operating Stage—Direct Mode: This stage starts when switches S1 and S3 are 
turned off and switches S2 and S4 are turned on. In this operating stage, inductor L1 dis-
charges, thus charging capacitor C1; in the same way, inductor L2 discharges, supplying 
energy to capacitor C2, and inductor L3 supplies energy to source V3. This operating stage 
is illustrated in Figure 3b. 
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ing stage in the direct mode; it starts when switches S2 and S4 are turned on and switches 
S1 and S3 remain blocked. The source V3 transfers energy to inductor L3 through switches 
S2 and S4, and capacitors C1 and C2 discharge through switches S2 and S4, transferring en-
ergy to inductors L1 and L2. This first operating stage is illustrated in Figure 4a. 

Figure 2. Topology of the DC–DC bidirectional converter based on a Cuk converter: (a) direct mode;
(b) reverse mode.

2.1. Operating Stages

As a bidirectional converter, the power can flow from voltage sources V1 and V2 to
voltage source V3 and vice versa. It is defined that when the power flows from voltage
sources V1 and V2 to voltage source V3 it is the direct mode. Otherwise, when the power
flows from voltage source V3 to voltage sources V1 and V2, it is the reverse mode.

For each mode of operation, there are two operating stages in a switching period for
continuous conduction mode (CCM). The operating stages are described as follows:

1st Operating Stage—Direct Mode: This operating stage is illustrated in Figure 3a. It
starts when switches S1 and S3 are turned on while switches S2 and S4 remain blocked.
During this operating step, source V1 transfers energy to inductor L1 through switch S1,
source V2 transfers energy to inductor L2 through switch S3, and inductor L3 is also charged
with the energy of capacitors C1 and C2.

2nd Operating Stage—Direct Mode: This stage starts when switches S1 and S3 are
turned off and switches S2 and S4 are turned on. In this operating stage, inductor L1
discharges, thus charging capacitor C1; in the same way, inductor L2 discharges, supplying
energy to capacitor C2, and inductor L3 supplies energy to source V3. This operating stage
is illustrated in Figure 3b.
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1st Operating Stage—Reverse Mode: This operating stage resembles the 2nd operating
stage in the direct mode; it starts when switches S2 and S4 are turned on and switches S1
and S3 remain blocked. The source V3 transfers energy to inductor L3 through switches S2
and S4, and capacitors C1 and C2 discharge through switches S2 and S4, transferring energy
to inductors L1 and L2. This first operating stage is illustrated in Figure 4a.

2nd Operating Stage—Reverse Mode: This stage starts when switches S2 and S4
are turned off, while switches S1 and S3 are turned on. In this operating stage the
inductor L3 discharges, thus charging capacitors C1 and C2; the inductors L1 and L2 also
discharge, transferring energy to sources V1 and V2. This operating stage is illustrated in
Figure 4b.
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2.2. Main Ideal Waveforms

Figures 5 and 6 show the main ideal waveforms for a switching period. They present
the waveforms of the command signals of the switches and the current and voltage
in inductors, switches, and capacitors, for both direct and reverse modes of operation,
respectively.

When analyzing the waveforms, it is possible to observe that:

- the currents in all inductors are composed of a continuous current with a high-
frequency ripple;

- the maximum voltage across the switches is equal to the sum of half of the input
voltage and half of the output voltage;

- the current of the switches is equal to the sum of the current in the inductors;
- the voltage across the capacitors is equal to the sum of half of the input voltage and

half of the output voltage.

2.3. Static Gain

In both modes of operation, the volt-second balance is applied to the inductors to
obtain the static gain (M) of the converter. The static gain for the direct mode is presented
in (1), and the static gain for the reverse mode is presented in (2). We observed that, in
both modes of operation, the same equation is obtained for M, as a function of duty cycle
(D), and it is equal to the same static gain of a conventional Cuk converter operating
in CCM.
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Therefore, the converter has the same behavior as a Cuk converter in both modes of
operation and would be named a Cuk/Cuk DC–DC bidirectional converter.

M =
Vo

Vi
=

V3

V1 + V2
=

D
1 − D

(1)

M =
Vo

Vi
=

V1 + V2

V3
=

D
1 − D

(2)

2.4. Control and PWM Scheme

The output voltage control circuit of a bidirectional Cuk converter follows the block
diagram shown in Figure 7.
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2.5. Comparative Analysis

A comparative analysis of the proposed bidirectional converter with a conventional
bidirectional Cuk converter can be found in Table 1. The voltage-doubler concept has the
advantage of reducing the stress across the switches, allowing the use of devices with lower
voltage ratings, which increases overall efficiency. As a disadvantage, the component count
is increased.

Table 1. Comparative analysis.

Characteristic Conventional Cuk Voltage-Doubler Cuk

Component count 5 9
Number of inductors 2 3
Number of capacitors 1 2
Number of switches 2 4
Input characteristic Current source Current source
Output characteristic Current source Current source
Static characteristic Step down/Step up Step down/Step up
Static gain D

1−D
D

1−D
Voltage stress on capacitors Vi + Vo

Vi+Vo
2

Voltage stress on switches Vi + Vo
Vi+Vo

2

3. Control-Oriented Model for Voltage Control

The purpose of the control-oriented model is to obtain algebraic transfer functions
(TF) that describe the dynamics of the converter and then to use these transfer functions
in the control system design. The converter is modeled using the average value of state
variables technique.

The voltage source on the output side is modeled by an RC (resistive–capacitive)
load. Therefore, the topology of the converter is redrawn and reshown in Figure 8 for an
ideal converter (without losses) and in Figure 9 for a converter with losses (it considers a
resistance in series with each inductor). One can observe that the converter has six energy
storage elements in the direct mode and seven energy storage elements in the reverse mode.
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As presented in Figure 7, the controlled variable is the output voltage (vo), and the
control variable is the converter’s duty cycle (d).

3.1. Linearized Transfer Function in the Direct Mode without Losses

Based on Figure 8a, the analysis of the two operating stages was performed, and the
differential equations of the average value of the inductor voltages, as well as the equations
of the average capacitor currents, were obtained. These equations are presented in (3)–(8),
where d is the duty cycle and d’ is the complementary duty cycle (e.g., equal to 1-d).

L1
d⟨iL1 (t)⟩Ts

dt
=

{
⟨v1 (t)⟩Ts.d(t) + (⟨v1 (t)⟩Ts − ⟨vC1 (t)⟩Ts).d

′(t)
}

(3)

L2
d⟨iL2 (t)⟩Ts

dt
=

{
⟨v2 (t)⟩Ts.d(t) + (⟨v2 (t)⟩Ts − ⟨vC2 (t)⟩Ts).d

′(t)
}

(4)

L3
d⟨iL3 (t)⟩Ts

dt
=

{
(⟨vC1 (t)⟩Ts+⟨vC2 (t)⟩Ts − ⟨vo (t)⟩Ts).d(t)− ⟨vo (t)⟩Ts.d′(t)

}
(5)

C1
d⟨vC1 (t)⟩Ts

dt
=

{
−⟨iL3 (t)⟩Ts.d(t) + ⟨iL1 (t)⟩Ts.d′(t)

}
(6)

C2
d⟨vC2 (t)⟩Ts

dt
=

{
−⟨iL3 (t)⟩Ts.d(t) + ⟨iL2 (t)⟩Ts.d′(t)

}
(7)

Co
d⟨vo (t)⟩Ts

dt
= ⟨iL3 (t)⟩Ts −

⟨vo (t)⟩Ts
R

(8)
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For the linearization process, each variable in Equations (3)–(8) is rewritten as the sum
of a constant value and a small-signal variable. The constant value represents the operation
point (steady-state value), and the small-signal variable represents a perturbation around
the operation point; it is denoted by â mark in the variable.

By simplifying the resulting equation, disregarding the continuous and nonlinear
components, using only the remaining first order terms to perform the dynamic analysis of
the plant, and applying the Laplace Transform, Equations (9)–(14) are obtained.

L1.îL1(s).s = −(1 − D).v̂C1(s) + VC1.d̂(s) (9)

L2.îL2(s).s = −(1 − D).v̂C2(s) + VC2.d̂(s) (10)

L3.îL3(s).s = (v̂ C1(s) + v̂C2(s)).D + (VC1 + VC2).d̂(s)− v̂o(s) (11)

C1.v̂C1(s).s = (1 − D).îL1(s)− (IL1 + IL3).d̂(s)− îL3(s).D (12)

C2.v̂C2(s).s = (1 − D).îL2(s)− (IL2 + IL3).d̂(s)− îL3(s).D (13)

Co.v̂o(s).s = îL3(s)−
v̂o(s)

R
(14)

To solve the linear system created by Equations (9)–(14), Equation (15) is obtained,
which represents the linearized transfer function for output voltage control.

TF1(s) =
v̂o(s)
d̂(s)

=
A2.s2 + A1.s + A0

B4.s4 + B3.s3 + B2.s2 + B1.s + B0
(15)

where:

A2 = 2.R.C1.L1.VC1
A1 = −2.D.L1.(IL1 + IL3).R
A0 = −2.R.VC1.(D − 1)
B4 = R.C1.L1.L3.Co
B3 = C1.L1.L3

B2 = R.((2.(L1 + (1/2).L3)).Co.D2 − 2.Co.L3.D + C1.L1 + Co.L3)
B1 = (2.L1 + L3).D2 − 2.L3.D + L3

B0 = R.(D − 1)2

3.2. Linearized Transfer Function in the Reverse Mode without Losses

Based on Figure 8b, we performed the analysis of the two operating stages and
obtained the differential equations of the average value of the inductor voltages and the
equations of the average capacitor currents. These equations are presented in (16)–(22).

L1
d⟨iL1 (t)⟩Ts

dt
=

(
⟨vC1 (t)⟩Ts −

⟨vo (t)⟩Ts
2

)
.d(t)−

⟨vo (t)⟩Ts
2

.d′(t) (16)

L2
d⟨iL2 (t)⟩Ts

dt
=

(
⟨vC2 (t)⟩Ts −

⟨vo (t)⟩Ts
2

)
.d(t)−

⟨vo (t)⟩Ts
2

.d′(t) (17)

L3
d⟨iL3 (t)⟩Ts

dt
= ⟨v3 (t)⟩Ts.d(t) + (⟨v3 (t)⟩

Ts
−⟨vC1 (t)⟩Ts − ⟨vC2 (t)⟩Ts).d

′(t) (18)

C1
d⟨vC1 (t)⟩Ts

dt
= −⟨iL1 (t)⟩Ts.d(t) + ⟨iL3 (t)⟩Ts.d′(t) (19)

C2
d⟨vC2 (t)⟩Ts

dt
= −⟨iL2 (t)⟩Ts.d(t) + ⟨iL3 (t)⟩Ts.d′(t) (20)

Co1
d⟨v1 (t)⟩Ts

dt
= ⟨iL1 (t)⟩Ts −

⟨vo (t)⟩Ts
R

(21)
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Co2
d⟨v2 (t)⟩Ts

dt
= ⟨iL2 (t)⟩Ts −

⟨vo (t)⟩Ts
R

(22)

By applying the same linearization technique aforementioned, we obtained Equa-
tions (23)–(29).

L1.îL1(s).s = D.v̂C1(s) + VC1.d̂(s)− v̂o(s)
2

(23)

L2.îL2(s).s = D.v̂C2(s) + VC2.d̂(s)− v̂o(s)
2

(24)

L3.îL3(s).s = −(1 − D).v̂C1(s)− (1 − D).v̂C2(s) + (VC1 + VC2).d̂(s) (25)

C1.v̂C1(s).s = (1 − D).îL3(s)− (IL1 + IL3).d̂(s)− D.îL1(s) (26)

C2.v̂C2(s).s = (1 − D).îL3(s)− (IL2 + IL3).d̂(s)− D.îL2(s) (27)

Co1.v̂1(s).s = îL1(s)−
v̂o(s)

R
(28)

Co2.v̂2(s).s = îL2(s)−
v̂o(s)

R
(29)

By solving the linear system created by Equations (23)–(29), we obtained (30), which
represents the linearized transfer function for output voltage control.

TF2(s) =
v̂o(s)
d̂(s)

=
A2.s2 + A1.s + A0

B4.s4 + B3.s3 + B2.s2 + B1.s + B0
(30)

where:

A2 = 2.R.C1.L3.VC1
A1 = −2.D.L3.(IL1 + IL3).R
A0 = −4.R.VC1.(D − 1)
B4 = R.C1.L1.L3.Co1
B3 = 2.C1.L1.L3

B2 = R.(((2.L1 + L3).D2 − 4.D.L1 + 2.L1).Co1 + C1.L3)
B1 = (4.L1 + 2.L3).D2 − 8.D.L1 + 4.L1

B0 = 2.R.(D − 1)2

3.3. Linearized Transfer Function in the Direct Mode with Losses

Based on Figure 9a, we performed the analysis of the two operating stages and
obtained the differential equations of the average value of the inductor voltages, as well as
the equations of the average capacitor currents. These equations are presented in (31)–(36),
where d is the duty cycle and d’ is the complementary duty cycle (e.g., equal to 1-d).

L1
d⟨iL1 (t)⟩Ts

dt = { (⟨v1 (t)⟩Ts − ⟨vRL (t)⟩Ts).d(t)
+(⟨v1 (t)⟩Ts − ⟨vRL (t)⟩Ts − ⟨vC1 (t)⟩Ts).d

′(t)}
(31)

L2
d⟨iL2 (t)⟩Ts

dt = {(⟨v2 (t)⟩Ts − ⟨vRL (t)⟩Ts

)
.d(t)

+(⟨v2 (t)⟩Ts − ⟨vRL (t)⟩Ts − ⟨vC2 (t)⟩Ts).d
′(t)}

(32)

L3
d⟨iL3 (t)⟩Ts

dt = {(⟨vC1 (t)⟩Ts+⟨vC2 (t)⟩Ts − ⟨vRL (t)⟩Ts − ⟨vo (t)⟩Ts).d(t)
−(⟨vo (t)⟩Ts + ⟨vRL (t)⟩Ts).d

′(t)}
(33)

C1
d⟨vC1 (t)⟩Ts

dt
=

{
−⟨iL3 (t)⟩Ts.d(t) + ⟨iL1 (t)⟩Ts.d′(t)

}
(34)

C2
d⟨vC2 (t)⟩Ts

dt
=

{
−⟨iL3 (t)⟩Ts.d(t) + ⟨iL2 (t)⟩Ts.d′(t)

}
(35)
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Co
d⟨vo (t)⟩Ts

dt
= ⟨iL3 (t)⟩Ts −

⟨vo (t)⟩Ts
R

(36)

For the linearization process, each variable in Equations (31)–(36) is rewritten as the
sum of a constant value and a small-signal variable. The constant value represents the
operation point (steady-state value), and the small-signal variable represents a perturbation
around the operation point; it is denoted by â mark in the variable.

By simplifying the resulting equation, disregarding the continuous and nonlinear
components, using only the remaining first order terms to perform the dynamic analysis of
the plant, and applying the Laplace Transform, we obtained the Equations (37)–(42).

L1.îL1(s).s = −(1 − D).v̂C1(s) + VC1.d̂(s)− v̂RL(s) (37)

L2.îL2(s).s = −(1 − D).v̂C2(s) + VC2.d̂(s)− v̂RL(s) (38)

L3.îL3(s).s = (v̂C1(s) + v̂C2(s)).D + (VC1 + VC2).d̂(s)− v̂o(s)− v̂RL(s) (39)

C1.v̂C1(s).s = (1 − D).îL1(s)− (IL1 + IL3).d̂(s)− îL3(s).D (40)

C2.v̂C2(s).s = (1 − D).îL2(s)− (IL2 + IL3).d̂(s)− îL3(s).D (41)

Co.v̂o(s).s = îL3(s)−
v̂o(s)

R
(42)

By solving the linear system created by Equations (37)–(42), we obtained (43), which
represents the linearized transfer function for output voltage control.

TF3(s) =
v̂o(s)
d̂(s)

=
A2.s2 + A1.s + A0

B4.s4 + B3.s3 + B2.s2 + B1.s + B0
(43)

where:

A2 = 2.R.C1.L1.VC1
A1 = −2.D.L1.(IL1 + IL3).R + 2.R.C1.VC1.RL
A0 = 2.R.((−IL1 − IL3).RL − VC1).D + VC1)
B4 = R.C1.L1.L3.Co
B3 = (−IL1 − IL3).RL − VC1).D + VC1

B2 = 2.Co.(L1 + (1/2).L3).R.D2 − 2.Co.D.L3.R + ((2.C1.RL + L3).Co + C1.L1).R + C1.(L1.RL +
L3.RL)
B1 = (3.Co.RL.R + 2.L1 + L3).D2 + (−2.Co.R.RL − 2.L3).D + (C1.RL + Co.RL).R + 2.C1.RL + L3

B0 = (R + 3.RL).D2 + (−2.R − 2.RL).D + R + RL

3.4. Linearized Transfer Function in the Reverse Mode with Losses

Based on Figure 9b, we performed the analysis of the two operating stages and
obtained the differential equations of the average value of the inductor voltages and the
equations of the average capacitor currents. These equations are presented in (44)–(50).

L1
d⟨iL1 (t)⟩Ts

dt =
(
⟨vC1 (t)⟩Ts −

⟨vo (t)⟩Ts
2 − ⟨vRL (t)⟩Ts

)
.d(t)

−
(
⟨vo (t)⟩Ts

2 + ⟨vRL (t)⟩Ts

)
.d′(t)

(44)

L2
d⟨iL2 (t)⟩Ts

dt =
(
⟨vC2 (t)⟩Ts −

⟨vo (t)⟩Ts
2 − ⟨vRL (t)⟩Ts

)
.d(t)

−
(
⟨vo (t)⟩Ts

2 + ⟨vRL (t)⟩Ts

)
.d′(t)

(45)

L3
d⟨iL3 (t)⟩Ts

dt = (⟨v3 (t)⟩Ts − ⟨vRL (t)⟩Ts).d(t) + (⟨v3 (t)⟩Ts−⟨vC1 (t)⟩Ts
−⟨vC2 (t)⟩Ts − ⟨vRL (t)⟩Ts).d

′(t)
(46)

C1
d⟨vC1 (t)⟩Ts

dt
= −⟨iL1 (t)⟩Ts.d(t) + ⟨iL3 (t)⟩Ts.d′(t) (47)
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C2
d⟨vC2 (t)⟩Ts

dt
= −⟨iL2 (t)⟩Ts.d(t) + ⟨iL3 (t)⟩Ts.d′(t) (48)

Co1
d⟨v1 (t)⟩Ts

dt
= ⟨iL1 (t)⟩Ts −

⟨vo (t)⟩Ts
R

(49)

Co2
d⟨v2 (t)⟩Ts

dt
= ⟨iL2 (t)⟩Ts −

⟨vo (t)⟩Ts
R

(50)

By applying the aforementioned linearization technique, we obtained Equations (51)–(57).

L1.îL1(s).s = D.v̂C1(s)− v̂RL(s) + VC1.d̂(s)− v̂o(s)
2

(51)

L2.îL2(s).s = D.v̂C2(s)− v̂RL(s) + VC2.d̂(s)− v̂o(s)
2

(52)

L3.îL3(s).s = −(1 − D).v̂C1(s)− (1 − D).v̂C2(s) + (VC1 + VC2).d̂(s)− v̂RL(s) (53)

C1.v̂C1(s).s = (1 − D).îL3(s)− (IL1 + IL3).d̂(s)− D.îL1(s) (54)

C2.v̂C2(s).s = (1 − D).îL3(s)− (IL2 + IL3).d̂(s)− D.îL2(s) (55)

Co1.v̂1(s).s = îL1(s)−
v̂o(s)

R
(56)

Co2.v̂2(s).s = îL2(s)−
v̂o(s)

R
(57)

By solving the linear system created by Equations (51)–(57), we obtained (58), which
represents the linearized transfer function for output voltage control.

TF4(s) =
v̂o(s)
d̂(s)

=
A2.s2 + A1.s + A0

B4.s4 + B3.s3 + B2.s2 + B1.s + B0
(58)

where:

A2 = R.C1.L3.VC1
A1 = R.(−L3.(IL1 + IL3).D + C1.VC1.RL)
A0 = R.(((−IL1 − IL3).RL − 2.VC1).D + 2.VC1)
B4 = R.C1.L1.L3.Co1
B3 = (Co1.(L1.RL3 + L3.RL).R + 2.L1.L3).C1

B2 = 2.R.Co1.(L1 + (1/2).L3).D2 − 4.Co1.D.L1.R + ((2.C1.RL + 2.L1).Co1 + C1.L3).R + 2.C1.(L1.RL
+ L3.RL)
B1 = (3.Co1.RL.R + 4.L1 + 2.L3).D2 + (−4.Co1.R.RL − 8.L1).D + (C1.RL + 2.Co1.RL).R + 4.C1.RL
+ 4.L1
B0 = (2.R + 6.RL).D2 + (−4.R − 8.RL).D + 2.R + 4.RL

3.5. Validation of the Transfer Functions

Table 2 shows the design specifications used to validate the transfer functions ob-
tained from the ideal and the nonideal converter for both modes of operation. Based on
Table 2, and using the design equations presented in [20], the values of the quantities and
components is presented in Table 3.

For validating the transfer functions presented in (15), (30), (43) and (58), a numerical
simulation was performed. The simulation was realized, including the electrical circuit
of the converter and an s-domain block, using the transfer functions. A step of 2% was
applied to the duty cycle and the output voltage transient was observed for both the
converter and the transfer functions TF1, TF2, TF3, and TF4. Figure 10a shows output
voltage waveforms for direct mode and Figure 10b shows the same plot for the reverse
mode from the ideal converter. For the nonideal converter, the output voltage waveforms
are presented in Figure 11a for the direct mode and Figure 11b for the reverse mode. It is
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possible to observe that the transfer functions can represent the dynamic behavior of the
output voltage satisfactorily.

Table 2. Design specifications.

Specifications Value

Average value of voltage sources V1 and V2 125 V
Average value of voltage source V3 360 V
Output rated power (Po) 2000 W
Switching frequency (fs) 100 kHz
Voltage ripple in capacitors C1 and C2 (∆VC1,2) 10%
Voltage ripple in capacitors Co, Co1, and Co2 (∆VCo) 1%
Current ripple in inductors L1, L2, and L3 (∆iL1,2,3) 20%

Table 3. Quantities and designed components.

Parameters Value

Equivalent load resistance (R)—direct mode 64.80 Ω
Equivalent load resistance (R)—reverse mode 31.25 Ω

Capacitive bank (Co)—direct mode 1410.0 µF
Capacitive bank (Co1) and (Co2)—reverse mode 1410.0 µF

Capacitors (C1) and (C2) 1.0 µF
Inductors (L1) and (L2) 461.07 µF

Inductor (L3) 1.33 mH
Inductor resistances (RL) 1 Ω

Average current of inductors L1 (IL1) and L2 (IL2) 8.0 A
Average current of inductor L3 (IL3) 5.56 A

Average voltage in capacitors C1 (VC1) and C2 (VC2) 305.0 V
Nominal duty cycle (D)—direct mode 0.59

Nominal duty cycle (D)—reverse mode 0.41
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3.6. Root Locus Analysis

A root locus analysis was carried out for observing the behavior of the poles and zeros
of the transfer functions. Figure 12 shows the root locus for the ideal and nonideal converter
operating in direct mode. As expected, the Cuk converter model presents four poles and
two zeros and has right-half-plane (RHP) zeros, which represent a challenge for the control
design because the RHP zeros tend to attract the poles to the right-half-plane, causing
instability [29]. It is also observed in Figure 12 that the presence of resistive elements in the
model moves the RHP zeros closer to the imaginary axis. Therefore, the resistive elements
contribute to the stabilization of the system since they diminish the negative effect of the
RHP zeros.
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Figure 12. Root locus of transfer functions for the ideal and nonideal converter operating in direct
mode: (a) without losses; (b) with RL = 1 Ω; (c) with RL = 5 Ω.

Nevertheless, RHP zeros will affect the control design and, generally, a stable closed-
loop system is obtained since the frequency bandwidth is limited [29,30].

Figure 13 shows the root locus for the ideal and nonideal converter operating in reverse
mode, and the same behavior mentioned before can be verified.
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Figure 13. Root locus of transfer functions for the ideal and nonideal converter operating in reverse
mode: (a) without losses; (b) with RL = 1 Ω; (c) with RL = 5 Ω.

4. Compensator Design

The compensators were designed using a frequency response method through Bode
plots. The poles and zeroes of the compensator were allocated to obtain transfer functions
with phase margins of at least 45◦ and a maximum overshoot of 20%.

In order to implement these control systems, a proportional integral (PI) controller
with a filter was chosen because it has null error in steady state for a step input and helps
with filtering noise.
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This controller has two poles and one zero, one pole allocated at the origin, and the
other pole and zero are adjusted to obtain the system response to the design specifications.
The compensator transfer function is shown in (59).

C(s) = kC.
s + 2.π.fz

s.
(
s + 2.π.fp

) (59)

Table 4 summarizes the values obtained for each parameter used in the design of the
control system, where Vref is the value of the reference voltage, ks is the voltage sensor
gain, Vpk is the peak value of sawtooth, KPWM is PWM modulator gain, fc is the crossover
frequency, fz is the frequency of the zero of the compensator, fp if the frequency of the pole
of the compensator, and kc is the gain of the compensator.

Table 4. Designed values for the output voltage control systems.

Parameters Direct Mode Reverse Mode

Vref 2.5 V 2.5 V
ks 0.00694 0.01

Vpk 3.5 V 3.5 V
KPWM 0.37 0.37

fc 100 Hz 50 Hz
fz 20 Hz 50 Hz
fp 1 kHz 100 Hz
kC 2615 254.47

Figure 14 illustrates the Bode diagrams of the converter’s transfer function (TF),
compensator’s transfer function (CTF), and the compensated open-loop transfer function
(COLTF) for each mode of operation. It is possible to observe the crossover frequency of
each control loop and that the phase margin is equal to 65◦ for the direct mode and about
90◦ for reverse mode.
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Due to the presence of RHP zeros, the crossover frequency for the direct mode is
100 Hz and the crossover frequency for the reverse mode is 50 Hz. In regard to application,
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where the battery pack has considerable voltage inertia, this limitation on the bandwidth
will not affect the overall performance of the system.

5. Experimental Results

The prototype of the bidirectional Cuk DC–DC converter, shown in Figure 15, was
built from the specifications presented in Tables 1 and 5 presents the bill of components
used in the prototype. The control system was implemented with analog circuits, using the
integrated circuit (IC) UC3525 which has a PWM modulator and an internal operational
amplifier (OPAMP) that was used to realize the PI with a filter compensator. To generate
the complementary command signals, we used the IC SN7406.
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Table 5. Components used in the prototype.

Components Specification

Inductors L1 and L2

Inductance: 474 µF
Number of turns: 57
Wire: 64 × 32 AWG

Core: 0088439A7 AmoFlux

Inductor L3

Inductance: 1.35 mF
Number of turns: 97
Wire: 32 × 32 AWG

Core: 0088439A7 AmoFlux

Capacitors C1 and C2 1 µF/630 V

Switches S1, S2, S3, and S4 SCT3080AL (650 V/30 A/80 mΩ)

Heatsink LAM3K15012

In the sequence, the waveforms obtained in the practical implementation are presented,
for both modes of operation of the bidirectional Cuk converter.

5.1. Waveforms Obtained in the Direct Mode with RC Load and Open Loop Operation

Figure 16 shows the voltage and current waveforms in source V1, and it can be seen
that the average voltage is equal to 125.54 V and the average current is equal to 9.536 A.
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Figure 16. Voltage and current waveforms in source V1 (vertical scales: IL1—2 A/div, V1—20 V/div
and horizontal scale: 5 µs/div).

Figure 17 shows the voltage and current waveforms in inductor L1, and it can be
seen that the current in inductor L1 is the same current as source V1, with an average
value equal to 9.11 A. Regarding the voltage on the inductor L1, it is possible to notice the
similarity with the theoretical waveform presented in Figure 5. One can also observe that
the maximum voltage value of inductor L1 is equal to 130.93 V, and the minimum voltage
value is equal to −203.24 V.
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Figure 17. Voltage and current in inductor L1 (vertical scales: IL1—2 A/div, VL1—100 V/div and
horizontal scale: 5 µs/div).

Figure 18 shows the voltage and current in inductor L3, and it can be seen that the
current in inductor L3 is the same current as source V3, with an average value equal to
5.813 A. We also observed that the maximum voltage value in inductor L3 is equal to
246.26 V, and the minimum voltage value is equal to −401.75 V.

Figure 19 shows the voltage waveforms of switches S1 and S3. In the first operating
stage, switches S1 and S3 are commanded to conduct and, consequently, the voltage across
them is equal to 0 V. In the second operating stage, switches S1 and S3 remain blocked. In
this period, we observed that the maximum values of the voltages on switches S1 and S3
are 457.8 V and 344.77 V, respectively.

Figure 20 shows the voltage waveforms of switches S2 and S4. In the first operating
stage, switches S2 and S4 are blocked, and it can be seen that the maximum values of the
voltages across switches S2 and S4 are 376.37 V and 344.3 V, respectively.
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Figure 21 shows the voltage and current at the converter output, and it can be seen
that the average voltage is equal to 360.48 V and the average current is equal to 5.636 A.
Thus, the converter is processing about 2031 W.
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5.2. Waveforms Obtained in the Reverse Mode with RC Load and Open Loop Operation

Considering the reverse mode of operation, source V3 becomes the input source and
sources V1 and V2 are replaced by RC loads, which represent the output of the converter.
Figure 22 shows the voltage and current in source V3, and it can be seen that the average
voltage value is equal to 360.06 V and the average current value is equal to 5.955 A.
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Figure 22. Voltage and current in source V3 (vertical scales: IL3—2 A/div, V3—50 V/div and
horizontal scale: 5 µs/div).

Figure 23 shows the voltage and current in inductor L3, and it can be seen that the
current in inductor L3 is the same current as source V3, with an average value equal to
5.471 A. Regarding the voltage on the inductor L3, it is possible to notice the similarity
with the theoretical waveform presented in Figure 6. It is also observed that the maximum
voltage value in inductor L3 is equal to 390.22 V, and the minimum voltage value is equal
to −257.9 V.
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Figure 23. Voltage and current in inductor L3 (vertical scales: IL3—3 A/div, VL3—200 V/div and
horizontal scale: 5 µs/div).

Figure 24 shows the voltage and current in inductor L1, and it can be seen that the
current in inductor L1 has an average value equal to 8.276 A. It can be seen that the
maximum voltage in the inductor L1 is equal to 206.35 V, and the minimum voltage value
is equal to −129.64 V.
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horizontal scale: 5 µs/div).

Figure 25 shows the voltage on switches S1 and S3. In the first operating stage, switches
S1 and S3 are blocked, and it can be seen that the maximum values of the voltages across
switches S1 and S3 are 429.67 V and 526.6 V, respectively.

Figure 26 shows the voltage on switches S2 and S4. It can be seen that the maximum
values of the voltages across switches S2 and S4 are 523.65 V and 440.76 V, respectively.

Figure 27 shows the voltage and current waveforms in the converter output for the
reverse mode of operation. It can be seen that the average voltage value is equal to 249.73 V,
and the average current values is equal to 7.84 A. Thus, the converter is processing about
1958 W.
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5.3. Waveforms Obtained with RC Load and Closed Loop Operation

Figure 28 shows the dynamic response of the converter in the control of the output
voltage for both modes of operation, considering RC load, for a 50% load step, where the
converter was operating at half power, and after the increment started to operate at rated
power. In Figure 28a, it can be seen that the output voltage is controlled; it presents a
maximum overshoot (Mp) of 10 V, which represents 2.78% of overshoot, and a settling time
(ts) of approximately 32 ms. In Figure 28b, a maximum overshoot of 2 V can be observed,
which represents 0.8% of overshoot, and a settling time of approximately 50 ms.
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The efficiency curves of the bidirectional Cuk converter operating in reverse and di-
rect modes are shown in Figure 30. The efficiency of the converter operating at rated 
power is equal to 92.711% in the direct mode and equal to 94.016% in the reverse mode. 
In the direct mode, at the power of approximately 268 W, the lowest efficiency value was 
obtained, equal to 92.523%, while the highest efficiency value was obtained at approxi-
mately 522 W, with 95.203% efficiency. In the reverse mode, at the power of approximately 

Figure 28. Load step of 50% of power to rated power: (a) direct mode (vertical scales: Io—2 A/div,
Vo—100 V/div and horizontal scale: 10 ms/div); (b) reverse mode (vertical scales: Io—3 A/div,
Vo—50 V/div and horizontal scale: 20 ms/div).

In Figure 29, only the alternating component (AC) of the signal is presented in order
to better visualize the performance of the implemented control.
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The efficiency curves of the bidirectional Cuk converter operating in reverse and direct
modes are shown in Figure 30. The efficiency of the converter operating at rated power
is equal to 92.711% in the direct mode and equal to 94.016% in the reverse mode. In the
direct mode, at the power of approximately 268 W, the lowest efficiency value was obtained,
equal to 92.523%, while the highest efficiency value was obtained at approximately 522 W,
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with 95.203% efficiency. In the reverse mode, at the power of approximately 200 W, the
lowest efficiency value was obtained, equal to 90.773%, while the highest efficiency value
was obtained at approximately 1019 W, with 95.498% of efficiency.
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6. Conclusions

In this paper, a DC–DC bidirectional converter based on a Cuk converter using a
voltage-doubler concept was analyzed and evaluated through a proof-of-concept prototype.
Additionally, the mathematical analysis used to obtain the small-signal models to control
the output voltage for the direct and reverse operation modes was presented.

From the obtained models, the voltage loop compensators were designed using the
frequency response criterion (Bode diagrams). The experimental results show the perfor-
mance of the proposal; the Cuk converter presents high efficiency (95.5% of peak efficiency)
and dynamic responses adequate to the implemented control, 2.78% of overshoot, and
a settling time of approximately 32 ms for the direct mode and 0.8% of overshoot and a
settling time of approximately 50 ms for the reverse mode.

Regarding advantages, the proposed converter presents the concept of a voltage
doubler; therefore, the voltage across the switches is reduced, allowing us to choose semi-
conductors with a lower voltage rating, thus reducing losses. Additionally, the converter
presents a continuous current in input and output, which is ideal for charging and discharg-
ing a battery pack. As a disadvantage, it presents an increased component count.
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