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Abstract: Grid-forming inverters (GFMs) have emerged as crucial components in modern power
systems, facilitating the integration of renewable energy sources and enhancing grid stability. The
significance of GFMs lies in their ability to autonomously establish grid voltage and frequency,
enabling grids to form and improve system flexibility. Discussing control methods for grid-forming
inverters is paramount due to their crucial role in shaping grid dynamics and ensuring reliable
power delivery. This paper explores the fundamental and advanced control methods employed by
GFMs, explaining their operational principles and performance characteristics. Basic control methods
typically involve droop control, voltage and frequency regulation, and power-balancing techniques to
maintain grid stability under varying operating conditions. Advanced control strategies encompass
predictive control, model predictive control (MPC), and adaptive control, which influence advanced
algorithms and real-time data for enhanced system responsiveness and efficiency. A detailed analysis
and performance comparison of different control methods for GFM is presented, highlighting their
strengths, limitations, and suitability for diverse grid environments. Through comprehensive studies,
this research interprets the ability of various control strategies to mitigate grid disturbances, optimize
power flow, and enhance overall system stability.

Keywords: grid-following inverter; grid-forming inverter; frequency and voltage control; virtual
synchronous generator; synchronverter

1. Introduction

Grid-connected inverters play a pivotal role in renewable energy systems, making
them suitable for integration with the electrical grid. These inverters employ sophisticated
control algorithms that meet grid specifications. They must adhere to stringent grid
codes and standards to ensure compliance with voltage and frequency requirements,
as well as power quality criteria. Grid-following inverters are designed to synchronize
their output with the voltage and frequency of the grid they are connected to. Employing
control algorithms like phase-locked loops (PLLs) or frequency-locked loops, these inverters
track grid parameters and adjust their output accordingly. While effective in maintaining
synchronization, grid-following inverters may encounter challenges with voltage and
frequency regulation during grid disturbances, potentially leading to stability issues and
grid instability, particularly in scenarios with high renewable energy penetration or weak
grid conditions [1–3].

A specialized category of inverters that actively contribute to grid stability by adjusting
their reactive power output in response to changes in grid voltage is termed grid-supporting
inverters. These inverters utilize control strategies like voltage droop control to provide
reactive power support during voltage fluctuations. However, implementing reactive
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power control adds complexity and cost to the system, and interoperability issues with
existing grid infrastructure may arise. Additionally, the effectiveness of grid-supporting
inverters may be limited in certain grid conditions or configurations, impacting their
suitability for widespread deployment [3]. Despite their grid-stabilizing capabilities, grid-
supporting inverters have drawbacks that can hinder their widespread adoption. The
control causes increased system complexity and potential compatibility issues with grid
standards and their effectiveness may be limited in certain grid conditions [4].

Grid-forming inverters represent a significant advancement in inverter technology,
offering autonomous control of grid voltage and frequency. Unlike grid-following inverters,
which rely on grid parameters for synchronization, grid-forming inverters establish and
maintain grid stability independently. By providing a stable grid reference point, grid-
forming inverters enhance system resilience and flexibility, enabling seamless integration
of renewable energy sources and enhancing grid reliability. Overall, grid-forming inverters
offer enhanced grid stability and resilience, reducing reliance on external grid signals and
simplifying system design and operation compared to grid-following and grid-supporting
inverters. This is why they are chosen for further study [1–4].

The development of GFM gained momentum in the late 2000s and early 2010s. Re-
searchers, universities, and companies worldwide have undertaken extensive research
and development efforts to design and implement grid-forming inverter technology. This
effort has involved control algorithms, power electronics, and system integration innova-
tions. From 2015 to 2018, significant progress was achieved in developing grid-forming
technologies, a transformative approach to power system control, allowing inverters to
mimic traditional synchronous generators and participate in grid stability and voltage
regulation. They use advanced control algorithms to regulate voltage magnitude and
frequency, allowing inverters to synchronize with the grid autonomously [5–9].

Researchers explore the feasibility and potential benefits of grid-forming technology,
laying the foundation for subsequent advancements. From 2019 to 2021, prototype testing
and field trials of GFM were conducted across various renewable energy projects and
microgrids. These trials provided valuable insights into real-world performance and identi-
fied challenges to address for broader implementation [10–13]. In 2022, commercialization
efforts intensified as GFM started to enter the market. Companies focused on refining
product designs, optimizing performance, and ensuring compliance with industry stan-
dards, marking a significant milestone in the technology’s evolution. Recent updates and
advances in grid-forming inverter technology, from 2022 to 2024, reflect increased adoption
in renewable energy projects, microgrids, and remote communities [14,15]. Their capability
to stabilize power systems and operate independently of the grid has garnered interest
from utilities and energy stakeholders. As of 2023–2024, ongoing research endeavors aim
to enhance further grid-forming inverter technology’s efficiency, reliability, and scalability.

The evolution of GFM has been intricately connected with developing and refining
control methods. Researchers embarked on a quest to devise control strategies capable of
addressing the unique challenges posed by these innovative technologies. The historical
trajectory from the inception of GFM to its current state reflects a continuous pursuit of
enhanced performance, stability, and adaptability. From voltage and frequency regulation
to virtual synchronous generator (VSG) control and droop schemes, these methodologies
represent the culmination of years of research and experimentation aimed at unlocking the
full potential of GFM [4,16]. Figure 1 illustrates the classification of grid-forming inverter
control strategies, and Table 1 thoroughly analyzes various control methods employed
in grid-forming inverters. The table concisely compares these control methods’ essential
features, advantages, and limitations.
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Figure 1. Classifications of grid-forming inverter controls.

Generally speaking, the control methods listed in Table 1 are in chronological order.
The first control method developed in GFM space is the virtual synchronous generator
(VSG) control, which emulates the dynamics of synchronous generators by regulating the
output voltage and frequency. While it improves the grid stability with inertia emulation,
it cannot fully replicate the inertial response of synchronous generators. Frequency and
voltage droop control (FVD) was introduced to address this. It can adjust output power
and voltage in response to grid frequency in a decentralized fashion. It is very effective in
dampening frequency fluctuations and stabilizing the system voltage. However, the decen-
tralized control approach and predetermined operating points are significant drawbacks of
this approach. Model predictive control (MPC) and adaptive control algorithms (ACAs),
developed more recently, can provide real-time dynamic control capability. This is a robust
approach, as real-time control enables such systems to be constantly updated and improved.
These systems require correct estimation of the system parameters. Should there be any
mismatch between the estimated and actual parameters, these systems tend to lose accuracy.
Finally, recent efforts have focused on creating Hierarchical Control Structures (HCSs) that
combine the advantages of different control approaches. HCS approaches enable decentral-
ized and adaptive control by utilizing extensive communication networks. Such systems
are susceptible to communication problems [17,18] and cybersecurity issues [19,20] that
need to be fully addressed.

Overall, GFM is imperative for successfully integrating renewable energy into the
existing power grid, facilitating the transition to a more sustainable energy future. GFM
offers advantages such as grid support during low or no grid voltage, active frequency
and voltage regulation, and inertial response. GFMs can emulate inertia, providing an
inertial response by controlling power output in response to frequency deviations. They can
smoothly transition between grid-connected and islanded modes, providing a stable power
supply [21–24]. This paper presents a comprehensive exploration, meticulously analyzing
the various control mechanisms governing the operation of GFM and scrutinizing their
pivotal roles in voltage and frequency regulation. This study delves into the advanced
control techniques infused with artificial intelligence, showcasing their transformative
potential in strengthening grid performance. This extends beyond mere analysis, as it
underscores the profound significance of these control topologies within the dynamic
landscape of power system operation.
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Table 1. Features of grid-forming inverter control methods.

Control Description Limitations Advantages

Virtual synchronous
generator (VSG) [1,25–27]

Emulates the dynamics of
synchronous generators by
regulating the output voltage and
frequency. It provides an inertial
response during disturbances and
stabilizes the grid.

• Inertia emulation relies on control
algorithms and energy storages,
which may not fully replicate the
inertial response of synchronous
generators.

• Requires accurate modeling and
parameter tuning to mimic
synchronous generator behavior
effectively.

• Scalability of VSG can be limited.

• Grid stability improvement
with inertia emulation.

• Suitable for
standalone/grid-connected
operation.

• It supports power flow in
multi-voltage or
multi-frequency networks.

• Fast response time.

Frequency and voltage
droop control (FVDC)
[25,28,29]

The decentralized control method
adjusts output power and voltage
in response to grid frequency and
voltage deviations, mimicking the
behavior of synchronous
generators.

• Based on predefined droop
characteristics, which may not
always perfectly match the
dynamic requirements.

• Inherently exhibits overshoot and
settling time characteristics during
transient conditions.

• Droop control can interact with
other grid control dynamics,
leading to potential stability issues
or oscillations.

• Influenced by network impedance,
system inertia, and load dynamics.

• Droop control operates on a
decentralized principle.

• Dampen frequency
fluctuations and stabilize
grid voltage,

• Enables rapid response to
grid events and dynamic
load conditions.

• Emulate the inertial
response of synchronous
generators.

• Compatible with renewable
energy integration

Model predictive control
(MPC) [30,31]

The system uses mathematical
models to predict system behavior
and optimize control actions,
offering adaptive and efficient
operation under varying grid
conditions.

• Requires accurate system
modeling and real-time
measurements. Load variations
can lead to model inaccuracies and
prediction errors.

• Limited adaptability to dynamics.
• Noise, sensor inaccuracies, and

communication delays can
introduce uncertainty into the
MPC control loop.

• Enable grid-forming
inverters to respond
dynamically to grid
conditions, load variations,
and renewable
energy-generation changes.

• MPC offers flexibility in
control design and
adaptability to diverse grid
configurations.

Adaptive control
algorithms (ACAs) [32,33]

The system adapts control
parameters based on sensor
feedback, ensuring stability and
reliability in dynamic grid
environments and offering
flexibility and robustness.

• Relies on accurately estimating
system parameters and dynamics
to adapt control strategies
effectively.

• Increases the control parameters
and system uncertainties.

• Vulnerable to modeling errors,
system identification inaccuracies,
and environmental condition
variations.

• Optimizes control actions in
real-time, considering
system dynamics,
constraints, and objectives.

• Facilitates rapid response to
grid events.

• Coordinated operation of
multiple GFM, energy
storage systems, and
renewable energy resources.

Hierarchical Control
Structures (HCSs)

Integrates multiple controls
within a hierarchical framework,
coordinating the operation of
GFM and other grid assets,
offering scalability and flexibility.

• Requires coordination and
communication among different
control levels.

• Communication delays, network
congestion, and bandwidth
limitations can affect system
responsiveness.

• Faces scalability challenges in
dynamic and evolving grids.

• Depends on centralized control
architectures.

• Enables coordinated control.
• Facilitates optimized

resource allocation and
energy management across
multiple hierarchical levels.

• Enables decentralized
decision-making.

• Promotes compatibility
between different control
levels and subsystems
within the grid.

2. Control Strategies for Grid-Forming Inverters
2.1. Virtual Synchronous Generator

The power system requirement is to match the load and generation for fixed-frequency
operation. So, what happens if a generation is suddenly withdrawn from the system? The
frequency will decline, but what if the system has lower inertia? Then, the inertia still
supplies the load, which means that the system has a faster decline in frequency. It causes a



Energies 2024, 17, 2400 5 of 25

higher rate of change in frequency. The swing equation mathematically describes this as a
first-order differential Equation (1):

d∆ f
dt

=
fn

2KEsys
(Pm − Pe) =

fn

2KEsys
∆P (1)

Load-damping effects can also be included explicitly in the swing Equation (14):

d∆ f
dt

=
fn

2KEsys
(∆P − DPload∆ f ) (2)

where d∆ f
dt is rate of change in frequency, KEsys is system inertia, Pm is generation, Pe is

load, and fn is frequency.

KEsys =
fn

2 d∆ f
dt

∣∣∣
t=0

∆P (3)

The disturbance and frequency must be instantaneously and accurately measured, and
the change rate must be instantaneously measured. Frequency cannot be directly measured
in power systems but can be estimated using voltage and current measurements. Methods
like zero-crossing and phase-lock loop calculations are suitable for pure sine waves. The
inverter-based power system does not have pure sine voltage and current waveforms.

Power electronic inverters can mimic synchronous machines’ inertial response for
synthetic connection. For an inverter to provide synthetic inertia equivalent to typical
inertia, it needs to act like a voltage source and form its voltage reference, i.e., be grid-
forming instead of grid-following. The inverter is typically configured like a grid-forming
device and then configured based on the classical synchronous machine model.

Pe =
EVg

X′
d

sin (δ − θ) (4)

dω

dt
=

1
2H

(Pm − Pe) (5)

dδ

dt
= ω (6)

i. A frequency disturbance in the system causes the grid voltage phase angle, θ, to
change.

ii. A grid voltage phase angle change causes active power from inverter Pe to change
according to (4).

iii. A change in Pe causes the inverter frequency ω and phase angle δ to change
according to (5) and (6).

iv. A change in inverter phase δ causes active power Pe to change again as per (4).
v. Go back to step iii until a new steady state is reached.

That is the grid-forming capability of the inverter, and thus, it works as an active
power source to supply energy when power changes occur.

Operation of Inverters as Virtual Synchronous Generators
The load increase causes a reduction in generator speed. The governor controls speed

by adjusting the valve position based on the rated MVA. Power reference is determined
based on machine speed vs. actual power droop characteristics [16]. The reactive power
demand increases, causing generator voltage to decrease from the nominal value. The
voltage regulator increases field circuit excitation, causing a terminal voltage increase.
Reactive power injection to the grid increases, while reduction leads to machine control
loop reduction.

Grid frequency drops due to disturbances reducing grid voltage compared to generator
terminal voltage phasors. This results in more real power, P, being fed to the grid due to
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the difference in machine and grid frequency. The synchronous generator supports the
grid during under-frequency events. Grid-voltage sags (Q-control) due to disturbances
reduce the voltage magnitude of grid voltage phasors compared to the generator’s voltage
magnitude. This causes more Q to be fed to the grid, supporting the grid during voltage-sag
disturbance events. The reverse is also true [25,34].

A GFM representing virtual machine is presented in Figure 2. Mechanically, the
acceleration of the synchronous generator angle is governed by Equation (7):

J
..
θ = Tm − Te − Dp

.
θ (7)

J represents the moment of inertia of the rotating parts, Tm mechanical torque, Te electrical
torque and Dp is the damping factor due to friction. The electrical torque Te is derived
in [35] as:

Te = Mfif
〈

i, s̃inθ
〉

(8)

J
dωG

dt
+ Dp(ωG − ωo) =

1
ωo

(Pm − Pe) = Tm − Te

Inverter’s real and reactive powers are given in (9)–(11).

P =
.
θMfif

〈
i, s̃inθ

〉
(9)

Q = −
.
θMfif⟨i, c̃osθ⟩ (10)

eq =
.
θMfifs̃in

(
θ− π

2

)
= −

.
θMfifc̃osθ (11)

Generation of Inverter Angle: Tm is calculated by dividing a set reference value Pref by the
nominal speed. The Tm, generated Te, and the DP

.
θ are compared to generate the error. The

error is integrated to generate the frequency. This speed
.
θ is the virtual speed generated in

the controller. Te is calculated using Equation (8) which depends on the controller’s virtual
angle θ, virtual speed

.
θ, phase current i, and signal Mf × if [36].

Generation of Inverter Voltage: The reactive power reference Qref, negative of the
calculated reactive power Qgap, and voltage drop term E0-Vm are added to generate the
excitation signal Mf × if. This excitation signal along with θ, generates a voltage signal.

Virtual Synchronous Generator Mode 1: VSG operates like a grid-following inverter,
tracking real power reference. Higher Pref leads to higher Tm, higher virtual frequency

.
θ,

which further leads to increasing machine angle θ concerning grid phase angle θG. If δ = θ
− θG is the difference in phase angle between the machine and the grid, the power flow is
governed by the well-known power flow (12).

P =
3VsVg sinδ

2X
(12)

The higher P means higher Te, and therefore, the term Te will subtract with Tm reducing
the frequency of

.
θ until the inverter frequency becomes equal to the grid frequency again.

However, increasing Pref has already increased θ earlier, as discussed in the previous
paragraph, so that Pref = P, although the difference in frequencies is again zero. In fact, in
a steady state, Pref always remains equal to P because any difference in power will cause
inverter frequency to vary, and inverter angle will vary correspondingly to make the power
mismatch zero.
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Figure 2. Functional diagram and emulation of virtual synchronous generator. (a) GFM representing
virtual machine characteristics; (b) Active and reactive power droop controller; (c) Simplified swing-
based virtual synchronous generator; (d) Reactive power voltage droop control law.

Virtual Synchronous Generator Mode 2: If Qref is more than the calculated Q supplied
into the grid, the excitation signal Mf if is increased. So, an EMF signal of a larger magnitude
will be applied to the PWM modulator. Hence, increasing Qref will increase E, and since
the grid voltage is fixed, more Q will be supplied to the grid as per the (13).

Q=
3Vg
2X

(Ecosδ−Vg) (13)

Since there is an integrator 1
Ks with Mf if, the excitation signal Mf if will settle to a constant

value when Q = Qref with correspondingly higher emf signal E as compared to the Qref
was lower.

Virtual Synchronous Generator Mode 3: The inverter frequency always converges to the
grid frequency. A lower grid frequency means a deviation between θ and θG because of the
divergence between the inverter and grid frequency.

δ=θ−θG=
∫

(
.
θ−

.
θG)dt (14)

This results in high δ producing higher current, which results in higher Te, which decreases
inverter frequency close to grid frequency and vice versa. Therefore, Te of the real power
loop ensures the inverter frequency convergence to the grid frequency.
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Virtual Synchronous Generator Mode 4: If the grid voltage magnitude deviates from
the nominal value, the VSG provides support by exchanging reactive power to the grid.
Lower grid voltage magnitude vm means higher ∆Q (positive), which increases Mf if,
thereby increasing the emf E. Now Q should be equal to a higher value Qref + Q. Therefore,
a Q higher than command Qref will be supplied to the grid, and vice versa is expected to
increase the grid voltage above the nominal value.

VSC technology provides an inertial response, reducing the impact of sudden load
changes on the grid. VSC facilitates renewable integration by offering grid-forming ca-
pabilities without external synchronization and plays a significant role in global energy
transitions. However, virtual synchronous generator control necessitates intricate algo-
rithms and accurate modeling to replicate synchronous generators’ behavior effectively.
This complexity often led to challenges in real-time implementation and posed limitations
in scalability and adaptability to varying grid conditions. Furthermore, particularly in
large-scale deployment scenarios, this could result in delays or inefficiencies in control
execution, potentially compromising grid stability and reliability.

In contrast, droop control emerged as a more practical and decentralized alternative
to virtual synchronous generator control. Droop control simplifies control implementation
by leveraging straightforward proportional–integral (PI) algorithms that adjust the inverter
output power in response to grid voltage or frequency deviations. This simplicity reduces
computational overhead and enhances system scalability.

2.2. Droop Control

Droop control is a technique used in GFM to regulate output voltage and frequency. It
adjusts the inverter’s output voltage or frequency in response to load or grid conditions
changes, mimicking traditional synchronous generators. Figure 3 displays the inverter’s
droop control functional diagram [17]. Common droop control involves linear voltage and
frequency variations with reactive and active power [13,37].
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Active and reactive power in a power system is given in (15)–(16). Vs, Vg, δ, R, and
X are source voltage, grid voltage, phase of grid voltage, line resistance, and reactance,
respectively [38].

P=
Vs

R2+X2 [R(Vs−Vgcosδ)+XVg sinδ] (15)

Q=
Vs

R2+X2 [−RVg sinδ+X(Vs−Vgcosδ)] (16)

Vg sinδ=
XP−RQ

Vs
; Vs−Vgcosδ=

RP+XQ
Vs

For a long transmission line: X>>R; R can be neglected without significant impact.
Hence, cosδ≃1 and sinδ≃δ.

δ=
XP

VgVs
and Vs−Vg=

XQ
Vs

(17)
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Since P depends on δ (frequency) → control of frequency can be achieved by active
power P; thus, change in f is controlled by changing P in Equation (18). Similarly, voltage
difference depends on Q → controls of voltage, achieved by changing Q in Equation (19).
These (18) and (19) are presented in Figure 3.

f−f0=−kp{P−P0} (18)

Vs−Vg=−kQ{Q−Q0} (19)

where kP and kQ are drooping coefficients.
The P-f and Q-V droop control govern the inverter’s internal voltage magnitude and

phase angle, as depicted in Figure 3. Q0 and P0 are rated, and Q and P are measured values.
kp and kQ are droop control coefficients. The P-f droop control ensures that several GFM’
phase angles are synchronized. Any disturbance increases the output power of one of the
two GFMs operating in parallel under P-f droop control. As a result, the internal voltage’s
angular frequency (ω) is decreased by its P-f droop control, reducing the phase angle
(θ) and restricting the inverter from raising its output power further. When many GFMs
operate simultaneously, the synchronization is ensured by this negative-feedback control
technique. Additionally, load sharing amongst GFM is accomplished via the P-f droop
control. The Q-V droop control uses a proportional-integral controller to regulate Edroop,
ensuring that the amplitude of grid-side voltage has a preset Q-V droop characteristic [39].

But in the cases where we cannot ignore the effect of R, then we have P′ and Q′, which
can be written as follows:[

P’
Q’

]
=
[

sinθ −cosθ
cosθ sinθ

][
P
Q

]
=
[X

Z −R
Z

R
Z

X
Z

][
P
Q

]
(20)

sinδ=
ZP’

VsVg
; Vs−Vgcosδ=

ZQ’
Vs

Now, the droop in frequency will be as follows:

f−f0=−kp{P’−P0}=−kp{P−P0}+kp
R
Z
(Q−Q0) (21)

Vs−Vg=−kQ

{
Q’−Q0

}
=−kQ

R
Z
{P−P0}−kQ

X
Z
(Q−Q0) (22)

Figure 4 shows the power influence on frequency and voltage across impedance ratios.
The impedances of the two inverters can be unequal, so the power flow is not uniform.
Earlier, only P controls frequency; but here P and Q both.
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The two parallel connected inverters’ drooping characteristics are shown in Figure 5,
with their droop making m1 and m2 [39]. The control technique makes these droops equal.
That can be achieved by following steps:

• Sense the inverter’s output current and voltage.
• Calculate P and Q values; m corresponds to kP, and n corresponds to kQ
• E* and ω* are rated values; find the voltage and frequency error signal here.
• Generate E sin(ωt), which generates PWM signals for the current and voltage loops.
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In this way, V and f are controlled.
Inverter 2 may have different m and n. Increasing m and n values (kP and kQ) degrades

the voltage regulation, though the power sharing is improved. So, there should be a careful
selection of droop coefficients. There are some drawbacks with this droop control of
the inverters.

• Slow response and a trade-off between voltage regulation and load power-sharing.
• If harmonics are present in the load, the performance will be degraded.
• If there is a line impedance mismatch, one will be overloaded, and the other will be

underloaded, meaning that power sharing will not be equal.
• Conventional droop control does not work with renewable energy, as it constantly

changes.

So, to avoid these drawbacks, a modified strategy based on virtual impedance im-
proves unequal power distribution by adjusting droop parameters. In the analysis of virtual
impedance control strategies, Figure 6a illustrates the concept of virtual impedance with the
inverter impedance, while Figure 6b depicts the implementation of virtual impedance loop-
based droop control. The line impedance of each inverter will be different, so we must en-
sure that the droop coefficient is equal for all, possibly by increasing the virtual impedance.

Vdroop1=[Zl1+Zv1]Il1=Vdroop2=[Zl2+Zv2]Il2 (23)
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Figure 6. (a) Virtual impedance with the inverter impedance. (b) Virtual impedance loop-based
droop control.

For different inverters, Vdroop1=Vdroop2=..=Vdroop1n.
Zl1 is the impedance offered by the first inverter, and Zv1 is the virtual impedance

inserted in the network of the first inverter, and so on.
Practically, no impedance for control is implemented. To insert the impedance, 1st

inverter is operated in master mode, and the remaining is in slave mode [40].

Zv1=0, Zv2=Zl1−Zl2; (24)
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The output reference current can be calculated as follows (25):

Ic,ref=
Eref−Vc

rvir+jxvir
(25)

where Vc is the measured voltage at the interface point of the inverter. rvir + xvir is the
virtual impedance. The system determines the current reference on the d-q coordinate
axis using Park’s transformation, using the internal voltage source’s voltage phase angle
as a reference phase. This simplifies analysis and control by projecting variables onto the
axis. The current reference is used to adjust the output current of the IBR, regulated by a
general current control system, to ensure the d-axis and q-axis currents align with reference
values. The decoupling control mechanism ensures independence for each axis, allowing
for precise control over d- and q-axis currents.

Influence of Virtual impedance on the output voltage:

The relationship between Eref and Vref as determined by the virtual impedance control
method [40]:

Vref=Eref−Zv(s)i (26)

where Zv(s) is the transfer function of the virtual impedance of the inverter. Zv represents
impedance characteristics, the reference voltage can be transformed into d-q as follows:

Vd_ref=Ed_ref−Lvsid+řLviq (27)

Vq_ref=Eq_ref−Lvsiq−řLvid

A change in voltage can be approximated [35] as follows:

∆V=Vd_ref−Eref=iqřrefLv (28)

Considering the minute q-axis element of Vref and assuming precise tracking of the
command voltage by the IBR output, the approximate calculation of the inverter output
power is as follows:

Pd=
3
2

Vd_refid+
3
2

Vq_refiq≈
3
2

Vd_refid (29)

Qd=−3
2

Vq_refiq+
3
2

Vq_refid≈−3
2

Vd_refiq (30)

The amplitude difference can be

∆V=iqřrefLv≈−2
3

Qd
Vdref

řrefLv≈−2
3

Qd
Vref

řrefLv (31)

Equation (31) demonstrates that a positive value for ∆V corresponds to a positive
output reactive power of the IBR; in contrast, a negative value corresponds to a negative
value of ∆V. Since the output reactive power is positive under typical operating conditions,
the available value of ∆V is mostly negative; that is, once virtual impedance control is
implemented, the real output voltage is lower than the command voltage.

Influence of virtual impedance on the stability [41]:

In [42,43], the small-signal model of GFM is obtained and considers the differential
relationship between the angular frequency and the command voltage.

∆
.
δ=∆ωref

∆
.

ωref=−
1
τ

∆ωref−
1
τ

kp_ref∆Pd (32)

∆
.

Vref=−
1
τ

∆Vref−
1
τ

kp_ref∆Qd (33)
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For small deviations, the impact of the virtual impedance change on the stability of
the GFM system is examined using Equations (32) and (33). When the virtual impedance
value is 0, the dominant eigenvalue is a pair of conjugate complex numbers with a damping
coefficient of Rd. As the impedance (L) increases to Lv, the dominant pole shifts from
conjugate complex numbers to real numbers. With the increase in the impedance, one of
the dominant poles moves towards the virtical axis. This results in a gradual increase in
the damping coefficient, reduced overshoot, and improved system stability. The distance
between the dominant pole and the virtual axis decreases as the impedance increases,
reducing the system’s stability margin.

The transition from both virtual synchronous generator and droop control to vir-
tual oscillator-based control was driven by specific challenges encountered with these
strategies. Droop control lacks inherent damping characteristics, leading to oscillations
and instability, particularly in systems with high renewable energy penetration. Addi-
tionally, Droop control may struggle to maintain precise synchronization with the grid
under dynamic operating conditions, potentially impacting power quality and grid stability.
These challenges prompted the exploration of alternative control strategies, such as virtual
oscillator-based control. Virtual oscillator-based control influences the concept of oscillation
synchronization to regulate inverter output, mimicking the behavior of natural oscillators.
Synchronizing voltage and frequency oscillations with the grid offers improved stability
and resilience compared to VSG and droop control.

2.3. Virtual Oscillator-Based Control

Virtual oscillator control (VOC) is a decentralized control method for GFM appli-
cations. It emulates nonlinear oscillator dynamics and is current controlled but lacks
regulation of inverter terminal voltage. VOC is a time-domain GFM control technique for
inverter terminal characteristics, emulating weakly nonlinear oscillators with sinusoidal
oscillations [23,26,44]. The VOC consists of a resonant L-C tank with frequency ωn and
characteristic impedance ε, interacting with an inverter by measured output current.

The current is transformed to the αβ frame, scaled by ki, and rotated by phase R(ϕ).
Scaling VOC and inverter output current with gains ki and kv. VOC’s time-domain
dynamics in Figure 7 are expressed as equations.

C
dvc

dt
=−iL+im−u1 (34)

L
diL

dt
=vc+vm−εu2 (35)
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The oscillator inputs u1 and u2 are determined from measured current and setpoints.[
u1
u2

]
=kiR(φ)

[
iα−i*

α

iβ−i*
β

]
(36)
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R(ϕ) follows V-Q and f-P steady-state droop law, obtaining voltage command signals,
vαβ, using kv gain as vαβ=kv[vcεiL]

T. The whole virtual oscillator control dynamics can be
given as follows:

.
vα=

ξ

k2
v

(
2v2

n−v2
v0

)
vα−ωnvβ+

kvki
C

(
iβ−i*

β

)
(37)

.
vβ=

ξ

k2
v

(
2v2

n−v2
v0

)
vβ+ωnvβ−

kvki
C

(
iα−i*

α

)
(38)

The oscillator coefficient, ζ, affects the steady-state inverter nominal voltage amplitude,

vn, and convergence speed. The current setpoints, i*
αβ and vno=

(
v2

α+v2
β

)1/2
, are obtained

from reference active and reactive power and scaled, vαβ. VOCs offer several advantages:
stability, plug-and-play integration, dynamic response, and frequency regulation.

They enable GFM to provide stable voltage and frequency, even without a grid con-
nection, ensuring overall microgrid stability. VOCs also facilitate dynamic load sharing
among inverters, ensuring efficient resource utilization. Additionally, VOCs enable fre-
quency regulation services, ensuring the stability of power systems with high renewable
energy penetration.

2.4. Model Predictive Control

Traditional control strategies often rely on fixed parameters that may not be sufficient
to handle the dynamic and nonlinear nature of grid operations, especially in systems with
high renewable energy integration. MPC aims to overcome this limitation by utilizing
mathematical models of the grid and the inverters to predict future system behavior and
optimize control actions accordingly. By incorporating system dynamics, constraints, and
objectives into its predictive framework, MPC can anticipate grid disturbances, fluctuations
in demand, and variations in renewable energy generation, allowing grid-forming inverters
to proactively adjust their operating parameters to maintain stability, improve power
quality and enhance overall grid performance.

Modern microprocessors greatly solve the computational burden problem, making
it feasible to practically apply nonlinear control techniques. Model predictive control has
gained more popularity due to its straightforward approach and ability to handle nonlinear
systems and constraints. Among different nonlinear controls, finite control set (FCS) model
predictive control (MPC) [45] is a straightforward control algorithm to track the desired
reference by making use of the predictive model of the system. The state to be controlled is
predicted using the predictive model for a one-step-ahead instant and compared against a
given reference value.

vi=iiRi+Li
dii
dt

+vc (39)

vc=igRg+Lg
dig

dt
+vg (40)

dvc

dt
=

1
Cf

(ii−ig) (41)

Measurements are placed for the inverter output current, ii; capacitor voltage, vc; and
grid voltage, vg. Considering that Ri, Rg, Li, Lg, Rd, and C are inverter side resistance,
grid side resistance, inverter side inductance, grid side inductance, filter capacitor branch
damping resistance, and filter capacitance, respectively, by applying, Euler’s method to
(39)–(41), one can obtain the one-step-ahead prediction model given in (42)–(44):

ii,k+1=
Ts

Li
(vi,k−vc,k)+

(
1−RiTs

Li

)
ii,k (42)

ig,k+1=
Ts

Li

(
vc,k−vg,k

)
+
(

1−
RgTs

Lg

)
ig,k (43)
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vc,k+1=vc,k+

(
Ts

Cf
+Rd

)(
ii,k+1−ig,k+1

)
(44)

All quantities in the (42)–(44) are expressed in the αβ frame of reference, as shown in
(45)–(46).

ii=iiα+jiiβ; ig=igα+jigβ; (45)

vi=viα+jviβ ; vc=vcα+jvcβ; vg=vgα+jvgβ (46)

where the relationship between the per-phase and alpha–beta quantities is given in (47).

x=xα+jxβ=
2
3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

][
xa xb xc

]
(47)

Depending on the inverter topology, some algorithms also use filter capacitor volt-
age as the controlled state [46]. Now, the predicted controlled state, ig,k+1, is compared
against the reference value, i*

g, in the objective function (48), which is evaluated for each
possible switching.

Also, since there is no other objective other than the grid current tracking, the objective
function will only consist of the current-error terms.

Gj=
(

igjα,k+1−ji*
gα,k+1

)2
+
(

igjβ,k+1−ji*
gβ,k+1

)2
; j∈{0, 1,2,. . .N} (48)

where N is the number of possible active switching.
Since the grid voltages are measured, the reference current, igj,k+1 in (48), can be

obtained from the references of real and reactive powers as in (49).[
i*
gα,k

i*
gβ,k

]
=

1(
v2

gα,k+v2
gβ,k

)[vgα,k −vgβ,k
vgβ,k vgα,k

][
P*

Q*

]
(49)

Then, using four-term Langrage’s extrapolation, i*
gα,k+1 is computed as in (50) (see

Table 1 of [47]).
i*
g,k+1=10i*

g,k−20i*
g,k−1+15i*

g,k−2−4i*
g,k−3 (50)

MPC can adapt to changing grid conditions and optimize control strategies in real-
time, enabling grid-forming inverters to operate more efficiently and effectively in diverse
operating environments. However, the FCS-MPC has a limitation: it does not offer a fixed
switching frequency [48]. MPC’s effectiveness relies on accurate mathematical models of
the grid and the inverters.

2.5. Reinforcement Learning Based Control

The reinforcement learning technique is a machine-learning paradigm in which an
agent learns to make decisions through interaction with its surroundings [49]. Reinforcement-
learning techniques are divided into three main categories: value-based methods (Q-learning
and deep Q networks), policy-based methods (policy gradients, proximal policy optimiza-
tion, and actor–critic), and model-based techniques. Q-learning uses a Q-value function
to estimate the cumulative reward of actions, while Deep Q Network uses deep neural
networks for more complex state spaces. Policy gradients parameterize agents’ policies to
maximize rewards [50–52].

Figure 8a shows a basic reinforcement learning model with a policy-based algorithm
for determining optimal parameters like Dq, Dp, J, and Mf. Policy-based algorithms directly
parameterize the policy, mapping states to actions, making them ideal for continuous action
spaces or situations with challenging explicit value functions. The model uses a policy-
based function to learn neural networks, using them as approximators to represent the
policy that maximizes the expected cumulative reward.
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The parameters mentioned—Dq, Dp, J, and Mf—are likely components of the system
dynamics or control structure [49], as demonstrated below:

• Dq and Dp represent damping coefficients related to the system’s response in the
generalized coordinates.

• J represents the moment of inertia of a rotating system.
• Mf represents friction or another factor influencing the motor’s behavior.

Reinforcement learning enhances system stability and efficiency by optimizing param-
eters, adapting to complex environments, and capturing intricate relationships between
system parameters, improving control and decision-making capabilities.

Actor–Critic Algorithm

In Figure 8b, the actor–critic method is explained; it combines elements of both
approaches for more stable learning.

vopt=Vref(s)−Zout(s)is(s)

The reinforcement learning model, illustrated in Figure 8, uses a hybrid approach,
combining value-based and policy-based reinforcement learning methods to optimize
the impedance (Zout) characteristics of a GFM. The model aims to determine optimal
output impedance values for an inverter, represented as a complex impedance (R + jX),
using machine-learning techniques to modify Z, influencing the inverter’s behavior in
response to varying grid conditions. The hybrid approach estimates cumulative rewards
for impedance values, guiding optimal system performance. Policy-based actor–critic
architectures specify optimal impedance values (Zopt), focusing on policy-making to
maximize cumulative reward and provide direct control over inverter behavior [29,53].
The reinforcement learning model uses a Convolutional Neural Network in the actor–critic
network to ensure power decoupling in GFM, capturing spatial dependencies and learning
optimal impedance values simultaneously.

Brain Emotional Learning-based Controller
The Brain Emotional Learning Controller (BELC) is an intelligent control system

miming the human brain’s emotional learning processes, enhancing decision-making and
learning. The manipulation of inertial constants, kp, ki, and kg, in virtual synchronous
machines is crucial for power system control strategies. These parameters affect the VSM’s
response to changes and impact grid stability. Figure 9 illustrates the selection process
of optimal values for the kp, ki, and kg, providing the parameter-tuning process in de-
tail. The BELC can optimize these manipulations by leveraging emotional neurons to
simulate decision-making states, allowing the controller to adapt and learn from system
experiences [54].



Energies 2024, 17, 2400 16 of 25
Energies 2024, 17, x FOR PEER REVIEW 17 of 26 
 

 

Define the sensor input (SI) and the emotional signal (ES)

Choose suitable values of coefficients, α,β 

With zero initial conditions, define the BEL output u from (51)

Select the SI and ES inputs for BEL using (52) and (53)

Check bound of control command from (54)

If umin < u < umax 

Start

Yes

No

Desired values of kp, ki, and kg

 

Figure 9. Selection of optimal values of kp, kg, and ki. 

Figure 10 represents the improved VSG scheme, which uses a neural network to ad-

just inertia and damping adaptively, with a functional relationship f(x). The control algo-

rithm consists of a P and Q control loop, representing virtual inertia and damping coeffi-

cients. 

Reference [55] provides the selection of inertia and damping coefficients and empha-

sizes the importance of tuning these parameters within a reasonable range to ensure sys-

tem stability. In [56], it is suggested that active and reactive loops can be decoupled, with 

the influence of the reactive loop ignored. The maximum cut-off frequency is specified to 

be within 10% of the power frequency, leading to a lower damping coefficient of 11.5.  

Grid

Freq/volt 

detector

Power 

Meas..

Energy 

storage

PWM

RBF neural 

network

Swing 

Equa..
Virtual 

governor

Distributed 

Generations

Inv

Lf Lg

1
s

dM

dt

f(x)

Virtual 

Excitor

θ E
U0

Q0

ω0

P0

ωg

Basic partImproved part

ω

DP

J

 

Figure 10. Overall control block diagram of improved VSG. 

𝑫𝑷 =
∆𝑻

∆𝝎𝒎𝒂𝒙
=

∆𝑷

𝝎∆𝝎𝒎𝒂𝒙
≈

∆𝑷

𝝎𝒐∆𝝎𝒎𝒂𝒙
 (55) 

where ∆𝝎𝒎𝒂𝒙 = 𝟐𝝅, and the range of DP is obtained as follows:  

𝟏𝟎. 𝟏 ≤ 𝑫𝑷 ≤ 𝟐𝟓. 𝟑  

Figure 9. Selection of optimal values of kp, kg, and ki.

The BELC enhances damping in the grid-forming mode in power systems, ensuring
stability and preventing oscillations. The controller can dynamically optimize VSMs by
adjusting inertial constants, contributing to system stability. The emotional learning aspect
allows controllers to adapt to varying conditions and uncertainties, aligning with the trend
toward intelligent, adaptive control strategies for real-time performance.

u(t)=SI(t)
[

α
∫ t

0
SI(t)[max(0,ES(t)−A(t))]dt−β

∫ t

0
SI(t)[A(t)−O(t)−ES(t)]dt

]
(51)

SI=λ1

(
P*

in−Pg

)
+λ2

∫
(P*

in−Pg)dt (52)

ES=δ1(ω0−ω)+δ2

∫
(ω0−ω)dt+δ3u (53)

umin≤(α+β)(λ1+λ2)
2(δ1+δ2)y3dt≤umax (54)

Figure 10 represents the improved VSG scheme, which uses a neural network to adjust
inertia and damping adaptively, with a functional relationship f(x). The control algorithm
consists of a P and Q control loop, representing virtual inertia and damping coefficients.
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Reference [55] provides the selection of inertia and damping coefficients and empha-
sizes the importance of tuning these parameters within a reasonable range to ensure system
stability. In [56], it is suggested that active and reactive loops can be decoupled, with the
influence of the reactive loop ignored. The maximum cut-off frequency is specified to be
within 10% of the power frequency, leading to a lower damping coefficient of 11.5.

DP=
∆T

∆ωmax
=

∆P
ω∆ωmax

≈ ∆P
ωo∆ωmax

(55)

where ∆ωmax=2π, and the range of DP is obtained as follows:

10.1≤DP≤25.3

The shaded area in Figure 11 represents the range of values for the damping coefficient
and inertia. The top and lower bounds of the damping coefficient, Dp, are [11.5, 25.3], and
the upper and lower bounds of inertia, J, are [0.05, 0.5].
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The renewable energy grid connection standard establishes the acceptable value range
for these coefficients. The frequency change of 1 Hz results in active power changes in the
inverter output, ranging from 40% to 100% of the rated capacity. The inverter has a rated
capacity of 50 kVA.

The VSM was improved by employing the radial basis function (RBF) neural network.
This enhances the VSM’s stability and adaptability to dynamic power system conditions.
The RBF neural network effectively regulates frequency and voltage, ensuring that complex
relationships are approximated and stable. This improvement could lead to a more reliable
and robust VSM, crucial for overall power system stability and performance.

Numerous operational characteristics of GFM inverter control topologies are com-
pared and presented in Table 2. This comparison sheds light on the key attributes and
properties of GFM control topologies, providing a comprehensive understanding of its
distinctive features. In the comparison table, power quality refers to the reliability and
consistency of the electricity supply, encompassing factors like voltage stability, harmonics
mitigation, and waveform distortion reduction. Stability ensures the system maintains
equilibrium under various conditions and disturbances, providing continuous power de-
livery. Fault ride-through capability pertains to the system’s resilience in withstanding
and recovering from faults without compromising overall operation, thereby minimizing
downtime and enhancing grid reliability. Black start capability is the capacity of the power
system to initiate and restore operations independently following a complete blackout
event, facilitating rapid recovery and restoration of power services. Scalability refers to
the system’s flexibility and adaptability to accommodate changes in demand, load pat-
terns, and the integration of renewable energy sources, ensuring efficient and sustainable
operation over time. Anti-islanding measures are mechanisms implemented to prevent
the formation of isolated power islands, which can pose safety risks and disrupt grid
stability during network disturbances. Tracking accuracy encompasses the precision and
reliability of control systems in regulating key parameters such as voltage, frequency, and
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power flow, aligning with desired setpoints or reference signals. Finally, response time
refers to the speed at which the control system reacts to changes in operating conditions or
command inputs, ensuring timely and effective adjustment to maintain system stability
and performance. Understanding these characteristics helps develop control topologies
prioritizing reliability, resilience, and efficiency in power system operation.

Table 2. Comparison of grid-forming control topologies.

Control
Topology

Power
Quality Stability Fault Ride-

Through Black Start Scalability Anti-
Islanding

Tracking
Accuracy

Response
Time

Operating
Power
Range

Technology
Maturity

Droop control Fair Poor Poor Very Poor Fair Fair Poor Very Poor Medium–
high High

V-I droop control Good Fair Fair Poor Fair Good Fair Poor Medium–
high

Medium–
high

VSG control Excellent Good Good Fair Fair Excellent Good Fair Medium–
high

Medium–
high

MPC Good Good Good Fair Good Good Excellent Good High Medium
Reinforcement
learning-based
[56]

Fair Good Fair Poor Fair Fair Good Excellent High Low

Note: In assessing the characteristics of grid-forming inverter control topologies, a rating of ‘poor’ indicates
significant shortcomings in key characteristics, and ‘fair’ suggests acceptable performance but with room for
improvement in certain aspects. Control topologies rated as ‘good’ demonstrate a solid performance across
various metrics. Finally, a rating of ‘excellent’ signifies superior performance in the evaluated criteria.

3. Performance Analysis of Grid-Forming Inverter

In this section, the operational characteristics of GFM, such as autonomous microgrid
operation, robust fault right-through capability, fault detection and islanding systems,
dynamic behavior, and small signal stability, are discussed. A concise summary of the
operational behavior of GFMs is presented in Table 3.

Table 3. Summary of operational characteristics of grid-forming inverter.

Characteristic Description

Autonomous microgrid operation
GFMs facilitate autonomous microgrid operation by controlling inverter frequency.
They redistribute load among inverters and activate under-frequency load shedding
to address overload issues, ensuring system survival during overload events.

Robust fault ride-through capability

GFMs continuously monitor parameters and respond quickly to faults, ensuring
resilience during short duration faults. They provide necessary support to the grid,
preventing power interruptions and cascading failures.
GFMs can withstand faults up to 1.2–2.0 p.u. of their rated value and require current
control strategies for future grid integration.

Dynamic behavior and small-signal
stability

GFMs contribute to stability by reducing frequency deviations and enhancing
frequency response compared to traditional grid-following approaches.
Transitioning to GFMs improves frequency stability even with mixed inverter types.

Islanding operational capability

GFMs use voltage, frequency, and current monitoring to detect faults and initiate
appropriate actions to maintain grid stability.
GFMs automatically transit to islanded mode, supplying power to local loads, and
forming small microgrids separate from the main grid, increasing grid resilience.

3.1. The Survival of Autonomous Microgrids during Overload Events

The grid is designed to address the overload issue by controlling inverter frequency [57].
When some inverters in the microgrid are overloaded, the GFM can transfer the extra load
to other inverters. When almost all inverters in the microgrid are overloaded, this controller
can activate the under-frequency load shedding. For example, consider two GFM systems
with inverters Inv1 and Inv2. Dispatch the output power of Inv1 to near its maximum
at the beginning, and Inv2 is far from its maximum. If it happens, inverters Inv1 and
Inv2 increase their currents almost instantaneously to meet this load change. This is just
because they behave as voltage sources; they keep their internal voltage constant during the
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transient. So, their currents come out very rapidly to meet this load change [58]. However,
this situation has problems because Inv1 is already close to its maximum before a fault or
disturbance. After the disturbance, the GFM output power for Inv1 exceeds its maximum.
This causes overloading of Inv1, which further causes issues, maybe collapsing the bus of
the inverter or a synchronous generator. So, this overload issue should be solved.

The microgrid can solve this overload issue using two Pmax controllers [59,60]. The
key concept to this is that, once Inv1 reaches Pmax, the controller will be activated to reduce
the frequency of Inv1 rapidly, and by reducing the frequency, we can change the phase
angle between these two inverters, so this can redistribute the power flow between the
two inverters. This is just an autonomous load transfer from Inv1 to Inv2, using this Pmax
controller [61]. Now, consider three sources: the GFM Inv1, the synchronous generator
SG1, and energy storage. Consider this energy storage to be a contingency. This results
in overloading the GFM Inv1 and the synchronous machine SG1, and both Inv1 and SG1
are equipped with this Pmax controller. Once this overload happens, the Pmax controllers
for both Inv1 and SG1 are activated, and both reduce their frequency. The entire system
frequency keeps dropping, and the frequency relay detects this under-frequency event and
trips the load, and the system survives.

3.2. Fault Ride-Through Capability

GFM continuously monitors parameters, enabling quick responses and corrective
actions to mitigate the impact of faults. The fault ride-through capability of GFMs ensures
resilience during faults, allowing them to withstand short-duration faults and provide the
necessary support to the grid, preventing power interruptions and cascading failures [62].

GFMs can only withstand a maximum current of 1.2–2.0 p.u. of their rated value.
Tripping prevents overcurrent damage, but future IBR networks require them to ride
through grid faults and transient instability. Therefore, a current control with transient
stability becomes necessary in the future grid. Current limiting strategies can be hardware-
based or software-based [63,64]. Hardware like hysteresis compensators and fault current
limiters restrain fault currents. However, these are inappropriate for GFM due to their
high cost, poor performance, and complex implementation. Software-based approaches
offer intellect and can be integrated into controllers [65]. GFMs switch from the usual
voltage source to the current source mode, causing overvoltage during asymmetrical faults.
However, the current source mode loses inverter voltage source characteristics, requires fast
fault detection, and increases the computation burden. Indirect methods modify voltage
references without losing source behavior; however, they fail under asymmetrical faults.

Virtual impedances offer overcurrent protection, but the current limitations of invert-
ers may affect GFMs’ stability. Future development of GFMs should focus on maintaining
voltage source behavior, limiting faulty phase currents, and ensuring stable synchroniza-
tion [26]. An adaptive fault ride-through scheme is proposed for GFMs to improve current
limiting and synchronization stability in symmetrical and asymmetrical grid faults [66].
This scheme offers effective fault-limiting, healthy phase voltage maintenance, and en-
hanced negative and zero-sequence current sharing.

3.3. Dynamic Behavior and Small Signal Stability

Inverter-based power integration significantly alters power system dynamics, challeng-
ing conventional assumptions of power system networks. Studies show that low-inertia
systems are more vulnerable and challenging to ensure small signal stability than 100%
inverter-based systems [67,68]. In a study based on simulation results [69], a three-phase un-
balanced distribution system connected to a transmission system and grid-following/GFM
inverters were penetrated. The system’s frequency stability was affected by changing the
inverter penetration level, affecting the system’s overall performance. The study revealed
that, in a 100 machine-based system, adding grid-following inverters significantly reduces
the frequency. Through a comprehensive analysis, several key insights emerge:
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Firstly, in systems where grid-forming inverters are absent, the power infrastructure
demonstrates resilience to accommodate up to 70% penetration of grid-following inverters.
This threshold underscores the adaptability of existing technologies in managing grid
dynamics within defined operational limits. Secondly, the imperative for integrating grid-
forming inverters arises as the penetration of inverter-based resources surpasses 70%. This
pivotal threshold marks a transition point, emphasizing the necessity of advanced control
strategies and technologies to uphold system stability and reliability amidst escalating
renewable energy integration. Thirdly, aiming for a comprehensive transition to 100%
penetration of IBR necessitates the deployment of at least 12% grid-forming inverters to
uphold stability. This underscores the critical role of these inverters in enhancing frequency
response and ensuring grid resilience under varying operating conditions. These GFMs
inverters enable higher penetration levels of IBR and contribute to superior stability and
frequency response characteristics compared to conventional grid-following approaches.

In the system, if part of the IBR is grid-forming and the remaining are grid-following
inverters, then it is obtained that the frequency response is still relatively stable because all
the machine dynamics disappear. It is discovered that the frequency response for a transi-
tion from one steady state to another is even better than that of a traditional synchronous
machine-dominated system [70–72]. So, GFM can do better than distinguished machines
on frequency control. Conclusively, the system needed fewer GFMs than synchronous
machines to maintain frequency stability.

3.4. Islanding Operational Capability

GFM-based systems use voltage and frequency monitoring, PLL synchronization, and
current monitoring to detect faults. Voltage and frequency deviations from predefined
setpoints indicate faults [73]. GFMs can use the rate of change in frequency detection to
identify faults like short circuits or sudden load changes. Zero-crossing detection helps
to identify distorted waveforms or abnormal zero-crossing patterns. The goal is quickly
identifying faults and initiating appropriate actions to maintain grid stability.

Islanding occurs when a distributed energy resource continues to supply power to a
portion of the electrical grid, even when the main grid experiences a blackout or loss of
connection. When a grid disturbance occurs, the inverter can detect a loss of connection
or instability and automatically transition into “islanded” mode, generating AC power
to supply local loads, forming a small microgrid separate from the main grid. Islanding
of GFM-based systems offers advantages such as increased grid resilience and renewable
energy utilization. However, it poses safety concerns, requiring proper anti-islanding
protection and sophisticated control algorithms to maintain stable operation.

4. Future Research

Future GFM research might focus on several important issues to improve their effec-
tiveness and power system integration. The following are some possible lines of inquiry
based on the information given:

• When transitioning the grid to isolated mode, the grid-forming mode should emulate
the behavior of a synchronous generator. This necessitates the precise control of the
rate of change in frequency. In the isolated mode of GFM, it assumes sole responsibility
for upholding network frequency, either individually or collectively, with all other
inverters behaving parallel to GFM inverters. Consequently, it imposes regulations
on the rate of change in frequency. Formerly, frequency variation rate control relied
on grid steam valve positioning, but now, this responsibility is placed solely on the
inverter. It is imperative to explore controlled strategies and refine them deeper to
effectively constrain the rate of change in frequency.

• When enhancing resilience through an inverter, the GFM can be effectively employed
in conjunction with various energy sources such as batteries, solar PV systems, wind
turbines, etc. When grid voltage disturbances necessitate power injection from the
inverter, the question arises: where does the inverter source this additional power?
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Typically, solar PV systems, wind turbines, etc., operate at their maximum power
point, leaving no surplus energy available. Thus, additional power must be sourced
from battery storage to augment the inverter’s GFM capability. One proposed solution
involves operating the inverter at a fixed point relative to the MPP. However, this ap-
proach results in underutilizing the GFM capability, consequently diminishing overall
efficiency. This underscores the necessity of conducting comprehensive studies to
enhance techniques and topologies to optimize the GFM capability, while maintaining
high resiliency and efficiency. Such investigations are essential to identify strategies
that leverage the full potential of GFM, while minimizing energy wastage, thereby
ensuring optimal system performance under varying grid conditions.

• “What methodologies can be employed to integrate Grid Forming Mode capabilities
within Vehicle-to-Grid conditions? Given the future widespread adoption of electric
vehicles, how can we effectively control their collective connectivity to support GFM
operations within the grid?”

• Future research can focus on empirically investigating the interplay between grid-
following and grid-forming inverters within a mixed environment. This includes
analyzing the impact of varying ratios of grid-following to grid-forming inverters on
grid stability, frequency control, and overall system performance. Additionally, re-
search efforts should explore novel control strategies and coordination mechanisms to
optimize the operation of grid-forming inverters in such heterogeneous environments,
ultimately enhancing grid resilience and reliability.

• Explore sophisticated stability analysis methodologies, such as small-signal stability
analysis and transient stability simulations, to mark out stability boundaries and
operational limits in power system networks. Furthermore, future research activities
should aim to control the findings from stability analysis to inform decision-making
processes regarding the deployment and integration of GFM inverters. By identifying
critical stability constraints and evaluating the impact of different deployment scenar-
ios, researchers can develop strategies to optimize the utilization of GFM inverters,
while ensuring grid stability and reliability.

• How can advanced simulation models be developed to accurately capture the dynamic
behavior of loads and transmission lines, thereby providing a realistic representation
of grid-forming inverter performance in dynamic operating conditions? Specifically,
how can these models effectively account for the time-varying characteristics of loads
and the dynamic response of transmission lines to disturbances?

• Investigations are needed to clarify how variations in filter parameters, such as in-
ductive and capacitive reactance, impact the stability of GFM inverter-based systems,
particularly in scenarios involving multiple interconnected inverters. Additionally,
the impact of coupling reactance on the stability of inverter-based systems deserves
thorough analysis. Furthermore, researchers should explore how the relationships
between filter parameters and stability margins can be examined to identify optimal
design configurations that enhance stability and mitigate potential instability issues.

• Future research should prioritize conducting transient stability studies to carefully
evaluate the dynamic behavior of GFM-based systems under various operating con-
ditions. This involves accurately modeling the transient response of grid-forming
inverters and analyzing their interactions with synchronous generators, loads, and
transmission lines during dynamic scenarios. To achieve this, it is essential to incor-
porate detailed representations of inverter control algorithms, system dynamics, and
grid infrastructure into simulation frameworks to ensure realistic results.

5. Conclusions

This paper provided a comprehensive overview of GFM in modern electric power
systems. The control methods for GFM were thoroughly discussed, ranging from basic
techniques, such as droop control and voltage/frequency regulation, to more advanced
strategies, like model predictive control and adaptive control. Through a detailed analysis
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and comparison, this paper has shed light on the strengths, limitations, and suitability
of different control methods for diverse grid environments. It has been demonstrated
that each approach has its advantages and trade-offs, depending on system complexity,
operating conditions, and desired performance metrics. Ultimately, the research presented
here underscores the importance of selecting appropriate control strategies to mitigate grid
disturbances, optimize power flow, and enhance overall system stability. By understanding
the characteristics of various control methods, stakeholders in the power industry can make
decisions to ensure reliable and flexible power delivery in dynamic grid environments.
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