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Abstract: This paper aims to assess the efficacy of the Harris Hawk Optimization (HHO) algorithm
within the domain of photovoltaic (PV) power-generation systems. The focus lies in elucidating
how the HHO algorithm optimizes maximum-power-point tracking (MPPT) and augments the
performance of grid-connected PV systems. Initially, in the MATLAB/Simulink environment, a
comparison is made between the HHO algorithm and two other extensively utilized methods for
maximum-power-point tracking (MPPT): Perturb and Observe (P&O) and Particle Swarm Optimiza-
tion (PSO). Preliminary findings indicate the HHO algorithm’s notable advantages in efficiency and
speed over the other algorithms. Furthermore, by establishing a practical experimental platform and
synchronously verifying outcomes through simulation, we conducted a comprehensive assessment
of the HHO algorithm on a single-phase full-bridge-inverter grid-connected system. Results show
the HHO algorithm’s exceptional optimization capabilities, which displays superior adaptability and
ability to adjust to varying external conditions.

Keywords: PV power-generation system; MPPT; Harris Hawk Optimization; grid-connected control
strategy

1. Introduction

With the development of the world economy, the global energy challenge has become
increasingly prominent. In response, clean and reliable solar power generation has gar-
nered significant attention from scholars and has emerged as the preferred choice for many
countries. Its advantages, including easy accessibility, abundant reserves, and environmen-
tal friendliness, have contributed to its growing prominence. As the production cost of
PV modules continues to decrease and the conversion efficiency of solar cells improves,
PV power generation is gradually taking on a more significant role, transitioning from
being a supplementary energy source to a primary alternative energy solution in various
domains [1].

In the pursuit to enhance the efficiency of PV power generation, both domestic and
foreign scholars have conducted extensive research on maximum-power-point tracking
(MPPT). The disturbance observation method [2], a traditional control approach, has gained
widespread adoption due to its simplicity and ease of implementation. However, it often
falls short in terms of speed and steady-state accuracy, and the system may occasionally
misjudge the maximum-power point. A novel approach was introduced in [3], known
as the jump adaptive-disturbance-observation method. This method exhibits rapid re-
sponsiveness to environmental variations and effectively mitigates system disturbances
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when operating at the maximum-power point. In [4], a variable step-size perturbation
and observation method was devised. This method incorporates a step-size adjustment
strategy, where if the product of the two differences, namely the output-power difference
and the voltage difference before and after perturbation is found to be negative, the per-
turbation step size is halved from its initial value, and the direction of the perturbation is
changed accordingly. Similar methods include conductance increment methods [5], which
are based on traditional single-peak mathematical characterization, but these cannot cope
with non-convex function optimization problems in a non-uniform irradiance.

In order to find the maximum-power points in the multi-peak characteristics of PV ar-
rays, various intelligent algorithms have been proposed, such as the improved Team Game
Optimization algorithm (ITGO) [6], the improved Social Ski Driver algorithm (ISSD) [7],
the Hierarchical Pigeon-excitation Optimization algorithm (HPIO) [8], and the modified
Butterfly Optimization algorithm (MBO) [9] et al. By introducing random factors and im-
proving their global search ability, these algorithms can be applied to a variety of nonlinear
and non-convex complex optimization problems.

Particle swarm optimization (PSO) has emerged as a hot research area in recent
years, offering better speed and steady-state accuracy compared with traditional control
algorithms. However, PSO is sensitive to the initial position and exhibits poor stability, and
this results in significant fluctuations in voltage and power, leading to low energy utilization.
To enhance the efficiency and convergence speed of the Particle Swarm Optimization (PSO)
algorithm, the proper initialization of particles is crucial to finding the optimal solution.
In [10], the author proposed a two-stage algorithm to address this issue. In the first stage,
the Perturb and Observe (P&O) method is utilized to determine the nearest local maximum,
followed by the second stage, where the PSO method is employed to achieve global peak
(GP) optimization. However, it was observed that the P&O technique takes longer to
determine the maximum-power point (MPP). To address this limitation, the authors in [11]
made improvements by removing the randomization of the standard PSO acceleration
factor. This modification aims to reduce the search time. Nonetheless, it is necessary to limit
the change in particle velocity since low-velocity values may require more iterations to
reach the GP, while excessively large velocity values could lead to escaping the GP. Striking
the right balance in the particle-velocity adjustment becomes crucial for the success of the
optimization process. In addition, an improved Salp Swarm algorithm [12] improves the
global search capability by adding Pareto distribution and chaotic mapping to the leader-
position update process and introduces a discrepancy strategy to improve the local search
process. Artificial neural networks [13] have also been used to predict the range in which
the maximum-power point lies, and a simple feedforward neural network can estimate the
domain in which the maximum-power point lies based on the variation in temperature and
irradiance. In [14], a self-tuning scheme based on reinforcement learning was proposed,
which can improve the convergence speed and introduce β parameter, which has been
proven to track the MPP more efficiently, to make a constrained search space to obtain
higher MPPT performance.

Although so many metaheuristic algorithms have been used to solve the multi-peak
problem, the various algorithms have their own advantages and disadvantages in terms of
tracking accuracy and tracking speed. Selecting an MPPT algorithm with higher tracking
accuracy and faster tracking speed is important for optimizing the PV power output. In
partial shading conditions, the P-V curve of a photovoltaic array often shows multiple peaks.
Traditional algorithms tend to prioritize local searches during optimization, which results
in becoming stuck in the local optima. Conversely, HHO, inclined to explore the search
space, readily avoids the local optima, thereby aiding in locating the maximum-power
point.



Energies 2024, 17, 76 3 of 16

For higher tracking accuracy and faster tracking speeds, this paper incorporates the
Harris Hawk Optimization algorithm [15] to create a new MPPT control strategy. In order to
verify its effectiveness, the P&O and PSO methods are used for MATLAB/Simulink (version
R2021a) simulations. By analyzing the convergence characteristic curves of the output
power, output voltage, and duty cycle, the feasibility and effectiveness of the proposed
HHO algorithm can be evaluated. Additionally, this paper analyzes and summarizes
the topology of a grid-connected inverter. After considering switching loss and control
difficulty, the single-phase full-bridge-inverter circuit is selected as the scheme for the grid-
connected PV power-generation simulation system. To simulate potential local shading
issues in real-world scenarios, the output characteristics of the PV panels are modified,
causing irradiance changes during the simulation for 1 s.

2. Modeling and Analysis of the PV Cell
2.1. Mathematical Model

From Kirchhoff’s law of voltage, the Kirchhoff’s law of current can be obtained:

I = Iph − I0

(
e

q(U+IRs)
AKT − 1

)
− U + IRs

Rp
(1)

Equation (1) is the mathematical expression [16] of the output current of PV cells, and
the meaning of each parameter in the equation is shown in Table 1.

Table 1. Parameter representation of the solar-cell model.

Parameters Meaning

I Output current
U Output voltage
Iph Photocurrent
Rs Series resistance
Rp Shunt resistance
I0 Diode reverse saturation current
q Electronic charge; 1.6 × 10−19 C
K Boltzmann constant; 1.3 × 10−28 J/K
A Diode curve factor; usually 1
T Absolute temperature

2.2. Engineering Model

The mathematical model parameters expressed by Equation (1) are numerous, and
determining many of these parameter values can be challenging. As a result, accurately
solving the model becomes very difficult, making it impractical for engineering applications.
To address this issue, a reasonable simplification can be applied to obtain an engineering
model for PV cells. The engineering model of the output characteristics of PV cells under
general working conditions can be expressed as

Isc = Isc
S

Sre f
(1 + a∆T)

Uoc = Uoc(1 − c∆T) ln(1 + b∆S)
Im = Im

S
Sre f

(1 + a∆T)

Um = Um(1 + c∆T) ln(1 + b∆S)

(2)
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The formula includes parameters such as Isc, Im, Um, and Uoc, which, respectively,
represent the short-circuit current, maximum-power-point current, maximum-power-point
voltage, and open-circuit voltage under standard conditions. These standard conditions
entail a reference solar-radiation intensity of 1000 W/m2 and a reference battery tempera-
ture of 25 ◦C [17]. Additionally, ∆T and ∆S denote the temperature difference and relative
irradiance between general working conditions and the standard conditions. Utilizing
the above model, it becomes feasible to calculate the output characteristics under normal
working conditions.

3. The HHO-Based MPPT Algorithm

The Harris Hawk Optimization (HHO) algorithm is an innovative swarm bionic
intelligence approach inspired by the predatory behavior of Harris hawks. At the core of
this algorithm is the concept of the cooperative predation behavior among hawks. A group
of Harris hawks surprises their prey by attacking from different directions, mirroring the
hunting model observed in Harris hawks. The hawks work in coordination during the
attack, while the leader of the Harris hawks strikes the target prey, stalks it, and suddenly
moves out of sight, allowing the next Harris hawks to continue the pursuit. This tactical
strategy effectively wears down the prey, eventually leading to its capture. The HHO
algorithm demonstrates superior applicability to constraint problems compared with other
algorithms. Additionally, as a global optimization method, HHO maintains a well-balanced
trade-off between the development phase and the exploration phase. The HHO algorithm
primarily consists of three main phases: the exploration phase, the transition phase from
exploration to development, and the development phase.

3.1. Exploration Phase

Harris hawks roost somewhere randomly and search for prey through one of two
strategies, with the random number q used to select the strategy to be employed.

X(t + 1) =
{

Xrand(t)− r1|Xrand(t)− 2r2X(t)|, q ≥ 0.5
(Xrabbit(t)− Xm(t))− r3(LB + r4(UB − LB)), q < 0.5

Xm(t) = 1
N

N
∑

i=1
Xi(t)

(3)

where X(t) represents the current position of the Harris hawk; Xrabbit(t) represents the
position of the prey rabbit; r1, r2, r3, and r4 are random numbers between 0 and 1; UB
and UL indicate the position range of the hawk, which is determined by the range of the
independent variable of the optimization function; Xm(t)represents the average position of
the hawk; and N is the total number of hawks.

3.2. Transition Phase

HHO can switch between different exploitation behaviors according to the escape
energy of the prey, and the prey energy will be greatly reduced in the process of escape.
The prey energy can be expressed as

E = 2E0

(
1 − t

T

)
(4)

where E is the escape energy of the prey, E0 is the initial energy of the prey, t is the current
iteration, and T is the maximum iteration. In this phase, when E ≥ 0.5, a soft siege is
launched; when E < 0.5, a hard siege is initiated.
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3.3. Development Phase

(1) Soft siege

When r ≥ 0.5 and |E| ≥ 0.5, the following model is adopted:

X(t + 1) = ∆X(t)− E|JXrabbit(t)− X(t)| (5)

where ∆X(t) = Xrabbit(t) − X(t) is the distance between the prey and the hawks, J is a random
number between 0 and 2.

(2) Hard siege

When r ≥ 0.5 and |E| < 0.5, the following model is adopted:

X(t + 1) = Xrabbit(t)− E|∆X(t)| (6)

(3) Progressive fast-dive soft siege

When r < 0.5 and |E| ≥ 0.5, the prey can still escape successfully, so the raid will still
be preceded by a soft siege, which will use the following strategy to update the position:

X(t + 1) =
{

Y, F(Y) < F(X(t))
Z, F(Z) < F(X(t))

Y = Xrabbit(t)− E|JXrabbit(t)− X(t)|
Z = Y + S × LF(D)

(7)

where D and S are the dimensions of the objective function and the random vector, respec-
tively, and LF is the mathematical expression of Levy’s flight.

(4) Progressive fast-dive hard siege

When r < 0.5 and |E| < 0.5, this strategy is adopted:

X(t + 1) =
{

Y, F(Y) < F(X(t))
Z, F(Z) < F(X(t))

(8)

where Y and Z are calculated as follows:{
Y = Xrabbit(t)− E|JXrabbit(t)− Xm(t)|
Z = Y + S × LF(D)

(9)

3.4. Objective Fitness Function

For the MPPT control design, the output power of the photovoltaic array is commonly
used as the fitness function, with the duty cycle D as the independent variable of the fitness
function. The fitness function is defined as follows:

Pk(Dk) = Uk Ik (10)

where k represents the iteration number, Dk indicating the duty cycle used during the k-th
iteration, Uk and Ik represents the obtained output voltage and current.

The MPPT control flow chart of the HHO algorithm is shown in Figure 1.
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4. Simulation Analysis and Verification
4.1. MPPT Control System Based on a Boost Converter

In the study’s PV system design, the PV array’s output voltage is low, only reaching
tens of volts. Considering the relatively low output voltage of the PV arrays, the Boost
circuit is a suitable choice. Additionally, the output characteristics of the Boost circuit are
superior to those of Buck-Boost, and it imposes lower demands on the output voltage
filtering. Therefore, the Boost circuit is chosen as the topology for the DC/DC conversion
circuit in the PV system.

The simulation model selects a single PV array as the tracking object. The PV panel
parameters and the Boost design parameters are shown in Tables 2 and 3.

Table 2. PV panel parameters.

Variable Description Units Numerical Value

Voc Open-circuit voltage V 36.3
Isc Short-circuit current A 7.84
Pm Peak power W 213.15
Im Peak-power-point current A 7.35
Vm Peak-power-point voltage V 29

Table 3. Boost circuit parameters.

Variable Description Units Numerical Value

L1 Input inductance mH 1
C2 Output capacitance µF 2200
RL Load resistance Ω 20
fs Switching frequency kHz 20
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PSO, P&O, and HHO algorithms are respectively used in the established Simulink
simulation model to compare and analyze their speediness, stability, and so on. The power
and duty cycle curves of three different algorithms (red represents the output power P(W)
of PV panels; green represents the duty cycle D) are as shown in Figure 2. Due to HHO’s
inclination toward exploring the search space more extensively than PSO, employing the
HHO algorithm results in greater power fluctuations.

Energies 2024, 17, x FOR PEER REVIEW 7 of 16 
 

 

PSO, P&O, and HHO algorithms are respectively used in the established Simulink 
simulation model to compare and analyze their speediness, stability, and so on. The power 
and duty cycle curves of three different algorithms (red represents the output power P(W) 
of PV panels; green represents the duty cycle D) are as shown in Figure 2. Due to HHO’s 
inclination toward exploring the search space more extensively than PSO, employing the 
HHO algorithm results in greater power fluctuations. 

  
(a) (b) 

 
(c) 

Figure 2. Power and duty cycle curves obtained by the (a) P&O algorithm, (b) PSO algorithm, and 
(c) HHO algorithm, respectively. 

The time taken by each algorithm to find the maximum-power point and the corre-
sponding duty cycle and output power are summarized in Table 4. 

Based on the above simulation results, all three algorithms, namely PSO, P&O, and 
HHO, successfully identify the maximum-power point and operate stably with a corre-
sponding duty cycle of approximately 0.56. Under this duty cycle, the output power of 
the PV panel reaches close to the maximum-power value of 231.15 W. 

However, due to the distinct optimization methods employed by each algorithm, 
their speediness and stability vary. The control scheme based on the HHO algorithm 
demonstrates exceptional performance, taking only 0.45 s to find the maximum-power 
point and maintain stability. The PSO algorithm is slightly slower, requiring 0.73 s, but 
still achieves satisfactory stability. On the other hand, the P&O algorithm exhibits a longer 
computation time and, at times, exhibits small oscillations near the maximum-power 
point. Such oscillations can hinder a stable system operation. The P&O algorithm’s con-
tinuous disturbance results in constant changes in the system’s operating point, leading 
to an unstable state near the oscillation point rather than working stably at the exact max-
imum-power point. In contrast, the PSO algorithm employs a random search and con-
stantly updates the optimal value, with all particles approaching the optimal value. As 
seen in the duty-cycle curve, the duty cycle converges slowly to the best value, eventually 
achieving stable operation at the found maximum-power point without the oscillation 
phenomenon observed in P&O. Meanwhile, the convergence speed of the PSO algorithm 
heavily relies on the proper selection of the initial values. Poor initial values may lead to 
slow convergence or even prevent the algorithm from finding the optimal value within 
the set number of iterations. On the other hand, the HHO algorithm’s higher intelligence 
allows it to adaptively search through a series of comparison changes, utilizing distinct 
search strategies for various scenarios. Consequently, its speediness surpasses that of the 
other two algorithms and remains unaffected by the initial position. In conclusion, the 

Figure 2. Power and duty cycle curves obtained by the (a) P&O algorithm, (b) PSO algorithm, and
(c) HHO algorithm, respectively.

The time taken by each algorithm to find the maximum-power point and the corre-
sponding duty cycle and output power are summarized in Table 4.

Table 4. Comparison of the effects of the three algorithms.

Algorithms Convergence Time (s) Duty Cycle Power Output (W)

P&O 1.25 0.56 211.0
PSO 0.73 0.55 212.7

HHO 0.45 0.57 213.1

Based on the above simulation results, all three algorithms, namely PSO, P&O, and
HHO, successfully identify the maximum-power point and operate stably with a corre-
sponding duty cycle of approximately 0.56. Under this duty cycle, the output power of the
PV panel reaches close to the maximum-power value of 231.15 W.

However, due to the distinct optimization methods employed by each algorithm,
their speediness and stability vary. The control scheme based on the HHO algorithm
demonstrates exceptional performance, taking only 0.45 s to find the maximum-power
point and maintain stability. The PSO algorithm is slightly slower, requiring 0.73 s, but
still achieves satisfactory stability. On the other hand, the P&O algorithm exhibits a longer
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computation time and, at times, exhibits small oscillations near the maximum-power point.
Such oscillations can hinder a stable system operation. The P&O algorithm’s continuous
disturbance results in constant changes in the system’s operating point, leading to an
unstable state near the oscillation point rather than working stably at the exact maximum-
power point. In contrast, the PSO algorithm employs a random search and constantly
updates the optimal value, with all particles approaching the optimal value. As seen
in the duty-cycle curve, the duty cycle converges slowly to the best value, eventually
achieving stable operation at the found maximum-power point without the oscillation
phenomenon observed in P&O. Meanwhile, the convergence speed of the PSO algorithm
heavily relies on the proper selection of the initial values. Poor initial values may lead to
slow convergence or even prevent the algorithm from finding the optimal value within the
set number of iterations. On the other hand, the HHO algorithm’s higher intelligence allows
it to adaptively search through a series of comparison changes, utilizing distinct search
strategies for various scenarios. Consequently, its speediness surpasses that of the other
two algorithms and remains unaffected by the initial position. In conclusion, the HHO
algorithm demonstrates both speed in finding the maximum-power point and outstanding
stability in its operational state, thereby verifying its effectiveness and reliability.

4.2. Experimental Verification

The simulation results confirm the feasibility of the algorithm proposed in this paper.
To further validate the practical effectiveness of the algorithm, an experimental platform for
the photovoltaic power-generation MPPT control system was constructed. The platform
mainly consists of the following components: a photovoltaic simulator, an MPPT controller
based on the STM32F103ZET6 microcontroller, a self-made Boost converter, auxiliary power
modules, current–voltage sampling modules, and a 20 Ω load resistor. The experimental
platform is illustrated in Figure 3.
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The photovoltaic simulator can generate characteristic curves of the individual photo-
voltaic cell output by setting the short-circuit current and open-circuit voltage to simulate
an actual photovoltaic array. Setting the open-circuit voltage (Voc) of the photovoltaic simu-
lator to 30 V and the short-circuit current (Isc) to 3.0 A generates a maximum-power-point
voltage (Vmpp) of 21.0 V, a maximum-power-point current (Impp) of 2.4 A, and a maximum
power (Pmpp) of 49.80 W. Due to certain deviations between the simulator’s actual output
and the generated output, for more realistic and reliable results, actual output parame-
ters were selected for computation. The actual output is Vmpp = 25.4 V, Impp = 2.4 A, and
Pmpp = 60.96 W.

Building upon the aforementioned experimental platform, tests were conducted on
three different algorithms—P&O, PSO, and HHO. An oscilloscope and photovoltaic sim-
ulator control software were used to record the output voltage, power, changes in the
duty cycle of the switches, and the optimal operating point obtained from the experiments.
Figures 4–6 present the experimental results for the P&O, PSO, and HHO, respectively.
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The operational effectiveness of the three MPPT algorithms is depicted in Table 5.

Table 5. Experimental results of the three MPPT algorithms.

Algorithms Pmax/W Po/W Tracking Time System Efficiency

P&O 60.96 57.5 1.2 s 94.3%
PSO 60.96 58.6 2.8 s 96.1%

HHO 60.96 59.7 1.6 s 97.9%

Under the set operating conditions, all three algorithms—P&O, PSO, and HHO—
achieved maximum-power-point tracking. The output duty cycles for P&O, PSO, and
HHO were 0.380, 0.340, and 0.311, respectively. The proposed HHO algorithm in this study
demonstrated promising results during experimentation, yielding an output power of
59.7 W with an impressive efficiency of 97.9%. This efficiency surpasses that of the other two
algorithms. Additionally, the HHO algorithm tracked the maximum-power point in a swift
1.6 s, outperforming the PSO algorithm in tracking time. In contrast, the P&O algorithm,
while exhibiting faster tracking, presented an efficiency of only 94.3%. Furthermore, the
P&O algorithm tends to oscillate near the maximum-power point, potentially causing the
system’s operating point to deviate and even leading to an unstable system state.

In summary, the proposed HHO algorithm in this paper demonstrates a certain
advantage in terms of both speed and stability compared with other algorithms.
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5. The HHO-Based MPPT Control for a Grid-Connected PV Power-Generation System
5.1. Design of the Grid-Connected PV Inverter

To better simulate real-world application scenarios, the PV power-generation sys-
tem studied in this paper adopts a single-phase full-bridge-voltage-type active inverter
circuit [18].

After the Boost converter, the output DC voltage from the PV array is increased to a
higher level. This DC voltage is then converted into 220 V AC power by the inverter. Finally,
the AC power is filtered through an inductor and connected to the grid. The use of the
single-phase full-bridge-voltage-type active inverter circuit allows for efficient conversion
of the DC power from the PV array into usable AC power, facilitating its integration with
the grid for practical energy utilization.

5.2. Structure of the Grid-Connected PV Power-Generation System

On the foundation of the maximum-power-point tracking circuit for a single PV
array, the load resistance is replaced by a single-phase bridge inverter. The PV array
and the DC/DC conversion circuit controlled by MPPT are represented by an equivalent
DC power supply, as shown in Figure 7. The DC power is then converted into a 220 V
power frequency alternating current through a single-phase full-bridge inverter circuit
with inductive filtering. The double closed-loop control system takes the output current of
the inverter, DC voltage, and grid voltage as input, and produces the pulse-width control
signal for the switching tubes as output. To minimize steady-state error and enhance the
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anti-interference capability, a PI controller with a low-pass filter is employed. The transfer
function of the controller is as follows:

Gcv(s) =
τ1s + 1

τ0s(τ2s + 1)
(11)Energies 2024, 17, x FOR PEER REVIEW 12 of 16 
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The control parameters are determined by the following formula:
τ1 = 1

2π fcv

√
1+sin γ
1−sin γ

τ2 = 1
2π fcv

√
1−sin γ
1+sin γ

τ0 = τ1
2πC fcv

(12)

where fcv is the voltage-loop open-loop cutoff frequency and γ is the phase-angle mar-
gin of the system. The PI controller parameters are calculated as τ1 = 3.08 × 10−2,
τ2 = 3.65 × 10−3, and τ0 = 1.63 × 10−1.

5.3. Simulation Analysis

In order to simulate changes in external conditions during actual operation, such as
variations in irradiance caused by local shading of PV panels, two PV panels are connected
in series [19]. At the simulation time of 1 s, the irradiance of one array is reduced from
1000 W/m2 to 600 W/m2. When the two PV arrays are connected in series, the maximum
output power Pmax is 1002.2 W. With the reduction in irradiance to 600 W/m2, the maximum
power decreases to 305.3 W. Therefore, the theoretical maximum output power of the
two series-connected PV arrays is Pmax’ = 806.4 W.

5.3.1. Output Voltage and Current of Inverter

The output voltage and current of inverter waveforms using the three different algo-
rithms are shown in Figure 8. The horizontal axis of the coordinate diagram represents time,
while the vertical axis represents the amplitude. The black curve represents the output
voltage, which is approximately constant and reduced 20-fold for easier observation. The
blue curve represents the output current. By analyzing the phase relationship between the
two curves, it can be determined whether the grid connection is successful [20]. When the
two curves are in phase, it indicates that the grid connection is successful.
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Before the change in irradiance, each algorithm successfully tracked the maximum-
power point and connected to the grid. However, as the irradiance decreases, the output
power of inverter also decreases. After the irradiance changes, the three algorithms restart
and find new operating points. The output-current amplitude of the P&O, PSO, and HHO
algorithms decreases from 6.0 A before the irradiance change to 3.5 A, 4.0 A, and 4.25 A,
respectively. Among them, the performance of the P&O algorithm in the presence of uneven
lighting on the PV array is the worst. The basic principle of the P&O algorithm makes it
prone to becoming stuck in the local optima when dealing with multi-peak optimization
problems. As the PV array experiences local shading, its P-V curve also exhibits multi-peak
characteristics. On the other hand, the PSO algorithm has intelligent search capabilities
and is more likely to find the global optima compared with the P&O algorithm. However,
the speed of the search is highly dependent on the initial position and parameters of
the position and velocity-update formula. In contrast, the HHO algorithm demonstrates
superior performance. It can quickly find the global optimum without the need to set as
many parameters as required by the PSO algorithm. Overall, the HHO algorithm proves to
be efficient and effective at handling changes in irradiance and optimizing the PV system’s
performance.

5.3.2. The Change in Output Power and Duty Cycle before and after the Change
in Irradiance

The power and duty-cycle change curves of the three algorithms before and after the
irradiance change are shown in Figure 9.
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The simulation results demonstrate that all three algorithms are capable of achieving
maximum-power tracking. However, there are noticeable differences in their tracking
speed and accuracy. The P&O algorithm exhibits the poorest tracking performance, and
its operating principle prevents it from reaching a stable operating point. This conclusion
is evident from the P-D curve. The P&O algorithm is prone to becoming stuck at local
extreme values, leading to a very low system efficiency. In comparison, both the PSO and
HHO algorithms outperform the P&O algorithm in terms of tracking effectiveness. The
PSO algorithm updates the position of all particles based on the optimal position in each
iteration, but its repeated iterations lead to slow convergence. On the other hand, the HHO
algorithm performs better than PSO, especially when dealing with output characteristics
that become multi-modal due to changes in external conditions. The HHO algorithm’s
global search capabilities prove to be more effective.

Tables 6 and 7 summarize the grid-connected effects of various algorithms before
and after irradiance changes. In conclusion, the simulation results verify that the HHO
algorithm is superior in terms of speed, stability, and tracking accuracy compared with
the P&O and PSO algorithms. The HHO algorithm shows great potential for practical
applications in PV power-generation systems.

Table 6. Grid-connected effects of the different algorithms within 0–1 s.

Algorithms Pmax/W Output Power/W System Efficiency

P&O 1002.2 931.4 92.9%
PSO 1002.2 932.2 93.0%

HHO 1002.2 933.4 93.1%
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Table 7. Grid-connected effects of the different algorithms within 1–2 s.

Algorithms Pmax
′/W Output Power/W System Efficiency

P&O 806.4 544.5 67.5%
PSO 806.4 622.1 77.1%

HHO 806.4 661.2 82.0%

Pmax and Pmax
′ represent the theoretical maximum output power of the PV array before

and after the change in irradiance, respectively, and system efficiency is the ratio of the
output power to the maximum power of the PV array. Before the change in irradiance,
the output power corresponding to the working points found by the three algorithms is
similar, respectively 931.4 W, 932.2 W, and 933.4 W, because the output characteristic curve
of the PV array before the change in irradiance is almost the same as the theoretical curve,
showing single-peak characteristics. Furthermore, with regard to the PV array uneven
lighting problem, the performance of the P&O algorithm differed greatly from the other
two algorithms, with an output power of only 544.5 W, and an entire system efficiency of
67.5%. Obviously, the algorithm did not find the global optimal and only stopped at the
local extreme point. The PSO algorithm still has a strong optimization ability, as after the
irradiance changes, the algorithm could quickly restart and reach stability in about 0.4 s,
and the final output power was 622.1 W, 14% higher than that from the P&O algorithm.
Meanwhile, system efficiency also reached 77.1%, which is nearly 10% higher than that of
the P&O algorithm. The output power of the HHO algorithm was the highest among the
three algorithms, which was 661.2 W, and the system efficiency reached 82%, indicating that
for the whole system, the HHO algorithm has a better optimization ability and a stronger
ability to adapt and adjust to changes in external conditions.

6. Conclusions

MPPT technology is an important guarantee for the efficient operation of PV power
systems. Compared with traditional algorithms and the PSO algorithm, the HHO algo-
rithm’s inclination toward exploring the search space makes it less susceptible to becoming
trapped in the local optima, providing a significant advantage in photovoltaic power
systems. The strengths and weaknesses of the commonly used MPPT algorithms were
analyzed in this paper, and a new HHO-MPPT control scheme is proposed that applies the
HHO algorithm to a PV power-generation system. This control method holds significant
advantages in avoiding local optima and achieving rapid optimization.

The effectiveness of different MPPT algorithms, including the P&O, PSO, and HHO
algorithms, was evaluated through simulations and verifications for a PV system. The
experimental results show that the proposed HHO algorithm is 97.9% efficient under
uniform irradiance, which is better than the other two compared algorithms. In addition,
in terms of tracking speed, the proposed algorithm uses less than half of the tracking time
of the PSO algorithm. Under uneven irradiance, the P&O algorithm falls into local peaks,
and the efficiency of the PSO algorithm decreases dramatically. Not only does the HHO
algorithm succeed in finding the global maximum-power point, but it also maintains a
high tracking accuracy. Finally, a reliability test is conducted on the constructed single-
phase full-bridge-inverter grid-connected system to verify the feasibility of the proposed
algorithm in practical-use scenarios.
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bidirectional PV-Ćuk converter system under partial shading and module mismatching. Sol. Energy 2020, 209, 334–349. [CrossRef]

13. Sara, A.; Hossein, I.; Shahrokh, F. Fast Artificial Neural Network Based Method for Estimation of the Global Maximum Power
Point in Photovoltaic Systems. IEEE Trans. Ind. Electron. 2022, 69, 5879–5888.

14. Lin, D.; Li, X.; Ding, S.; Wen, H.; Du, Y.; Xiao, W. Self-Tuning MPPT Scheme Based on Reinforcement Learning and Beta Parameter
in Photovoltaic Power Systems. IEEE Trans. Power Electron. 2021, 36, 13826–13838. [CrossRef]

15. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications.
Future Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]

16. Zhang, J.; Liu, Y.; Ding, K.; Feng, L.; Hamelmann, F.U.; Chen, X. Model Parameter Analysis of Cracked Photovoltaic Module
under Outdoor Conditions. In Proceedings of the 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), Calgary, AB,
Canada, 15 June–21 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 2509–2512.

17. Zhou, J.; Yu, Z.; Lu, Z.; Li, C.; Zhang, R. Study of photovoltaic cells engineering mathematical model. IOP Conf. Ser. Mater. Sci.
Eng. 2016, 157, 012019. [CrossRef]

18. Syamala, L.; Sankar, D.; Makkar, S.E.; Jos, B.M.; Kallarackal, M. Hysteresis based quasi fixed frequency current control of single
phase full bridge grid integrated voltage source inverter. Energies 2022, 15, 8112. [CrossRef]

19. Tsang, K.M.; Chan, W.L. Maximum power point tracking for PV systems under partial shading conditions using current sweeping.
Energy Convers. Manag. 2015, 93, 249–258. [CrossRef]

20. Guo, K.; Cui, L.; Mao, M.; Zhou, L.; Zhang, Q. An improved gray wolf optimizer MPPT algorithm for PV system with BFBIC
converter under partial shading. IEEE Access 2020, 8, 103476–103490. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/s41560-019-0441-z
https://doi.org/10.1016/j.rser.2015.04.072
https://doi.org/10.1016/j.ijepes.2021.107682
https://doi.org/10.1149/2.0921603jes
https://doi.org/10.1109/TIE.2021.3137595
https://doi.org/10.1109/JPHOTOV.2013.2297513
https://doi.org/10.1109/TIE.2012.2200223
https://doi.org/10.1016/j.solener.2020.08.078
https://doi.org/10.1109/TPEL.2021.3089707
https://doi.org/10.1016/j.future.2019.02.028
https://doi.org/10.1088/1757-899X/157/1/012019
https://doi.org/10.3390/en15218112
https://doi.org/10.1016/j.enconman.2015.01.029
https://doi.org/10.1109/ACCESS.2020.2999311

	Introduction 
	Modeling and Analysis of the PV Cell 
	Mathematical Model 
	Engineering Model 

	The HHO-Based MPPT Algorithm 
	Exploration Phase 
	Transition Phase 
	Development Phase 
	Objective Fitness Function 

	Simulation Analysis and Verification 
	MPPT Control System Based on a Boost Converter 
	Experimental Verification 

	The HHO-Based MPPT Control for a Grid-Connected PV Power-Generation System 
	Design of the Grid-Connected PV Inverter 
	Structure of the Grid-Connected PV Power-Generation System 
	Simulation Analysis 
	Output Voltage and Current of Inverter 
	The Change in Output Power and Duty Cycle before and after the Change in Irradiance 


	Conclusions 
	References

