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Abstract: The capability of the standard SST k-ω turbulence model for the prediction of jet im-
pingement cooling characteristics using a coarse mesh is investigated. The discussion is based on a
sensitivity study with five computational grids, differing from each other in topology and resolution.
The analysis considers a hexagonal configuration of turbulent jets at the inlet Reynolds number equal
to 20,000, with the distance between the nozzle and target plates equal to four nozzle diameters.
The results of steady RANS simulations are validated against the time-averaged LES results and
data from experiments. The mean heat transfer characteristics of turbulent impinging jets have been
successfully reproduced with all tested grids, which indicates that for a rather accurate mean heat
transfer prediction, it is not necessary to resolve all the small-scale flow features of impinging jets
above the target plate.
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1. Introduction

Turbulent impinging jets exhibit intricate flow dynamics and remarkable heat transfer
characteristics, rendering them highly favored for cooling applications [1], and at the same
time, present a challenging case to test statistical turbulence models [2,3]. At sufficiently
high Reynolds numbers, the flow experiences shear-driven instabilities, caused by steep
velocity gradients. Initially, small disturbances at the edges of the jet undergo significant
growth, leading to the formation of the so-called shear layer. In configurations with multi-
ple jets, the flow near the impingement surface is additionally disrupted due to collisions
between neighboring wall jets. These processes collectively contribute to highly intense and
chaotic flow dynamics near the impingement wall. The growth of the thermal boundary
layer is constantly perturbed by oscillating jets and intense periodic occurrences of large-
scale vortical structures [4]. These phenomena have been identified as the most important
mechanisms governing the localized enhancements in heat transfer [4]. The mean (i.e.,
time-averaged) heat transfer characteristics of multiple impinging jets demonstrate maxi-
mum values within the impingement zones of individual jets, where the aforementioned
mechanisms are statistically the most frequent.

Our interest in jet impingement cooling arises from the optimization studies of the
Helium-Multiple Jet (HEMJ) DEMO divertor design [5], where the plasma-facing target
plates of diverter cassettes are proposed to be assembled from numerous cooling fingers,
each of them facilitating the multiple helium jets for the cooling. The term “DEMO” in the
context of nuclear fusion refers to a demonstration power plant that is intended to be the
next step beyond the experimental or prototype fusion reactors (like ITER and JET), which
are being designed to demonstrate the feasibility of continuous and sustainable nuclear
fusion as a viable energy source [6].
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To complement the rather lacking literature and understanding of physics associated
with multiple impinging jets, Large Eddy Simulation (LES) studies of the experimental
case with 13 turbulent impinging jets in hexagonal arrangements have been initiated [4].
A few years ago, generating high-quality (hexahedral) structured mesh in complex finger
geometry was a challenging task since meshing was not a fully automated process, thus
requiring a vast amount of skills and time. Nowadays, it is often stated that a completely
automated polyhedral meshing may represent a good and time-saving alternative in
practice, as it requires very few user interventions to build an adequate mesh. As such, the
performance of a representative polyhedral mesh is also tested in this study.

In our previous studies [4], we have successfully utilized the Large Eddy Simulation
(LES) to accurately simulate the instantaneous flow and heat transfer characteristics of
multiple turbulent impinging jets. These investigations provided valuable insights into
the significance of large-scale flow structures in the dynamics of near-wall flow. Key flow
phenomena associated with single and multiple turbulent impinging jets have been rather
accurately predicted [4], such as the enhanced production of wall-normal and shear stresses
across the stagnation region and the shear layer of individual jets. To sufficiently resolve the
occurring flow phenomena by the LES, high fidelity (spatial and temporal) discretization is
needed, which makes the LES of turbulent impinging jets computationally very demanding.

Flow statistics and turbulence budgets of impinging jets can be rather accurately
modeled by the unsteady Reynolds averaged Navier-Stokes (URANS) approach with
the conventional eddy-viscosity turbulence models [7–11]. However, the simulations
conducted with the Shear Stress Transport (SST) model [12] and the SST-based Scale-
Adaptive Simulation model (SST-SAS) model [13] exhibit a tendency to completely suppress
the flow unsteadiness near the target plate [14,15]. In comparison to the LES, one order
of magnitude higher eddy viscosity values have been obtained with both the SST and the
SST-SAS turbulence models. Since the grid resolution across the individual jets was kept
similar to the coarsest LES grids [4,16], a small time step of the simulation, comparable to
LES, was needed to obtain the solver convergence. Yang [17] simulated the twin impinging
jets in a cross-flow with the RANS and URANS approaches using the RMS turbulence
model and observed an increase in computational costs by a factor of five for the URANS
simulations. While both simulation approaches relatively well predicted the mean flow
field, superior predictions of wall-normal stresses have been observed with the URANS
simulations. Barata et al. [18] in their study of a confined slot turbulent jet observed that
steady RANS simulations yield fairly good results only for low nozzle-to-plate distances,
while for configurations with confinement heights, greater than five nozzle diameters the
LES is needed to capture the unsteady jet flapping that governs the statistics of ensemble-
averaged quantities.

A good alternative to LES methods in terms of reduced computational costs are also
the so-called hybrid RANS/LES models. Martínez-Filgueira et al. [19] studied a 3 × 3
square set-up nozzle array impinging jet system at Reynolds number around 8500 by the
means of five different turbulence modeling techniques, including the hybrid RANS/LES
approach-Detached Eddy Simulation (DES). They reported the superior behavior of the
LES technique and the need for a high-resolution mesh over the entire domain in order
to capture the essential flow features. Kubacki and Dick [20] reported that a fine mesh is
required for the hybrid RANS/LES models to improve the RANS prediction by resolving
the dynamics of large-scale vortical structures in the shear layer and in the near-wall region.
Wu and Piomelli [21] reported that both the Wall modeled LES (WMLES) and the Delayed
Detached Eddy Simulation (DDES) are able to predict vortex decay, which is in good
agreement with the well-resolved LES data.

These observations call into question the feasibility of unsteady RANS and hybrid
RANS/LES simulations of impinging jets in terms of the required additional computational
effort compared to a steady-state approach, which is an important constraint/aspect of
industrial CFD applications.
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With respect to the selection of the RANS turbulence model, the two-equation SST
model by Menter [22] and Durbin’s four-equation v2 − f model [23,24] have been acknowl-
edged as the most successful in the reproduction of the flow and heat transfer characteristics
of turbulent impinging jets [21,25–27]. However, the v2 − f model may exhibit pseudo-
transitional behavior that is not calibrated against data and, as such, is no longer available
in the ANSYS CFD codes, including the ANSYS Fluent R21.2 [28,29].

With the above in mind, this work investigates the predictive capability of the steady
RANS approach with the SST k-ω model for modeling the mean heat transfer characteristics
of highly turbulent multiple impinging jets. Aiming at industrial CFD applications where
automated meshing is desirable, the goal of this study is to demonstrate how the mesh
resolution and topology affect the predicted mean flow and heat transfer characteristics.
Five different computational grids of two different topologies (structured hexahedral and
unstructured polyhedral) are tested, with varying cell resolution across the diameter of
the jets and near the impingement wall. Results are compared with the existing LES [4,16]
and experimental data [30–32]. The area-weighted average temperature of the target plate
is reported together with the stagnation point wall temperature, which may be used for
a quantitative assessment of the cooling efficiency of a method in practice. An analysis is
conducted for a configuration with 13 turbulent jets in a hexagonal arrangement at an inlet
Reynolds number equal to 20,000 and a confinement height equal to four nozzle diameters
(i.e., for the experimental test case by Geers [30–32]). Contrary to our previous URANS
studies of multiple impinging jets that have been conducted with the OpenFOAM code [15],
this study is performed with the commercial code ANSYS Fluent R21.2 [33].

The structure of the paper is the following: the test case is presented in Section 2, while
information about the numerics and the simulation setup is given in Section 3. The results
are presented in Section 4. The conclusions are drawn in Section 5.

2. Test Case (Benchmark Data)

The considered case was originally studied experimentally by Geers [30–32], who
conducted the measurements of the flow field with Particle Image Velocimetry (PIV) and
Laser Doppler Anemometry (LDA). The temperature distribution at the impingement sheet
was determined with Liquid Crystal Thermography (LCT). The airflow with a controlled
mass flow rate was supplied through a squared cross-section wind tunnel to a nozzle plate
with a thickness of 2 mm. The reported Reynolds number at the nozzle plate is equal to
20,000 [31]. The flow field measurements were taken only within the confinement between
the nozzle plate and the impingement sheet (see Figure 1), i.e., the experimental velocity
and turbulence conditions at the nozzle lip are not reported. The dimensions of the squared
nozzle plate are reported to be 0.3 m × 0.3 m, while the height of the confinement (i.e.,
nozzle-to-plate distance) is reported to be 0.052 m.
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The used LES benchmark data [16] have been obtained with the second-order accu-
rate in-house code PSI-BOIL (Parallel SImulator of BOILing phenomena) [34]. The LES
study with the explicit Wall-Adaptive Local Eddy (WALE) viscosity sub-grid-scale (sgs)
model [35] considers only the part of the experimental apparatus after the nozzle plate (see
Figure 1). Reported uncertainties of statistically averaged LES results, associated with the
grid refinement and due to sampling statistics and variation of the sgs constant, are in the
order of ten percent for the mean flow characteristics, while the uncertainty of the mean
wall temperature is estimated to be less than two percent [16]. Additional information
about the LES setup is available in [4,16].

3. Simulation Details

The incompressible fluid flow of impinging jets has been simulated with the commer-
cial CFD code ANSYS Fluent R21.2 [36], using the steady-state RANS approach. The effects
of turbulence are modeled using the two-equation eddy viscosity Shear-Stress Transport
(SST) k-ω model [12], which automatically activates y+-insensitive wall-treatment [33]. The
working fluid is air, which is modeled with constant thermophysical properties [16]. The
fluid density ρ is set to 1.2047 kg/m3, the dynamic viscosity is set to 1.8204 · 10−5 kg/(m s),
the thermal conductivity of air is set to 0.0256 W/(m K) and the specific heat is set to
1006.1 J/(kg K).

3.1. Governing Equations

For steady-state incompressible fluid flow, the Reynolds-averaged Navier-Stokes
(RANS) equations in Cartesian tensor form read as [33]:

∂ui
∂xi

= 0 (1)

∂

∂xi

(
ρuiuj

)
= − ∂p

∂xi
+

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj

∂xi

)]
+

∂

∂xj

(
−ρu′

iuj′
)

(2)

where ui is the mean (Reynolds averaged) velocity component in i-th direction, xi is the i-th
spatial coordinate, p is the mean pressure, and µ is the molecular viscosity. The last term
on the right-hand side of Equation (2) represents the Reynolds stresses, which are modeled
with the turbulence model. In the SST k-ω model, the Boussinesq hypothesis is used. Thus,
the Reynolds stresses are computed from mean velocity gradients [33]:

−ρu′
iuj′ = µt

(
∂ui
∂xj

+
∂uj

∂xi

)
(3)

where the eddy viscosity µt is computed from the turbulence kinetic energy k and the
specific dissipation rate ω.

The turbulent heat transport in incompressible fluid flow is described with the follow-
ing energy equation [33]:

∂

∂xi

[
uiT
]
=

∂

∂xj

[
(α + αt)

∂T
∂xj

]
(4)

where T is the mean temperature, α is the thermal diffusivity, and αt is the turbulent thermal
diffusivity; the latter is computed from eddy viscosity µt and turbulent Prandtl number
Prt. In this study, the turbulent Prandtl number is set to 0.9.

Turbulence properties k and ω are calculated using the Shear-Stress Transport (SST)
k−ω turbulence model [12]. The eddy viscosity is computed as [33]:

µt =
ρk
ω

1

max
[

1
α∗ , SF2

α1ω

] (5)
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where S is the strain rate magnitude and α∗ is the damping coefficient causing a low-
Reynolds number correction [33]. F2 is given by

F2 = tanh(

(
max

[
2

ρ
√

k
0.09ωy

,
500µ

ρy2ω

])2

) (6)

where y is the distance from the field point to the nearest wall [37]. A detailed description
of the SST k−ω turbulence model is available in the code documentation [33].

3.2. Numerics

The Pressure-Based Coupled Algorithm with the pseudo-transient under-relaxation
method is used to solve the steady-state form of RANS equations [36]. Spatial discretization
of gradients is obtained with the default gradient method “Least Squares Cell Based”, and
the pressure is discretized with the “Second Order” scheme. The “Second Order Upwind”
scheme has been selected for the discretization of governing equations for momentum,
energy, turbulence kinetic energy, and specific dissipation rate. Due to the very high aspect
ratio of cells at the impingement wall, a Warped-Face Gradient Correction (WFGC) method
is enabled [38].

In order to avoid the excessive generation of the turbulence energy (Gk) in the stagna-
tion regions, the production limiter is used (default feature in Fluent for SST k-ω model) [33]:

GK = min[Gk, Climρε] (7)

where ρ is the fluid density and ε is the turbulent dissipation rate. The coefficient Clim
is set to its default value of ten [33]. According to the ANSYS documentation [33], the
usage of this limiter seems like a reasonable choice for simulations of impinging jets as, by
definition, the limiter prevents excessive turbulence production in the stagnation region,
while the turbulence model performance in the shear flow remains intact. The need for the
turbulence production limiter within the SST turbulence model has been demonstrated
in our previous study [39], where it has been shown that the Kato-Launder production
limiter [40] eliminates excessive turbulence production in the stagnation region of a single
jet and improves the heat transfer prediction.

3.3. Geometry

The three-dimensional simulation domain, shown in Figure 2, has dimensions similar
to the LES benchmark [4,16]. The air inflow occurs through the 13 circular inlets at the
nozzle plate (inlet). The outflow is established through four vertical boundary planes
(outlets). The diameter of individual nozzles (D) is equal to 0.013 m, the distance between
nozzles is equal to 2D, and the nozzle-to-plate distance is equal to four nozzle diameters.
Additional information about the simulation case (including LES setup) can be found
in [4,16].

3.4. Boundary Conditions

At the inlet, a velocity inlet boundary condition with a velocity magnitude equal to
23.88 m/s and turbulence intensity of 10% is applied [15]. The temperature of the inflowing
air is equal to 20 ◦C. A no-slip wall boundary condition is used for the nozzle plate and the
target surface. The applied heat flux at the target wall is set to 905 W/m2 [16]. The outlet is
modeled with the pressure outlet condition. The backflow turbulent intensity is set to 1%,
and the backflow turbulent length scale is set to 0.013 m.
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Figure 2. Simulation domain with characteristic cross-section planes P-1 and P-2, where numerical
results are presented.

3.5. Computational Grid

Five different computational grids were tested in this study, with the total number of
cells ranging from 1, 550, 217 to 4, 219, 879. The grids differ from each other in resolution,
topology (fully structured hexahedral vs. unstructured polyhedral cells), and near-wall
spacing (i.e., the height of the first cell is varied to obtain various y+ at impingement
surfaces). For accurate heat transfer predictions, the near-wall meshes of y+ ∼ 1 are
recommended [36]. Thus, four generated grids have corresponding maximums y+ < 1,
while Grid G1 has the maximum y+ equal to 4.2.

Fully structured hexahedral grids (G1 to G4) were built using the ANSYS ICEM
CFD meshing tool [41]. The so-called “O-grid” blocking was generated at corresponding
locations of individual jets (see Figure 3 (left)) to achieve relatively uniform grid spacing in
both wall-parallel (x− and z−) directions of the central region of the domain. A desired
grid resolution near the impingement plate is achieved with additional grid refinement
in the vertical direction towards both plates (see Figure 4 (left)). The fifth generated
grid (G5), shown in Figure 3 (right) and Figure 4 (right), is unstructured and meshed
with fully polyhedral cells with hexcore, generated using the ANSYS Fluent Meshing
tool [36]. Additional information about tested computational grids is given in Table 1. For
comparison, the grid parameters of the LES benchmark case are reported as well.
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LES Hexa * 75, 497, 472 32 64 128 1.0 × 10−5 ~1

* Structured hexa grid with uniform cells across the entire domain.

4. Results and Discussion

RANS results are validated against time-averaged data from a well-resolved LES
benchmark case [4,16] and a laboratory experiment [30–32]. A comparison is given for
several horizontal profile lines, extracted from characteristic planes P-1 and P-2. To account
for the azimuthal (rotational) symmetry of 60◦, each profile line is averaged over the six
symmetry planes as well. Data averaging has been used in the experimental and LES
analyses, as well as in the present study. The data from RANS simulations are available in
supplementary material.

Profiles of mean axial velocity V/Vcl in both characteristic planes P-1 and P-2 are
presented in Figure 5. It is evident that all structured hexahedral grids (G1–G4) exhibit
similar jet formations. The agreement with LES is notably good, particularly at locations
that are distant from the target plate (e.g., y/D = 1.5). Closer to the target wall (y/D < 0.5),
the RANS simulations predict a slightly slower decay of mean axial velocity, with the
magnitude of axial velocity higher compared to that of LES.

On the other hand, the polyhedral grid (G5) insufficiently resolves the formation of
jets at y/D = 1.5. This behavior is somewhat expected, as the resolution of the polyhedral
grid (G5) in the middle of the confinement is rather coarse compared to other hexahedral
grids (G1–G4). In the vicinity of the target wall, for y/D < 0.5, the magnitude of the
predicted mean axial velocity at the axis of the central jet for grid G5 closely matches
the LES prediction. At the same time, the predicted flow characteristics are, at locations
corresponding to neighbor and outer jets, more similar to other RANS results obtained
with hexahedral grids than to the results obtained with the LES.
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It is also observed that all RANS simulations relatively well predict the establishment
of the fountain flow between jets. Velocity magnitude is quite accurately predicted at
locations that are far from the target wall (for y/D > 0.5). Closer to the wall, at y/D = 0.05,
discrepancies between RANS and LES results are larger. This may be partly attributed to
the fact that the presented LES data are computed with the statistical (time) averaging of
instantaneous results of unsteady simulations, in contrast to the steady-state flow fields
obtained from RANS simulations. The instantaneous flow characteristics of individual jets
in LES (and in experiments) are very chaotic and unstable [4,32]. At certain instances of
time, the jets become highly distorted, with impingement locations significantly dislocated
from the geometrical axes of the individual jets [4]. The formation of the fountain flow
has been observed from the instantaneous flow fields experimentally [32], as well as from
the LES results [4]. It is acknowledged as an important mechanism that contributes to the
disturbances of the jets. On the other hand, the RANS prediction represents an ensemble-
averaged (statistical) realization of the flow, which never occurs in reality.

A comparison of numerical (RANS and LES) results with experimental data shows
that the formation of the jets is relatively well predicted numerically near the half-height of
the confinement (i.e., at y/D = 1.5). In the characteristic plane P-1, the predicted shape of
both (central and neighbor) jets closely matches the experimental observations, while in the
characteristic plane P-2, a somewhat larger dislocation of the outer jet radially outward can
be observed. This may be attributed to the vena contracta phenomenon, which has been
observed experimentally [30], and which is not considered in the numerical simulations as
the flow through the wind tunnel and nozzle is not simulated [16].
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Closer to the target wall (y/D < 0.5), a relatively good agreement between simulation
results and experimental data is demonstrated for the central jet. It can be observed that
the central jet is not axisymmetric in the experimental case, i.e., the reported magnitude for
mean axial velocity is slightly different at both sides of the jet with respect to its geometrical
axis, whereas all simulations exhibit axial symmetry for the central jet. The numerically
predicted magnitude of axial velocity is in good agreement with the experimental data.
Again, a notable difference in the shapes of the jets between the simulations and exper-
iments is observed for both the neighbor and the outer jets. In the vicinity of the target
wall, at y/D = 0.05, the experimental data are not available due to the limitations of
measurement techniques.

Figure 6 shows horizontal profiles of mean turbulence kinetic energy k/V2
cl in charac-

teristic planes P-1 and P-2. In general, increased levels of turbulence kinetic energy occur
mainly in the circumferential shear layer around the jet-core region, where the jet flow
interacts with the surrounding fluid. In RANS simulations, the turbulence kinetic energy
k is computed with the turbulence model, while in the experimental and LES cases, k is
computed from velocity fluctuations.
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Symbols indicate the experimental results by Geers et al. [30,32].

From Figure 6, it can be seen that all hexahedral grids predict a somewhat wider
shear layer of individual jets as compared to that of the LES. At y/D = 1.5, the occurring
turbulence levels in the jet-core region of the central jet are quite low, indicating that the
flow in this region is comparatively laminar. Here, the turbulence production is weak
due to the low shear in the flow. In comparison to LES results, turbulence levels remain
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underestimated and are also closer to the target wall. On the other hand, the coarse
polyhedral grid (G5) somewhat better predicts the turbulence levels in individual jets near
the target wall. However, no significant differences between RANS simulations can be
observed in the prediction of turbulence levels in the so-called fountain flow regions, where
the values obtained by RANS simulations are comparable to those of the LES.

Compared to the experimental data, the turbulence kinetic energy is generally un-
derpredicted by the numerical simulations. This can be mainly attributed to the lack of
description of the experimental flow conditions at the nozzle lip (i.e., at the domain inlet).
At y/D = 1.5, the shear layer of experimental jets is already substantially developed. The
distinguished, non-zero turbulence levels can also be observed in the jet-core region of the
central jet. On the other hand, steady RANS simulations predict significantly lower levels
of turbulence kinetic energy in the shear layer of individual jets and completely fail with
the prediction of the mean turbulence characteristics in the jet-core region.

Closer to the target wall, at y/D = 0.5, the profiles of mean turbulence kinetic energy
are more uniform. Here, significant deformations of initially circular jets were observed
experimentally and by LES [4]. Intensive and irregular flow dynamics spread the shear
layer across the whole perimeter of individual jets [4,32]. In plane P-1, a local peak at
r/D ∼ −1.5 can be observed; here, the neighboring jet interacts with the fountain flow. In
plane P-2, the distance between the central and outer jets is greater; hence, the interaction
between the outer jet and fountain flow is somewhat less intense.

Very close to the target wall, at y/D = 0.05, where there are no experimental data,
the above-mentioned flow disturbances become even more dominant. However, as the
flow unsteadiness cannot be predicted by the steady RANS approach, the extracted RANS
profiles of turbulence kinetic energy consequently exhibit typical local peaks at radial
locations where the circumferential shear layer is formed.

The formation of the central and both neighboring jets in the characteristic plane P-1
may be observed in Figure 7. From the contours of mean axial velocity presented on the
left side of Figure 7, it is evident that individual jets exhibit a well-defined jet-core region
that extends towards the nozzle plate. The growth of the shear layer is characterized by
decreasing axial flow velocity and high turbulence levels (right side of Figure 7). With a
comparison of results for two different grids (G2 vs. G5), shown in Figure 7, it may be
observed that the low-resolution polyhedral grid (G5) still resolves well the mean flow
field of individual jets. However, at the half-height of the confinement, the formation of
the fountain flow region is completely distorted, i.e., the reverse vertical flow towards the
nozzle plate does not occur. Near the impingement plate, qualitatively very similar mean
flow and turbulence characteristics are obtained with both tested grids (G2 and G5).

Figure 8 shows mean flow characteristics near the impingement surface, extracted at
y/D = 0.0125 in planes P-1 and P-2. Radial profiles of mean axial velocity V/Vcl , modeled
turbulence kinetic energy k/V2

cl and normalized eddy viscosity νt/ν are presented along
with the mean temperature of the target wall Twall.

At a given location, the grid resolution for all tested RANS grids is very similar locally.
It is observed that all tested grids predict very similar profiles of mean axial velocity V/Vcl .
The shapes of the central jet and its neighbor jet are quite similar to those obtained from the
LES. For the outer jet, all hexahedral grids predict somewhat larger radial dislocation of the
impingement zone from the geometrical axis of the jet compared to the LES. Contrarily, the
prediction with the polyhedral grid is in somewhat better agreement with the LES results.

All hexahedral grids (G1–G4) predict very similar turbulence characteristics in the
near-wall region. Obtained levels of turbulence kinetic energy in the stagnation region
of the central jet and its neighboring jet (e.g., at r/D = 0.0 and r/D = −2.2) are in
good agreement with the LES results, while elsewhere the turbulence is substantially
overpredicted with hexahedral grids compared to that of the LES. In the fountain flow
regions, the polyhedral grid (G5) yields similar results as the other hexahedral grids. On
the other hand, turbulence intensity is significantly overpredicted with the grid G5 at the
geometrical axes of the central and neighbor jets. Even in the very close vicinity of the
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target wall, the RANS profiles still exhibit typical local peaks in turbulence distribution at
radial locations where the circumferential shear layer is formed around individual jets. On
the other hand, the LES results do not show such behavior.
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The shape of the profiles for eddy viscosity νt/ν follows the trend of the profiles for
turbulence kinetic energy. Generally, approximately one order of magnitude higher νt
values are obtained with RANS simulations as compared to the LES results. In the jet-core
region of individual jets, a polyhedral grid yields approximately two times higher eddy
viscosity as compared to other hexahedral grids.

Figure 8 shows that very similar flow characteristics near the impingement plate are
obtained with all hexahedral grids, which indicates that for a given set of grid parameters
used (coarse grid G1), the numerical prediction remains unchanged with additional grid
refinement in the wall-parallel direction (i.e., across the diameter of the individual jets and
between). It is also noted that further reduction of the dimensionless wall distance y+ value
below unity does not have any significant impact on the results near the impingement
surface. On the other hand, the polyhedral grid (G5) yields approximately two times higher
eddy viscosity values in the impingement zones (where higher turbulence levels occur),
while the predicted mean axial velocity exhibits comparable values to those of other grids
(G1–G4).

From the radial profiles of mean wall temperature Twall, it is evident that all RANS
simulations rather accurately predict (with respect to LES) the mean heat transfer character-
istics of impinging jets in the stagnation regions of individual jets. For all hexahedral grids
(G2–G4) a with maximum y+max less than unity, the obtained mean wall temperature is ap-
proximately 0.5 ◦C higher than that of the LES. Quite unexpectedly, even better agreement
with the LES is obtained with the coarsest hexahedral grid G1, which exhibits the highest
value of y+max ∼ 4. Finally, the best agreement in predicted mean wall temperature with
the LES is obtained with the polyhedral grid (G5). However, for all tested grids in this
study, the heat transfer prediction deviates from that of the LES in the fountain flow regions



Energies 2024, 17, 196 12 of 16

(e.g., at r/D ∼ −1.5 in plane P-1) and at greater radial distances from the geometrical
center (|r|/D > 3.0), where the so-called radial outflow occurs [4].
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A rather good agreement between numerical (RANS & LES) results and experimental
data is evident for the central jet and the neighbor jet (in plane P-1), where numerical
simulations correctly predict the shape of the wall temperature distribution. On the other
hand, a substantially bigger bending of the outer jet in plane P-2 can be observed from
numerical results as compared to the experimental data, which may be attributed to an
inaccurate representation of the experimental flow conditions at the nozzle lip in the CFD
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simulation (e.g., the occurrence of the vena contracta phenomenon is not considered in the
simulations as the flow through the nozzle plate is not simulated).

The contours of the mean temperature at the impingement plate (obtained with RANS
simulations) are presented in Figure 9. It may be observed that the most effective cooling
is achieved in the central region of the configuration, i.e., within a concentric area with a
radius of approximately 6 nozzle diameters. It is noted that hot spots (with locally higher
wall temperature) occur at locations between jets, where adjacent wall-jets collide and
fountain flow is formed. Contrarily, the temperature distribution at the impingement plate
from the LES, shown in Figure 10, is more uniform and does not exhibit so pronounced hot
spots within the jet configuration. Such, a “smoother” temperature pattern is reasonable for
LES since the mean temperature is obtained from instantaneous heat transfer characteristics
with time averaging. From the RANS results shown here, it may be observed that the
wall temperature patterns exhibit a “weak” asymmetry, which is observed to occur for all
tested mesh topologies and resolutions, i.e., for structured hexahedral and unstructured
polyhedral meshes.
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The results of the current study with five different computational grids are presented
in Table 2. The mean wall temperature at the stagnation point T0

wall is reported together

with the area-weighted average temperature of the wall (Twall)
5D

, computed across the
circular area, with a diameter r/D equal to five. The LES results are shown for comparison
as well.

Table 2. Mean heat transfer characteristics.

Tw
0 [◦C] Twall

5D [◦C]

G1 23.5 24.0

G2 23.8 24.8

G3 23.8 24.7

G4 23.8 24.7

G5 23.3 24.8

LES 23.2 25.0

It is observed that all RANS simulations yield very similar results. The computed
mean wall temperature at the stagnation point (T0

wall) is less than 1 ◦C different from that of
the LES. A very good agreement with the LES prediction is also observed for the computed

area-weighted average temperature of the wall (Twall)
5D

. From the wall temperature
profiles (located far from the plate geometrical center (|r|/D > 3.0)), which are shown in
Figure 8, it may be observed that slightly lower wall temperature is predicted by RANS
simulations as compared to the LES. On the other hand, smaller differences in predicted
wall temperature between RANS simulations and LES are observed in the stagnation region
of individual jets. As such, the obtained area-weighted average temperature of the wall(

Twall
)5D is slightly higher from the LES as compared to the RANS computations.

5. Conclusions

This work investigates how the mesh resolution and topology affect the predicted
mean flow and heat transfer characteristics of multiple turbulent impinging jets in steady
RANS simulations with the SST k-ω turbulence model. The computations are performed
with the commercial code ANSYS Fluent R21.2. The results are validated against the
existing LES results [4,16] and the experimental data [30–32].

This study shows that the mean heat transfer characteristics can be well predicted
with the steady-state RANS approach. A sensitivity study with five different computational
grids, differing in topology and resolution, has shown that even a coarse grid, with only
four cells across jets’ diameter at the half-height of the confinement, is able to adequately
predict the local mean flow characteristics near the impingement plate, as long as the
near-wall grid spacing is sufficiently small ( y+ ∼ 1). The mean wall temperature at the
stagnation point (T0

wall), computed by RANS simulations, is less than 1 ◦C different from
that of the LES. A very good agreement with the LES is also observed in the computed

area-weighted average temperature of the wall
(
(Twall)

5D)
, which confirms the potential of

the steady-state RANS approach in the assessment of the mean heat transfer characteristics
of multiple turbulent impinging jets.

Given the fact that the flow of a single impinging jet is influenced by many factors, such
as the nozzle geometry, nozzle-to-plate distance, Reynolds number, etc., the findings from
this study to other conditions and geometries of multiple jet arrays are very challenging. For
example, Geers et al. [30,31] experimentally observed that, as the nozzle-to-plate distance
increases, the imprints of impinging jets at the target plate are displaced radially outward.
This phenomenon is attributed to jet-to-jet interactions resulting from colliding wall-jets
(formed after impingement) and the effects of self-induced cross-flow, where the fluid from
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inner jets leaves the configuration. It is speculated that a very similar effect can be expected
with an increase in Reynolds number for a given set of geometrical parameters.

Simulations of practical, industry-level applications, typically performed with coarse
meshes and statistical turbulence models, cannot realistically replicate the intricate flow
dynamics of multiple turbulent impinging jets. Nevertheless, the current study implies
that, for reasonably accurate predictions of mean heat transfer characteristics needed for
conceptual design studies, the consideration of the latter phenomena might not be essential.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/en17010196/s1, Raw simulation data, including (i) exported flow velocity,
turbulence and temperature data across nine horizontal extraction lines above the impingement plate,
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4. Draksler, M.; Končar, B.; Cizelj, L.; Ničeno, B. Large Eddy Simulation of multiple impinging jets in hexagonal configuration—Flow

dynamics and heat transfer characteristics. Int. J. Heat Mass Transf. 2017, 109, 16–27. [CrossRef]
5. Norajitra, P.; Giniyatulin, R.; Ihli, T.; Janeschitz, G.; Krauss, W.; Kruessmann, R.; Kuznetsov, V.; Mazul, I.; Widak, V.; Ovchinnikov,

I.; et al. He-cooled divertor development for DEMO. Fusion Eng. Des. 2007, 82, 2740–2744. [CrossRef]
6. The Demonstration Power Plant: DEMO. Available online: https://www.euro-fusion.org/programme/demo/ (accessed on 20

December 2023).
7. Le Song, G.; Prud’homme, M. Prediction of coherent vortices in an impinging jet with unsteady averaging and a simple turbulent

model. Int. J. Heat Fluid Flow 2007, 28, 1125–1135. [CrossRef]
8. Rao, G.A.; Kitron-Belinkov, M.; Levy, Y. Numerical analysis of a multiple jet impingement system. In Proceedings of the ASME

Turbo Expo 2009: Power for Land, Sea, and Air, Orlando, FL, USA, 8–12 June 2009; Volume 48845, pp. 629–639. [CrossRef]
9. Zu, Y.Q.; Yan, Y.Y.; Maltson, J.D. CFD prediction for multi-jet impingement heat transfer. In Proceedings of the ASME Turbo Expo

2009: Power for Land, Sea, and Air, Orlando, FL, USA, 8–12 June 2009; Volume 48845, pp. 483–490. [CrossRef]
10. Webb-Martin, S.; Yang, Z. Assessment of Urans approach for predicting twin impinging jets in a cross-flow. In Proceedings of

the 9th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, St. Julian’s, Malta, 16–18 July 2012;
Available online: http://hdl.handle.net/2263/44776 (accessed on 20 December 2023).

11. Khayrullina, A.; van Hooff, T.; Blocken, B.; van Heijst, G. Validation of steady RANS modelling of isothermal plane turbulent
impinging jets at moderate Reynolds numbers. Eur. J. Mech.-B/Fluids 2019, 75, 228–243. [CrossRef]

12. Menter, F. Zonal Two Equation kw Turbulence Models For Aerodynamic Flows. In Proceedings of the 23rd Fluid Dynamics,
Plasmadynamics, and Lasers Conference, Orlando, FL, USA, 6–9 July 1993; p. 2906. [CrossRef]

13. Menter, F.; Egorov, Y. A scale adaptive simulation model using two-equation models. In Proceedings of the 43rd AIAA Aerospace
Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2005; p. 1095. [CrossRef]

https://www.mdpi.com/article/10.3390/en17010196/s1
https://www.mdpi.com/article/10.3390/en17010196/s1
https://doi.org/10.1615/ICHMT.2009.HeatTransfGasTurbSyst.470
https://doi.org/10.1016/S0065-2717(06)39006-5
https://doi.org/10.1080/01457632.2012.614154
https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.080
https://doi.org/10.1016/j.fusengdes.2007.05.027
https://www.euro-fusion.org/programme/demo/
https://doi.org/10.1016/j.ijheatfluidflow.2007.02.006
https://doi.org/10.1115/GT2009-59719
https://doi.org/10.1115/GT2009-59488
http://hdl.handle.net/2263/44776
https://doi.org/10.1016/j.euromechflu.2018.10.003
https://doi.org/10.2514/6.1993-2906
https://doi.org/10.2514/6.2005-1095


Energies 2024, 17, 196 16 of 16

14. Bovo, M.; Davidson, L. On the transient modelling of impinging jets heat transfer. A practical approach. In THMT-12, Proceedings
of the Seventh International Symposium on Turbulence Heat and Mass Transfer, Palermo, Italy, 24–27 September 2012; Begel House Inc.:
Danbury, CT, USA, 2012. [CrossRef]
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