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Abstract: Faults in wind turbine rotating components contribute significantly to malfunctions and
downtime. A prevalent strategy to reduce the Cost of Energy (CoE) in wind energy production
focuses on minimizing maintenance expenses associated with these turbine components. An accurate
Remaining Useful Life (RUL) diagnosis of these components is crucial for maintenance planning,
ensuring uninterrupted energy quality and cost-efficiency. This paper introduces a refined method for
RUL prediction of wind turbine rotating components using a Health Index (HI) derived from vibration
signals. Performing HI construction by extracting all features from the vibration signal and selecting
the best features to build HIs using on Principal Component Analysis (PCA) and some abnormal
areas that deviate from the bearing damage trend can be eliminated. After constructing a HI use the
similarity model and degradation models to predict RUL. Research results show that this degradation
method can provide a reliable means to predict the RUL of wind turbine rotating components based
on vibration signals. More importantly, predicting RUL in this way can significantly reduce operating
and maintenance costs by providing wind turbine rotating operators with sufficient advance notice
to plan repairs or replacements before any component failure occurs.

Keywords: health index; remaining useful life; lSTM; degradation model; similarity model

1. Introduction

In recent years, many scientific studies have provided convincing evidence that the
frequency and severity of natural disasters and the impact of climate change have increased
significantly. These scientific studies have generated a rising consciousness regarding the
critical imperative to safeguard the environment and confront the issue of climate change.
Green energy sources, including wind, solar, and hydropower, have arisen as vital answers
to curbing greenhouse gas emissions and alleviating the effects of climate change. Using
data provided by the International Energy Agency (IEA), the utilization of new and renew-
able energy sources has shown a consistent upward trend, with a 41.59% increase compared
to the levels of a decade ago in 2017 [1]. Wind power has played a pivotal role in driving this
overall growth, contributing 36% to the total increase. Importantly, its expansion surpasses
that of other renewable energy sources, such as solar power (27%), hydroelectricity (22%),
and biomass (12%) [2,3]. Projections indicate that by 2023, renewable energy will constitute
almost 30% of global electricity production, with wind power accounting for 6% of the total
renewable energy [4].

Within the wind power sector, the endeavor to minimize the Cost of Energy (CoE)
presents a diverse array of intricate technical challenges. Alongside the initial instal-
lation costs, the operation and maintenance expenses of wind turbines contribute to
roughly 20–25% of the total cost per kWh [5]. A prevalent method for reducing CoE is
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the mitigation of warranty costs associated with wind turbine components. The survey
data presented in the article [6] highlights that downtime in wind turbine components is
mainly due to issues with generator components (33.3%) and gearboxes/bearings (33.3%),
marking the highest maintenance rate. Managing the efficiency of crucial components
like bearings, alternators, and gearboxes remains a persistent challenge. Analyzing vibra-
tion signals from these components is crucial for understanding operational conditions,
enabling early problem detection, and accurate prediction of Remaining Useful Life
(RUL). However, current methods face limitations in precisely determining RUL based
on vibration signals. This research seeks to create an enhanced method to overcome
these challenges. Predictive maintenance strategies come into play when specific fault
types can be anticipated, along with estimates of time to failure (fault prognosis) or the
prediction of RUL. These strategies enable proactive measures to either prevent faults
or schedule repairs optimally. A more extended prognostic horizon, which is the period
ahead of a fault when it can be accurately predicted, provides maintenance teams with
ample time to plan and act. This approach, known as condition-based maintenance,
stands in contrast to the more traditional preventative maintenance, which typically relies
on historical component reliability to determine suitable periodic inspection and repair
intervals to prevent unplanned failures [7,8].

To address the issue of RUL predictions, researchers have categorized RUL prediction
methods into three main groups: analytical simulation, data-driven, and physical model-
based methods [9]. Nathan Bolander and his colleagues, for instance, emphasize the use of
specific physical-based propagation models, such as crack propagation models, to predict
the remaining lifespan [10]. However, the application of physical model-based approaches
for predicting the RUL typically involves intricate and precise computations. These models
often require detailed data on materials, design specifications, operational parameters, and
environmental conditions, making data collection and processing a time-consuming and
costly endeavor. Furthermore, physical model-based approaches heavily rely on assump-
tions and estimations, potentially reducing prediction accuracy. Variabilities in factors
that are either unaccounted for or subject to change over time can lead to discrepancies
in results. Additionally, constructing and comprehending these complex physical models
demands a significant level of technical expertise, making the method less accessible to
individuals without specialized training. On the other hand, data-driven methods offer an
alternative approach. Various data-driven techniques have been proposed for predicting
the RUL of bearings. For example, Ning et al. [11] applied Recurrent Neural Networks
(RNN) to establish a health indicator for bearings and used a particle-filtering algorithm
to update the parameters of an exponential model for RUL prediction. This method is
versatile, but RUL predictions can be significantly influenced by fluctuations in the health
indicator. In contrast, references [12,13] describe a hybrid prognostic method based on an
adaptive predictive model used to calculate the change rate of measurements and forecast
the RUL of bearings. This approach utilizes the change rate of measurements to determine
the initial degradation time of bearings and the failure threshold. Although this method
can be applied more broadly, RUL predictions may still be significantly affected by the
degradation patterns of bearings, particularly in regions where measurements exhibit fluc-
tuations. Duan et al. [14] introduced an innovative cumulative transformation algorithm
to process data and employed a trained extreme learning machine model to anticipate the
degradation trend of bearings. This approach strikes a balance between model complexity
and accuracy but lacks generalizability, and its reliability cannot be evaluated using a
single set of lifetime data for bearings in both training and testing modes. Mingming Yan
and colleagues [15] employed a Support Vector Machine (SVM) and a hybrid degradation
tracking model to predict the RUL of bearings, utilizing the RMS feature as a degradation
indicator. However, relying solely on the RMS feature as a bearing degradation index has
limitations in fully representing the complexity of the input data, leading to a reduction in
model performance.
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In this article, we propose a prognostic method to predict the RUL of bearings to
achieve better performance than the studied methods by effectively building a bearing
health index (HI) to achieve higher prediction performance.

(1) The selection of good features that represent bearing deterioration is combined
by correlation, monotonicity, and robustness indexes to provide the best features for
building HI of bearings, and it overcomes the weakness of HI that rely on only one
feature or the weakness of HI that relies on multiple features but the features are not
correlated with each other.

(2) Eliminate outlier regions where the HI index does not increase according to the
trend due to noise signals or damage propagation on the race. When the small cracks on the
race were formed and propagated, the HI started to increase. These areas are false alarms
and need to be eliminated to increase accuracy and reduce prediction model complexity.

(3) Two different approaches are compared: similarity modeling and degradation to
predict bearing RUL based on the constructed health index and analyze their accuracy in
terms of data limitations.

This article outlines the process of determining HIs, starting with the analysis of vi-
bration signals from a dataset to extract relevant features. Once the features are calculated
from the input signal, the selection of those that best capture the device’s degradation
characteristics relies on assessment criteria such as correlation, monotonicity, and robust-
ness. The challenge of using multiple initial features for RUL prediction models is then
addressed by employing Principal Component Analysis (PCA) to derive a unique HI
value for diagnostic purposes. Additionally, it is worth noting that the effectiveness of
current HIs can be compromised by the presence of outlier regions that deviate from the
expected degradation pattern. Once a target HI is established using a two-model approach
for RUL prediction, the subsequent step involves the application of a similarity-based
modeling approach using an AI model with Long Short-Term Memory (LSTM) layers
to identify bearing deterioration patterns based on the HI. Additionally, an alternative
approach for RUL diagnostic modeling involves the utilization of degradation models.
This method divides the degradation phases into two linear segments and employs an
exponential decay function to continuously adjust the degradation state, thus achieving
the most precise RUL predictions.

In this paper, the focus was on researching and discussing the prediction of RUL.
Various methods and techniques for RUL prediction were explored, encompassing the
utilization of machine learning models, analysis of sensor data, and the application of
advanced approaches such as degradation models. Extensive research findings have high-
lighted the numerous substantial advantages associated with RUL prediction, including
the optimization of maintenance processes, the reduction of downtime, the enhancement
of overall system availability, and the reduction of maintenance expenses. The discussion
revolved around specific methodologies and techniques, with a strong emphasis on the
imperative need to select the most suitable approach based on the unique context and
objectives of each specific application.

The subsequent sections of this paper are structured as follows: Section 2 outlines the
steps involved in constructing the HI; Section 3 focuses on the design of RUL prediction model
based on the developed HI, followed by the presentation and discussions of the obtained
results; and in Section 4, the conclusive insights and future perspectives are deliberated.

2. Building a Health Index
2.1. Data Description

The vibration signals utilized in this paper have been made available through the
courtesy of the Center for Intelligent Maintenance Systems (IMS) at the University of
Cincinnati [16]. Figure 1 details the experimental arrangement at IMS. Four bearings are
attached to one shaft, with a stable rotational velocity of 2000 rpm maintained by an AC
motor linked to the shaft through ribbed belts. There are two accelerometers for each
bearing along the x and y axes for data set 1, and one accelerometer for each bearing in data
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sets 2 and 3. The data packet comprises three distinct data sets, each of which documents a
test-to-failure experiment. These data sets contain individual files, each containing 10 min
of vibration signals at specific intervals, recorded at a sampling rate of 20 kHz.
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Figure 1. Bearing test rig.

The data collection process was facilitated using the NI DAQ Card 6062E. Details of
the collected data set are shown in Table 1.

Table 1. Details of the data set.

Case Recording Duration No. of Files Description

Set No. 1 22 October 2003 12:06:24 to
25 November 2003 23:39:56

2156
(8 channels)

At the end of the test-to-failure experiment,
inner race defect occurred in bearing 3 and

roller element defect in bearing 4.

Set No. 2 12 February 2004 10:32:39 to
19 February 2004 06:22:39

984
(4 channels)

At the end of the test-to-failure experiment,
outer race failure occurred in bearing 1

Set No. 3 4 March 2004 09:27:46 to
4 April 2004 19:01:57

4448
(4 channels)

At the end of the test-to-failure experiment,
outer race failure occurred in bearing 3

2.2. Health Index of Bearing

The primary role of a HI is to furnish insights into the condition of systems or de-
vices, offering managers or users a comprehensive overview of their ongoing performance
and usability. By continuously monitoring and assessing pertinent parameters, HIs can
anticipate system or component failures, malfunctions, or the RUL. Conventional HIs,
such as root mean square, crest factor, kurtosis, skewness, and quadratic mean, have often
exhibited limitations, leading to both false positives and false negatives in the detection
process [4,5,17]. To enhance the reliability of HIs, the approach of employing multiple
features is employed to develop a HI that is less susceptible to the influence of a single
feature or the noise commonly associated with earlier HIs.

2.2.1. Feature Extraction

a. Feature Extraction in Time Domain

This section involves extracting various features within the time domains from the
recorded segment of the vibration signal. Over time, methods for analyzing mechanical
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vibrations in time domains have consistently proven their effectiveness. The time domain
analysis primarily comprises calculating conventional statistical attributes. While basic
statistical analysis techniques offer crucial information about the signal, they might not be
adequate for diagnosing faults, but they serve as a useful method for detecting obvious
irregularities. To capture temporal information from the bearing data, this study recom-
mends using the traditional statistical parameters outlined in Table 2. Where y represents
the sampled time signal, i denotes the sample index, and N signifies the sample count.

Table 2. Features in the time domain are extracted.

Feature Formula

Mean y = 1
N

N
∑

i=1
yi

Standard deviation
σ =

(
1
N

N
∑

i=1
(yi − y)

) 1
2

Skewness
1
N

N
∑

i=1

(yi−y)3

ρ3

Kurtosis
1
N

N
∑

i=1

(yi−y)4

ρ4

Peak to Peak ymax − ymin

Root mean square (RMS) RMS=
(

1
N

N
∑

i=1
yi

2
) 1

2

Crest factor
ymax
RMS

Shape factor
RMS

1
N

N
∑

i=1
|yi |

Impulse factor

ymax

1
N

N
∑

i=1
|yi |

Margin factor ymax(
1
N

N
∑

i=1
|yi |
)2

Energy N
∑

i=1
yi

2

b. Feature Extraction in Frequency Domain

Frequency-domain analysis primarily focuses on spectral analysis, which stands as
the predominant method widely used in the industry to diagnose bearing faults [18]. In
the realm of monitoring the condition of electromechanical systems, damaged bearing
vibration signals commonly exhibit an impulsive signature [19].

When local faults emerge within the inner or outer race of the rolling elements in
bearings, they generate shocks that activate high-frequency resonances within the structure
between the bearing and the response transducer [20]. Detecting this impulsive signature
poses a challenge as it could be obscured by other sources of vibration such as gearboxes,
shafts, and surrounding noise. Therefore, shock impulsivity is most noticeable in the
frequency domain through the initial application of Spectral Kurtosis (SK), which quantifies
the kurtosis of a signal’s spectral components. SK proves to be a valuable tool for detecting
impulsive bearing signatures, particularly when they might be obscured by other sources
of vibration like gears, shafts, or mechanical misalignments [21]. The SK of a signal is
characterized as the Kurtosis of its spectral components. It can be defined as the normalized
fourth-order spectral moment [22], specifically when considering a signal y(t).

SK( f ) =
〈∣∣y4(t, f )

∣∣〉
〈|y2(t, f )|〉2

− 2 (1)



Energies 2024, 17, 19 6 of 17

Here, 〈·〉 stands for the time-frequency-averaging operator, y4(t, f ) and y2(t, f ) denote
the fourth-order and second-order cumulants, respectively, of a band-pass filtered signal
derived from y(t) around the frequency f.

After analyzing the frequency domain, with a primary focus on spectral analysis of the
vibration signal, features in the spectral domain, such as SK-mean, SK-Standard deviation,
etc., were also calculated using the formulas provided in Table 1, where y is SK(f).

2.2.2. Choosing the Right Features

In the original feature set, some features are redundant and insufficient to comprehen-
sively represent the bearing’s condition. Therefore, a process is undertaken to filter out the
most informative features from the original set, which can accurately depict the bearing’s
degradation over time. The choice of HI has a significant impact on the complexity of prog-
nostic modeling and the accuracy of predictions, necessitating the selection of a suitable
HI for precise prognosis. To identify the most appropriate features at various stages, each
extracted feature is evaluated against predetermined criteria.

To determine the optimal features, reference [23] introduced three metrics to assess the
suitability of the indicators. These include three feature evaluation indices: a correlation
indicator Corr(H, T), a monotonicity indicator Mon(H), and a robustness indicator Rob(H).
These metrics were employed to sift through the features that effectively represent the
degradation process and exhibit predictability. Before evaluating alternative features, a
central moving average method is applied to treat each alternative feature (denoted as
H) as a random process. This process is divided into two parts: a trend component (HT)
representing the average trend and a random component (HR) reflecting the residual, as
defined in Equation (2).

H(ti) = HT(ti) + HR(ti) (2)

Monotonicity signifies the dominant upward or downward pattern of the health
indicator. It serves as a critical factor in evaluating degradation processes, particularly
because the progression of bearing faults is often regarded as an irreversible phenomenon.
The monotonicity of a set of indicators is inferred from the mean disparity between the
occurrences of positive and negative growth along each pathway. This measure can be
expressed using Equation (3).

Mon(H) =
1

N − 1

∣∣∣∣∣∑i
k(HT(ti+1)− HT(ti))−∑

i
k(HT(ti)− HT(ti+1))

∣∣∣∣∣ (3)

Here, N represents the total count of observations, and k(n) is defined as a step function,
and characterized as follows:

k(n) =
{

1, n > 0
0, n ≤ 0

As for robustness, owing to factors such as measurement noise, the stochastic nature
of degradation processes, and variations in operational conditions, random fluctuations
are often incorporated into a HI curve, potentially leading to reduced prediction result
stability [24]. An effective HI should exhibit resilience to these interferences and display
a consistent degradation pattern. This attribute is referred to as resilience. Similar to
monotonicity, resilience is an inherent characteristic of a HI. Zhang et al. [23] introduced a
metric for assessing the resilience of His. It is denoted as follows:

Rob(H) =
1
N

exp
(
−
∣∣∣∣HR(ti)

H(ti)

∣∣∣∣) (4)

As the operating time increases, components are more likely to experience gradual
degradation. Consequently, it is anticipated that a HI will exhibit a correlation with the
operating time, a characteristic referred to as correlation [25]. Unlike monotonicity and
robustness, the correlation is a property that signifies the correlation between the HI and
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time. Typically, the correlation coefficient between the HI and time is employed as a
measure of correlation [23,26,27]. It is denoted as follows:

Corr(H, T) =
|N∑i HT(ti)ti −∑i HT(ti)∑i ti|√[

N∑i HT(ti)
2 − (∑i HT(ti))

2
][

N∑i ti
2 − (∑i ti)

2
] (5)

Evaluating an index’s appropriateness for estimating RUL based on a single goodness
metric offers only a limited assessment and depending solely on one metric for feature
evaluation can introduce bias. To address this, the goal is to achieve a balanced considera-
tion of multiple goodness metrics to identify the most suitable features. Consequently, the
define the degradation feature selection criteria by creating a weighted linear combination
of the proposed metrics.

CI = ω1Corr(Y) + ω2Mon(Y) + ω3Rob(Y)Y ∈ Ωs.t.

{
ω1 > 0

∑
i

ωi = 1 , i = 1, 2, 3 (6)

Here, CI is the ranking index of features, Ω is the set of evaluated features and ωi is
the weight assigned to each feature evaluation indicator reflects its significance in the
assessment. These weights are constrained within the range (0, 1). As bearing degradation
progresses, damage accumulates, making the monotonicity of degradation features the
utmost priority. Therefore, the weights of ω1 =0.25, ω2 = 0.5, and ω3 = 0.25 were chosen
for Corr(Y), Mon(Y), and Rob(Y), respectively. With a data set of 3 bearing life cycles,
performance calculations in the time domain and frequency domain were evaluated by the
Mon(Y), Corr(Y), and Rob(Y) indices as shown in Figure 2.
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Figure 2 presents performance metrics for various attenuation indices, evaluating
features in both the time and frequency domains using three different indices: monotonicity,
robustness, and correlation. In Figure 2a, the monotonicity index reveals substantial
variations in feature evaluation. In Figure 2b,c, the robustness and correlation metrics
display little discernible distinction among the features. By aggregating all three indices,
monotonicity, robustness, and correlation, with respective weights of 0.5, 0.25, and 0.25,
we derive the feature evaluation results as shown in Figure 2d. Based on the insights from
Figure 2d, we can select features such as Std, RMS, Energy, MarginFactor, Kurtosis, and
SKMean to construct the HI.

2.2.3. PCA-Based HI Construction

The process of selecting optimal features in Section 2.2.2 distinctly reveals the degrada-
tion of the bearings for creating the HI. Principal Component Analysis (PCA) is a commonly
employed technique for synthesizing data derived from the selected features, as discussed
in [28]. PCA helps uncover the interaction patterns among features within sensitive feature
sets. By means of orthogonal transformation, the original features are projected into a
set of comprehensive features. Consequently, a reduced amount of data can effectively
represent the primary informative features inherent in the input data, thereby achieving
dimensionality reduction. The approach for constructing the HI based on PCA can be
outlined in Figure 3:
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The use of Z-score normalization method addresses the issue of disparate data weights
arising from significant variations in the sizes of sensitive objects, enabling consistent
treatment of input signals:

Ym×n
standardized =

yj
i −mean

(
yj

i

)
std
(

yj
i

) ,
{

i = 1, 2, 3, . . . m
j = 1, 2, 3, . . . n

(7)

where Ym×n
standardized is the matrix of n selected features, m is the length of the features,

mean
(

yj
i

)
is the average value of each feature, and std

(
yj

i

)
is the standard deviation of

each feature.
The covariance matrix A for the Ym×n

standardized norm is determined:

A =
n

∑
i

(
yj

i −mean(yj
i))
(

yj
i −mean(yj

i)
)T

(8)

Compute the eigenvalues λ and eigenvectors of the matrix A, the eigenvalues represent
the variance of the first principal component, while the eigenvectors form the column
vectors in the transformation matrix. The eigenvalues are arranged in ascending order,
the largest eigenvalue λ is selected, and the corresponding eigenvector λ is used as a row
vector to construct the eigenvector matrix B. After sorting the principal components, the
subsequent step is to determine the number of dimensions to retain.
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In this section, we use input including the top six features, Std, RMS, Energy, Margin-
Factor, Kurtosis, and SKMean. PCA analysis was conducted and the results are shown in
Figure 4a. As depicted in Figure 4, it is clear that the PCA1 value gradually increases with
the deterioration of the bearing. Therefore, PCA1 can be determined as a suitable HI for
the bearing. Figure 4b shows the HI constructed through the PCA algorithm.
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2.2.4. Outlier Region Correction

Just as described in Section 2.2.3, HI was constructed. However, as illustrated in
Figure 5, the regions of fluctuation, marked within the circled rings, can complicate the
RUL prediction model. The diagnostic performance is adversely affected as these regions
do not conform to the bearing degradation pattern.
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In this section, the objective is to eliminate the outlier regions from the HI to alleviate
irregular trends. This correction process entails two fundamental steps: identifying outlier
regions and removing them. As Liang Guo et al. mentioned in [29], the assumption that
the generated HI exhibits a certain degree of increasing trend, signifying that deviations
in the HI values remain within a specific range. Therefore, a method utilizing the 3σ rule
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to identify outlier regions within the HI. Subsequently, the identified outlier regions are
eliminated by connecting the starting point to the ending point of each respective outlier
region. The detailed steps of this proposed outlier correction technique are outlined below
as shown in Figure 6:
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Here, Np, and Nn are the number of positive outliers and negative outliers, respectively;
Lp and Ln are the location set of the positive outliers and negative outliers.

In the stage of outlier region identification, the discrepancy in a HI is computed
as follows:

dHw
k =

hw
k+1 − hw

k
∆k

(9)

where hw
k is the HI at the time k, and dHw

k is the corresponding difference at time k.
The threshold for outlier detection is defined as:

Threshold =

{
µ + 3σ, upper threshold
µ− 3σ, lower threshold

After identifying the outlier loop, eliminating the outlier region follows the following
Formula (10):

hi
tc = hw

ts +
hw

te
− hw

ts

te − ts
(tc − ts) (10)

where:

hi
tc

is new HI when removing the outliers region
hc

ts
is HI at the time ts when the outlier region begins to appear.

hc
te

is HI at the time te at the end of the exception region
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The HI built in Section 2.2.3 contains fluctuation regions and the above algorithm will
be applied to process outlier regions and obtain a new HI as shown in Figure 7.
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3. Designing a RUL Prediction Model Based on the HI

After completing the construction of the HI, two different approaches are compared:
similarity modeling and degradation to predict bearing RUL based on the constructed HI
and analyze their accuracy in terms of the data limitations as shown in Figure 8:
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3.1. Similarity Models

Utilizing the dataset obtained from IMS, as described in Table 1, which comprises
three data files reflecting the history of bearing performance until failure, we focus on the
diagnosis of the remaining lifespan of the bearings. In this section, the process will involve
the selection of a diagnostic model based on this dataset.
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As illustrated in Figure 9, the predictive framework is primarily divided into three core
components: data preprocessing, model training, and the prediction of RUL. Data prepro-
cessing encompasses the creation of HI metrics, a process that has been comprehensively
elucidated in Section 2. For model training, we opted for the LSTM model due to its specific
design for handling time series data. This model excels in capturing temporal trends,
intricate parameter interdependencies, and the ability to discern non-linear associations.
LSTM possesses the capability to uncover such relationships, a task that conventional linear
models struggle to achieve.
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3.2. Degradation Models

By scrutinizing the characteristics of failures and conducting a thorough review of the
literature [16], there are two distinct phases within the overall degradation process. In the
initial stage, there is a gradual increase in the amplitude of vibration signals, followed by a
rapid escalation in the second stage, ultimately culminating in the failure state within a brief
timeframe. Consequently, apply specific regression models to the data in these two stages: a
linear regression model for data representing slight degradation and an exponential model
for data associated with severe degradation to efficiently and automatically pinpoint the
moment of transition between degradation states. These thresholds are tailored to align
with the performance of linear regression on windowed data, exponential regression on
windowed data, and linear regression on observed data. The transition in degradation
states is recognized when the threshold values of the linear regression models dip below
0.7 corresponding to the HI index built in Section 2.

The exponential model with random coefficients can be expressed in the follow-
ing manner:

H(tk) = Φ + θeβ∗tk+ε− σ2
2 (11)
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where, H(tk) signifies the HI value at time tk. Φ denotes the constant offsets determined by
the linear regression model, as the inception point of the exponential model coincides with
the termination point of the linear model. In addition, θ and β are stochastic parameters
governing the model’s slope, where θ follows a lognormal distribution and β follows a
Gaussian distribution. Finally, ε denotes Gaussian white noise, motion with a mean of
µ = 0 and a variance of σ2.

3.3. RUL Prediction Results

a. Similarity Models

Using a dataset comprising results from three experiments of the run-to-fail circuit and
the calculation of the HI as described in Section 3.1, the LSTM model is trained on two out
of the three HI values and tested on the remaining dataset. The LSTM model configuration
is specified in Table 3, and the outcomes are presented in Figure 10.
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Table 3. LSTM model configuration.

AI Model Parameters

AI model node 1024 LSTM
Activation function Sigmoid

Epoch 100
Batch size 120
Optimizer Adam

Drop output 0.5

Figure 10 indicates a smooth transition to the final rise of HI for bearing 1, while
bearings 2 and 3, respectively show fluctuations and predict failure to reach the error
threshold of HI value, with a set HI failure threshold of 10, only the first case reaches this
limit. Consequently, the LSTM model fails to capture the rapidly rising trend of HI during
the severe degradation stage. This limitation arises from the small input dataset, hindering
the model’s ability to learn the deterioration trend of the bearings.

b. Degradation Models

Based on the degradation models presented in Section 3.2, predictions are made for
three failure cases in the data set of Section 2. After adjusting each value of the threshold,
the mild and severe deterioration stages of HI data are adjusted using linear regression
and a stochastic exponential random coefficient model, respectively. For each case, the
appropriate real-time RUL prediction models are updated by incorporating the newly
discovered data points, and future HI is predicted for the next 10 h.

The automatic threshold setting from the linear region to the degradation region is
0.7. Figure 11 shows that the RUL prediction results closely follow the actual data. In the
three HI prediction cases, 3 cases all reach the bearing failure threshold set at 10. Therefore,
the model proposed in Section 3.2 is said to give acceptable prediction results for bearings
based on vibration data.

c. Discussions

Three HIs sets were created from the raw data, and an LSTM model was trained using
two of these sets and then tested on the third. Testing outcomes, depicted in Figure 10,
show that while Bearing 1 transitions smoothly to the final HI rise, Bearings 2 and 3 display
initial and pre-final oscillations. This suggests the LSTM model’s failure to detect the
swift HI increase during critical deterioration. Regarding the proposed degradation model,
it accurately predicted three failure cases, adapting real-time RUL prediction models by
integrating new data points, thereby forecasting future HI. Figure 11 illustrates satisfactory
prediction results for all three bearings when HI reaches the threshold. In the context
of similarity models, having the most suitable data for model training is essential. The
challenge of acquiring comprehensive run-to-failure datasets, especially for wind turbines
with long service lives, limits the full potential of similarity model training and performance.
In practice, obtaining run-to-failure datasets, particularly for wind turbines with a service
life of up to 20 years, can be challenging. To address this, degradation models use bearing
datasets running until the desired time of diagnosis, enabling precise RUL predictions
within a feasible timeframe and providing a more thorough understanding of bearing
damage compared with LSTM-based similarity models in RUL prediction. The accurate
RUL prediction in this study enhances the proposed wind turbine condition monitoring
system’s ability to collect real-time data and predict the RUL of component wind turbines
using vibration signals. These predictions are relayed to operators as valuable references
for conducting predictive maintenance, pre-empting severe turbine failures. This approach
not only reduces downtime through proactive planning for component supply and repair
but also minimizes damage to adjacent components. Consequently, this method is expected
to bolster the operational reliability of offshore wind turbines and enable cost-effective
maintenance via condition monitoring systems.
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4. Conclusions

This paper has delved into the critical imperative of addressing the issue of RUL
prediction for key components in wind turbines, particularly focusing on vibration signals.
The proposed prognostic method, focusing on constructing a comprehensive bearing HI,
stands out as a novel contribution. By integrating feature selection, outlier elimination,
and two distinct RUL prediction approaches, the method aims to enhance accuracy and
reduce model complexity. The results, as demonstrated by the comparison of the two
models’ similarity and degradation using the same dataset, indicate that the degradation
model outperforms, offering superior prognostic results and proving more suitable for
contemporary wind turbines. The article introduces a unique perspective on the challenges
of RUL prediction, highlighting the importance of selecting appropriate methodologies
based on specific application contexts. This insight not only advances the field of prognostic
methods for wind turbine components but also underscores the broader implications for
optimizing maintenance processes, mitigating downtime, and improving overall system
availability. Looking ahead, the future plan involves refining and expanding the proposed
methodology to account for evolving technological landscapes and emerging challenges in
the renewable energy sector. Ongoing research efforts will focus on incorporating real-time
data streams, machine learning advancements, and continuous model improvement. The
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aim is to develop a more robust and adaptive prognostic framework that can effectively
address the dynamic nature of wind turbine operations. As industries grapple with the
need for sustainable energy solutions, the insights presented in this article provide valuable
guidance for practitioners and researchers alike, fostering a deeper understanding of the
intricacies involved in predictive maintenance strategies for renewable energy systems
such as wind turbines.
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