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Abstract: Due to the high penetration of virtual power plants (VPPs), the bi-directional power flow
between VPPs and active distribution grids makes the grid operation complex. Without congestion
management, the operation schedule only considers the economic benefits, and power flow con-
straints might be violated. Hence, it is necessary to conduct power interaction within the operation
constraints. This paper proposes a coordinated economic dispatch method under voltage security
constraints. The linear expressions were derived by simplifying the AC power flow equations to
reduce the computation complicity. Then, optimal economic dispatch models with voltage security
constraints were established for the active distribution grid and VPPs, respectively. Meanwhile, the
transacted power and clearing price were set as the communication variables, and a coordinated
strategy was proposed for the overall optimal goal. The modified IEEE 33-node and PG&E-node
distribution grids were utilized for the simulations, and the results affirmed the validity of the
proposed method.

Keywords: active distribution grid; virtual power plants; economic dispatch; voltage security
constraint; coordination method

1. Introduction

As the penetration rate of distributed generation (DG) in the power grid contin-
uously increases, multiple devices provide a valuable means for dispatching the dis-
tribution grid operation and increasing the number of decision variables. However, it
also brings some problems to the power grid operation. For example, the curtailment
of wind and solar resources occasionally occurs in areas with a high proportion of DGs.
The power fluctuation of DGs aggravates the uncertainty of the user side and further
increases the grid operation risk. Therefore, it is necessary to propose a proper coor-
dination method for DG operation. However, when applying the centralized mode,
the dispatch center must deal with the operation data of the entire grid, making the
optimal model complex [1–4]. Hence, the concept of virtual power plants (VPPs) has
been proposed to improve operational efficiency. In [5], VPPs aggregated the power
generation resources, which could be managed through the central control system. In [6],
VPPs aggregated the load-side resources, which could be connected to any node of the
distribution grid. In [7], the VPPs were clusters of distributed power sources, control-
lable loads, and energy storage systems, and they operated as special power plants.
According to the international standards for virtual electricity approved by the Interna-
tional Electrotechnical Commission (IEC) [8], VPPs are intelligent control technologies
and business models that aggregate various DERs within a region to participate in the
energy market. In other words, by integrating various DGs and controllable devices,
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VPPs can manage zonal energy dispatch and transact active power with the connected
distribution grid [9–12].

VPPs belonging to different owners can also participate in market activities in the
actual power market. Hence, it is necessary to coordinate the operation of VVPs by
considering the security constraints of the distribution grid [13–17]. There are two kinds
of coordination methods between the distribution grid and VPPs. One type is the master–
slave optimization method [18,19]. The distribution grid dispatches instructions as a master,
and the VPPs react passively. In general, the initiative of consumers in VPPs cannot be
motivated. The other type is the decentralized optimization method. The active distribution
grid and VVPs dispatch their devices independently and exchange boundary information
(including the transacted clearing price) with each other. In [20], the transacted electricity
price was scheduled to adjust the supply and demand situation of the VVPs. In [21],
considering the transaction and congestion costs, the transacted clearing price was set to
dispatch the controllable resource in the active distribution grid. In [22], the line current
security constraints were considered, and the transacted clearing price was calculated using
the DC power flow equations. However, the previous research mainly focused on line
current congestion management and ignored the violation of the node voltage constraints
caused by integrating large-scale VPPs.

With the high penetration of DGs and other controllable devices in power grids, the
decision variables in the active distribution grid and VPPs are various and massive [23,24].
Meanwhile, the corresponding optimization models are nonlinear due to the AC power
flow constraints, which are challenging to solve [24–26]. In [27], based on the DC power
flow equations, a quadratic optimization model for the optimal operation was established.
However, the optimal results could not be obtained without the node voltage constraints.
In [28,29], convex quadratic models were established by second-order cone and semi-
definite programming, respectively. By introducing new variables, the nonlinear constraints
became quadratic constraints, but the optimization model was still complex due to the
increasing decision variables [30]. Therefore, it is necessary to propose an optimization
algorithm for low-decision spaces.

In addition, to improve the coordination efficiency between the active distribution
grid and VPPs, the existing coordinated methods can be roughly divided into two types:
Lagrangian decomposition-based methods [31] and Karush–Kuhn–Tucker (KKT) condition-
based methods [32]. While the Lagrangian decomposition-based approach is simple,
its convergence speed becomes slow because of the duality gap. While the KKT-based
method eliminates the step of the manual modifications of coefficients, the variables are
implicitly combined by the power flow equations, which slows the optimization speed.
Hence, a coordinated method with good convergence is needed to interact with the active
distribution grid and VVPs.

This paper researched the economic dispatch problem under voltage security con-
straints and proposed a novel coordinated method for the active distribution grid and
VVPs. The features of the proposed method include the following.

(1) According to the exchanged boundary information and the respective operation points
of the distribution grid and VPPs, the approximate linear expressions constructed
by node power injections were established for the node voltage security constraints.
Furthermore, for the distribution grid and VPPs with relatively stable topologies,
coefficients of linear expressions were generated offline and applied online. Due to the
transformation of the constraints into a combination of linear combinatorial inequali-
ties involving decision variables, and the variables in both the objective function and
constraints were consistent, and the optimization model was easy to solve.

(2) The quadratic integrated mathematic model was established to minimize the overall
operating cost, and a distributed algorithm was proposed based on the KKT conditions
for the global optimality. Only the boundary node voltages of the distribution grid, tie-
line powers, and clearing prices were exchanged during the iterative communication.
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The remainder of the paper is structured as follows: Section 2 provides a linearized
way for the voltage security constraints. Section 3 establishes an integrated optimization
model for the distribution grid and VPPs under the voltage security constraints, aiming
for a minimal operation cost. Section 4 proposes the iterative computing method for
coordination based on the KKT conditions. In Section 5, simulations for a modified IEEE
33-node distribution grid with three VPPs are presented. The conclusion is presented in
Section 6.

2. Linearization for the Node Voltage Security Constraints

Considering that the current margin of the cable capacity was sufficient to meet
the power demand, this paper neglected the current constraints and focused on the
voltage violation caused by DGs. Suppose there are n nodes in the distribution grid.
P = (P1, P2, . . . , Pn)

T, Q = (Q1, Q2, . . . , Qn)
T, U = (U1, U2, . . . , Un)

T, and θ = (θ1, θ2, . . . , θn)
T

are the active power injection, reactive power injection, voltage magnitude, and phase
angle vectors, respectively.

The equations for the AC power flow are as follows.

Pi = Ui

n

∑
j=1

Uj(Gij cos(θi − θj) + Bij sin(θi − θj)) (1)

Qi = Ui

n

∑
j=1

Uj(Gij sin(θi − θj)− Bij cos(θi − θj)) (2)

where Gij + jBij is the admittance between node i and j.
The correction equation can be obtained from the above node power balance equa-

tion [33], as shown in Equation (3).

∆U = J−1
[

∆P
∆Q

]
= [α β]

[
∆P
∆Q

]
= α∆P + β∆Q (3)

where ∆U is the voltage deviation variable, J is the Jacobian matrix, And α = (αij)n×n and
β = (βij)n×n are the coefficient matrices corresponding to the active power and reactive
power injections, respectively. The expression of αij and βij are as follows. αij =

∂Ui
∂Pj

βij =
∂Ui
∂Qj

(4)

Suppose Ui,max and Ũi are the upper limit and current state of the voltage magnitude

at node i. (
.
P

T
,

.
Q

T
) is the critical operation point corresponding to Ui = Ui,max. Then, for

node i, we can achieve the following.

∆Ui,max = Ui,max − Ũi =
.
α∆P +

.
β∆Q (5)

where
.
α = (

.
αij)n×n and

.
β = (

.
βij)n×n

can be calculated at the critical operation point

(
.
P

T
,

.
Q

T
) using Equation (4). ∆Ui,max represents the difference between the maximum and

current voltage magnitudes.
When ∆Ui,max = 0, we can achieve the following approximate expression for Ui,max.

.
α∆P +

.
β∆Q = 0 (6)

Considering ∆P = P −
.
P and ∆Q = Q −

.
Q, we can achieve the following.

.
αP +

.
βQ =

.
χi (7)
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where
.
χi =

n
∑

j=1
(

.
αij

.
Pj +

.
βij

.
Qj). For a given (

.
P

T
,

.
Q

T
),

.
χi is a constant variable, and Equation

(7) is the linear equation for the upper limit of the voltage magnitude at node i.
Similarly, regarding the lower limit of the voltage magnitude at node i, that is,

Ui = Ui,min, (
..
P

T
,

..
Q

T
) is the corresponding critical operation point. Then, we can achieve

the following.
..
αP +

..
βQ =

..
χi (8)

where
.
α = (

.
αij)n×n and

.
β = (

.
βij)n×n

can be calculated at the critical operation point

(
..
P

T
,

..
Q

T
) using Equation (4).

..
χi =

n
∑

j=1
(

..
αij

..
Pj +

..
βij

..
Qj). For a given (

..
P

T
,

..
Q

T
),

..
χi is a constant

variable, and Equation (8) is the linear equation for the lower limit of the voltage magnitude
at node i.

Based on Equations (7) and (8), the linear expressions constructed by the power
injections for the voltage security constraints can be depicted as follows.

n

∑
j=1

(
.
αijPj +

.
βijQj) ≤

.
χi (9)

n

∑
j=1

(
..
αijPj +

..
βijQj) ≥

..
χi (10)

where
.
αij,

.
βij,

.
χij,

..
αij,

..
βij, and

..
χij are the constants for the given critical points, which can

be calculated offline and recalled online. We can see that establishing the linear expression
needs critical points on the static voltage region boundaries. The method for identifying
the critical points can be found in [34].

3. Integrated Economic Dispatch Model of the Distribution Grid and VPPs

In the operation structure of the active distribution grid and VPPs, as shown in Figure 1,
the decision variables for the VPPs are the active power injections of the distributed
generations (DGs) and energy storages (ESs), and for the distribution grid, are the active
power injections of the direct-controlled DGs. The active distribution can exchange power
with the transmission grid and VPPs, and the power flow among them is bi-directional.
Under this energy structure, this paper proposes an integrated model for the economic
dispatch of the active distribution grid and VPPs.

3.1. Optimization Model in a Distribution Grid

Suppose the sets of nodes and DGs in the distribution grid are Nd and Gd, respectively.
The operational objective of the distribution grid is to obtain the maximum market revenue,
which can be expressed as follows.

min fd = πPT + ∑
∀i∈Gd

Cd
i (Pi) = πPT + ∑

∀i∈Gd

(aiP2
i + biPi + ci) (11)

where π is the clearing price between the transmission and distribution grids and PT is the
power injected from the transmission grid. Pi(∀i ∈ Gd) is the power of the i-th DG; Cd

i (Pi)
is the operation cost of the i-th DG; and ai, bi, and ci are the cost coefficients.

Then, the linear expressions for the voltage security constraints of node i ∈ Nd can be
depicted as follows.

∑
∀j∈Nd

(
.
α

d
ijPj +

.
β

d
ijQj) ≤

.
χ

d
i (12)

∑
∀j∈Nd

(
..
α

d
ijPj +

..
β

d
ijQj) ≥

..
χ

d
i (13)
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where
.
α

d
ij and

.
β

d
ij are the coefficients derived from the Jacobian matrix of the distribution

grid corresponding to the critical point ((
.
P

d
)

T
, (

.
Q

d
)

T
);

.
χ

d
i = ∑

∀i∈Nd

(
.
α

d
ij

.
P

d
j +

.
β

d
ij

.
Q

d
j ); and

..
α

d
ij and

..
β

d
ij are the coefficients derived from the Jacobian matrix of the distribution grid

corresponding to the critical point ((
..
P

d
)

T
, (

..
Q

d
)

T
);

..
χ

d
i = ∑

∀i∈Nd

(
..
α

d
ij

..
P

d
j +

..
β

d
ij

..
Q

d
j ).
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P Qα β χ

∀ ∈
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∀ ∈
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∀ ∈
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d
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i ij j ij j
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Figure 1. System structure of virtual power plants in a distribution grid.

Meanwhile, the capacity constraints of the power injection at node i can be depicted
as follows.

Pi,min ≤ Pi ≤ Pi,max, ∀i ∈ Nd (14)

where Pi,max and Pi,min are the maximum and minimum values of the power injection at
node i, respectively.

In addition, the exchanged power constraint between the distribution grid and trans-
mission gird can be depicted as follows.

PT,min ≤ PT ≤ PT,max (15)

where PT,max and PT,min are the maximum and minimum values of the exchanged power
between the transmission and distribution grids.

Suppose there is no grid loss in the distribution grid, then we could achieve the following.

PT + ∑
∀i∈Nd

Pi = 0 (16)

In summary, Equations (11)–(16) form the quadratic optimization model, and the
decision variables are the node power injections in the objective and constraints. Then, the
proposed model can be rapidly solved using the quadratic programming method.

3.2. Optimization Model in VPPs

In an active distribution grid, the number of VPPs is nv, and the VPP at node k is
denoted as VPPk. The sets of nodes, DGs, and ESs in VPPk are Nk, Gk, and Ek. The
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controllable variables of VPPk are the output Pi(∀i ∈ Gk
d) at the i-th DG, the output

Pi(∀i ∈ Ek
d) at the i-th ES, and the tie-line power Pk with the distribution grid at node k. For

the operation cost and sales revenue, the optimization model of VPPk is as follows.

min fk = ∑
∀i∈Gk

CV
i (Pi) + ∑

∀i∈Ek

CE
i (

∣∣∣Pi

∣∣∣) − πkPk = ∑
∀i∈Gk

(aiP2
i + biPi + ci) + ∑

∀i∈Ek

di|Pi | − πkPk (17)

where πk is the clearing price of VPPk, which is determined by the distribution grid, and
CV

i (Pi) is the cost function of the i-th DG in VPPk.
Then, the linear expressions for the node voltage security constraints of VPPk can be

expressed as follows.

∑
∀j∈Nk

(
.
α

k
ijPj +

.
β

k
ijQj) ≤

.
χ

k
i (18)

∑
∀j∈Nk

(
..
α

k
ijPj +

..
β

k
ijQj) ≥

..
χ

k
i (19)

where
.
α

k
ij and

.
β

k
ij are the coefficients derived from the Jacobian matrix of VPPk correspond-

ing to the critical point ((
.
P

k
)

T
, (

.
Q

k
)

T
);

.
χ

k
i = ∑

∀i∈Nk

(
.
α

k
ij

.
P

k
j +

.
β

k
ij

.
Q

k
j ); and

..
α

k
ij and

..
β

k
ij are the

coefficients derived from the Jacobian matrix of the distribution grid corresponding to the

critical point ((
..
P

k
)

T
, (

..
Q

k
)

T
);

..
χ

k
i = ∑

∀i∈Nk

(
..
α

k
ij

..
P

k
j +

..
β

k
ij

..
Q

k
j ).

Meanwhile, the capacity constraint of the power injection at node i can be depicted
as follows.

Pi,min ≤ Pi ≤ Pi,max, ∀i ∈ Nk (20)

Considering the state of charge, the capacity constraints of ES can be depicted as follows.

Si,min ≤ S̃i −
1

Wi
((

ηc

2
+

1
2ηd

)Pi − (
ηc

2
− 1

2ηd
)|Pi|) ≤ Si,max, ∀i ∈ Ek (21)

where S̃i is the current charge state of the i-th ES and Si,max and Si,min are the maximum
and minimum charge states of the i-th ES, respectively. ηc and ηd are the charging and
discharge efficiency of the i-th ES, respectively and Wi is the capacity of the i-th ES.

Suppose there is no grid loss in VPPk, then the power flow constraint can be depicted
as follows.

∑
∀i∈Nk

Pi − Pk = 0 (22)

In addition, the tie-line power constraint can be considered as follows.

Pk,min ≤ Pk ≤ Pk,max (23)

Thus, Equations (17)–(23) construct a quadratic optimization model of VPPk, amenable
to resolution through quadratic programming techniques. Equations (11)–(23) construct an
integrated optimization model of the distribution grid and VPPs.

4. Coordinated Method Based on KKT Conditions

To obtain a globally optimized result, this paper proposes a KKT-based calculation
method for the clearing price between the distribution grid and VPPs.

If the KKT conditions of the integrated optimization model are met, the condition
related to the tie-line power Pk can be shown as follows.

∑
∀i∈Nd

(µi,max
.
αik − µi,min

..
αik) + νk,max − νk,min + λk − ρk = 0 (24)
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where µi,max and µi,min are the multipliers corresponding to the maximum and mini-
mum voltage magnitude of node i, respectively; νk,max and νk,min are the multipliers corre-
sponding to the maximum and minimum tie-line power, respectively; and λk and ρk are
the multipliers corresponding to the power flow constraints of the distribution grid and
VPPk, respectively.

Then, if the KKT conditions of the optimization model of VPPk are met, the condition
related to Pk can be formulated as follows.

πk + νk,max − νk,min − ρk = 0 (25)

By combining Equations (24) and (25), we can see that if the clearing price meets the
following equation, the KKT conditions of the global model are met.

πk = ∑
∀i∈Nd

(µi,max
.
αik − µi,min

..
αik) + λk (26)

Equation (26) is the proposed calculation expression.
Afterward, this paper proposes a coordinated algorithm for the distribution grids

and VPPs, which is shown in Figure 2. During the iteration, Us
k, πs

k, and Ps
k are exchanged

between the active distribution grid and VPPk, and the residual is calculated as follows.

εs+1 = max( max
∀i∈Gd∪Gk∪Ek

(
∣∣∣Ps+1

i − Ps
i

∣∣∣), max
∀k

(
∣∣∣Ps+1

k − Ps
k

∣∣∣)) (27)Energies 2024, 17, x FOR PEER REVIEW 8 of 16 
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If
εs+1 < ε (28)

where ε is the threshold, the proposed coordinated algorithm converges.

5. Simulation Results

Considering the node voltage security violation caused by VPPs in the distribution
grid, this paper proposed a coordinated algorithm for the distribution grid and VPPs. Here,
a modified IEEE 33-node grid with three VPPs and a modified PG&E 69-node grid with
five VPPs were used for the simulations, as shown in Figures 3 and 4, respectively. For the
IEEE 33-node grid, three integrated VPPs had the same configuration and were connected
to nodes 11, 24, and 31, respectively, and the controllable DGs in the distribution grid
were at nodes 18, 22, 25, and 33. For the PG&E 69-node grid, five integrated VPPs had
the same configuration and were connected to nodes 9, 18, 44, 52 and 67, respectively, and
the controllable DGs in the distribution grid were at nodes 6, 14, 23, 30, 37, 48, 60, and 63.
The unit parameters of the above two grids are shown in Tables 1 and 2, respectively. The
load distribution in the distribution grid can be seen in [8,35], respectively. The scheduling
period of economic dispatch was 24 h.
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Table 2. Unit parameters of the PG&E 69-node grid.

DG Number Pmin/kW Pmax/kW

6 0 1500
14 50 1500
23 50 1500
30 100 1500
37 100 1500
48 100 1500
60 50 1500
63 50 1500

5.1. Simulation Results for the IEEE 33-Node Grid
5.1.1. Comparison with the Centralized Method Based on the AC Power Flow Equations

To reflect the advantages of the proposed method in calculation speed and accuracy,
Table 3 shows the comparison results with a centralized method based on the AC power
flow equations, where power losses existed. We can see that the calculation time of the
proposed and the centralized methods were 5.04 s and 163.7 s, respectively. The error rate
of the proposed method was 1.36% compared to the traditional AC power flow equation,
which was within the allowable range of engineering. Therefore, the method proposed in
this paper had practical engineering application value.

Table 3. Comparison results of the centralized and proposed methods for IEEE 33.

Method Total Calculation Time (s) Overall Cost (¥)

Proposed method 5.04 3478
Centralized method 163.7 3433

In terms of economic benefits, the economic costs of the coordinated and independent
modes are shown in Table 4. Due to the coordinated strategy proposed in this paper, the
operating costs of the VPPs were lower than those of the independent mode, enhancing the
economic benefit of the power grid.

Table 4. Cost comparison of the different operating modes in IEEE 33.

Operation Mode Overall Cost

Coordinated mode 3478
Independent mode 3961

5.1.2. Comparison with the Existing Decentralized Method

The decentralized method based on the alternating direction method of multipliers
(ADMM) was used for the comparisons to demonstrate the convergence advantage, where
a nonlinear optimization model was established. Table 5 presents the optimization results
for these two methods. Compared to ADMM, the proposed method diminished the average
calculation time per iteration and the required number of iterations, i.e., both the efficiency
and convergence characteristics were enhanced.

Table 5. Compared optimization results.

Method Average Calculation
Time at Each Iteration Number of Iterations Total Calculation Time

Proposed method 1.61 s 3 5.04 s
ADMM 3.97 s 35 142.44 s
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Figure 5 shows the change in the residuals with the number of iterations in the eighth
hour to verify the fast convergence of the proposed method. After five iterations, the
method proposed in this paper converged, while the ADMM required approx. 35 iterations.
Since the proposed method used the Jacobian matrix to transform the nonlinear voltage
constraint form into a linear combination of node power injection inequality, we can see
that the objective function was the same as the variables in the constraint conditions.
Determining the optimal conditions between each VPP and the distribution grid in the
optimization process became extremely simple.

Figure 5. Iteration residual curve with the number of iterations for IEEE 33.

5.1.3. Comparison with Economic Dispatch without Voltage Constraints

The voltage distribution of all the nodes after the economic dispatch without the
voltage constraints of the distribution grid is shown in Figure 6. We can see that without
congestion management, voltage violations existed after the economic dispatch, and the
optimal results could not meet the requirements of the actual distribution grid.
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The electricity clearing prices in the economic dispatch with and without voltage
constraints are shown in Figure 7. We can see that at 11, 12, 18, 23, and 24 h, the electricity
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prices between VPP1 and the distribution grid were affected by node voltage congestion.
The transacted electricity prices were reduced to eliminate the node voltage violation, and
the power injection was adjusted subsequently. We can see that the proposed method
ensured the f voltage constraints in the distribution grid with the updated clearing price.
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Furthermore, the optimal results of VPP1 without voltage constraints are shown in
Figure 8. We can see that at 11, 12, 18, 23, and 24 h, the DER power generation capacities
were sufficient, and the prices of transacted electricity were high. As a result, VPP1
actively sold electricity to the distribution grid for profit, and the voltage of node 11 in
the distribution grid violated the limits. Applying the proposed method decreased the
transacted electricity price between VPP1 and the distribution grid. For the scheduling
results of VPP1 with voltage constraints, as shown in Figure 9, we can see that VPP1
correspondingly reduced the amount of electricity based on the updated transacted clearing
price. Meanwhile, at 9, 19, 20, and 22 h, VPP1 chose to discharge energy from the ES, reduce
the output of DGs, and sell electricity to the distribution grid for profit. In summary,
guided by the transacted electricity price with node voltage constraints, VPP1 can actively
dispatch the optimal schedule of internal DERs to alleviate node voltage congestion in the
distribution grid.
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In addition, Figures 10 and 11 show the power flow after the economic dispatch
without/with constraints, respectively. The red dash line in Figures 10 and 11 represents
the lower limit of tie-line power Pk. We can see that the power flow on line 11 had congestion
at 11, 12, 18, 23, and 24 h.
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With the exchange of boundary information, the distribution grid updated the clearing
price, and the VPPs adjusted the purchase and sale of power in conjunction with the
clearing price. The contrast of the two figures showed that the power flow violation was
effectively alleviated due to the application of the proposed method.

5.2. Simulation Results for the PG&E 69-Node Grid
5.2.1. Comparison with a Centralized Method Based on the AC Power Flow Equations

To further demonstrate the effectiveness of the proposed method, the PG&E 69-node
grid was used for the simulations. The cost comparisons of the different operating modes
are shown in Table 6. Due to the coordinated strategy proposed in this paper, the operating
costs of VPPs were lower than those of the independent mode, enhancing the economic
benefit of the power grid.

Table 6. Cost comparison of different operating modes for PG&E 69.

Operation Mode Overall Cost

Coordinated mode 3478
Independent mode 3961

Table 7 shows the comparison results with a centralized method based on the AC
power flow equations, where power losses existed. Similar to the simulations in the IEEE 33-
node grid, the proposed method took 7.46 s, which was only 3.42% of the calculation time
of the centralized method, and the error rate was only 2.01%. In addition, as the number of
system nodes increased, the calculation time did not increase exponentially. In summary,
the IEEE 33-node grid and PG&E 69-node grid simulations showed that the proposed
method could significantly improve the calculation speed while ensuring precision.

Table 7. Comparison results of the centralized and proposed methods for PG&E 69.

Method Total Calculation Time (s) Overall Cost (¥)

Proposed method 7.46 8391
Centralized method 218.2 8224

5.2.2. Comparison with the Existing Decentralized Method

The optimization results for the PG&E 69-node grid are shown in Table 8 and Figure 12.
Similar to the IEEE 33-node grid, the proposed method only needed four iterations to
converge, while the ADMM needed 43 iterations. Meanwhile, as shown in Table 8, we can
see that when the system was transformed from 33 nodes to 69 nodes, the total calculation
time of the method proposed in this paper increased by 48.02%, and the average calculation
time at each iteration increased by 22.98%. For the ADMM method, when the system was
transformed from 33 to 69 nodes, the total calculation time increased by 62.69%, and the
average calculation time at each iteration increased by 84.38%, which means the proposed
method was more suitable for the application in the power grid with multiple nodes.

Table 8. Compared optimization results of the PG&E 69-node grid.

Method Average Calculation
Time at Each Iteration Number of Iterations Total Calculation Time

Proposed method 1.98 s 4 7.46 s
ADMM 5.03 s 43 183.63 s
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Figure 12. Iteration residual curve with the number of iterations for PG&E 69.

6. Conclusions

This paper constructed linear expressions for the node voltage security constraints
based on the respective topological structures and boundary information of the distribution
grid and VPPs. Then, a linear coordinated economic dispatch method was proposed for
the distribution grid with VPPs. Since the constraints were linear and the established
model was quadratic, the optimization process and the clearing price determination were
simplified. The results from the simulation showed the following.

(1) Since the proposed method used the Jacobian matrix to transform the nonlinear volt-
age constraints into the linear combination of the node power injection, the objective
function had the same variables as those in the constraint conditions, simplifying the
optimal model. In contrast to the current distributed methods, the calculation time
was reduced several times due to the fast speed in solving the quadratic optimization
model and determining the electricity clearing price.

(2) Based on the boundary information, including the amount and price of electricity
transacted, the distribution grid and the VPPs can adjust their controllable devices to
maximize economic returns. The proposed economic dispatch method effectively alle-
viated the power flow violation limits and facilitated friendly collaborative interaction
between the VPPs and the distribution grid.
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