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Abstract: The following paper examines the practicality of a methodical approach for energy-flexible and
energy-optimal operation in the field of metal-cutting production. The analysis is based on the example
of a grinding machine and its central cooling-supply system. In the first step, an energy-flexibility
data model is built for each subsystem, which describes energy flexibility potentials generically. This
is then extended to enable combined energy cost-optimal production planning. As a basis for the
links between the data model representations, the cold flows between the subsystems are modeled
using parameter-estimation methods, which have a mean absolute error of only 2.3 percent, making
the subsequent installation of heat meters unnecessary. Based on the presented approach, the results
successfully validate the possibility of energy-flexible cost-optimal and sensor-reduced production
planning by reducing energy costs by 6.6 percent overall and 1.9 percent per workpiece produced.

Keywords: energy flexibility; manufacturing; machine tool; optimization; demand-side management

1. Introduction

The increase in volatile renewable energy sources in combination with the continuous
reduction in fossil power plants are reasons for growing fluctuations in power grids, for
instance, in Germany [1]. These fluctuations of electricity generation are mainly caused by
changing weather conditions affecting wind and solar power [2].

Demand response (DR) involves measures for adjusting power consumption profiles
according to energy price signals or providing energy flexibility capacity to help main-
tain power grid stability. Along with actions related to energy efficiency, DR could be a
promising tool for tackling the challenges of fluctuating power supply [3]. Both DR and
energy efficiency constitute demand-side-management (DSM) activities that aim to adjust
the amount and/or timing of electricity consumption [4].

For this reason, the German research project “SynErgie” [1] focuses on the DSM
of industrial processes, which accounts for 44 percent of gross energy consumption in
Germany [5]. One of the main results of the last five years of research is a generic energy
flexibility data model (EFDM) for describing energy flexibility potentials with respect to the
power consumption of machines and systems in the industrial sector [6]. This model uses
standardized description and key figures for modeling power-related energy flexibility.
However, the data model has not been applied to real industrial use cases so far. In this
context, this paper examines the practical usability of this approach for assessing energy
flexibility potentials in the field of machining.

DR as such is already carried out by some of the biggest energy consumers of the
German industry such as the production of basic metals, paper and paper products, and
chemicals and chemical products. Electricity-intensive production processes involved in
these industries offer large amounts of flexibilizable power by means of load reduction and
load shifting [7]. The marketing of energy flexibility on balancing energy or spot markets
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could be profitable for industrial companies, which would create incentives for more
energy flexibility to be provided [8]. Transparency and support mechanisms regarding
energy flexibility in industrial settings should therefore be promoted and utilized. As
Sauer et al. point out, energy flexibility is already used economically in energy-intensive
industries. Similarly, Sauer et al. also show that small consumers, as a whole, have a
large flexibility potential [1]. However, this potential is not being realized since individual
small flexibilities are not economically useful for large-scale electricity markets. The above-
mentioned data model could be a useful tool to capture and aggregate small flexibilities
in a standardized way so that they can be treated as one large flexibility and traded in
respective market places.

1.1. Related Work

Further, Bank et al. [3] show that it is fundamentally possible to implement energy
flexibility based on a data model with energy-oriented production planning. This presents
the possibility to participate more effectively in energy markets. However, the supply
systems of the considered loads are not taken into account. Furthermore, the optimization
of the machines shown in Bank et al. is only based on the underlying energy price curve
and does not take into account the available energy in the supply systems. Seitz et al. [9],
on the other hand, show an approach that fundamentally allows several levels, e.g., pro-
duction machines and supply technology, to be considered together in an energy-flexible
optimization. However, the approach has not yet been applied. Roth et al. [10] consider the
supply system in the energy-flexible PPS in which a battery storage is taken into account.
However, no uniform data model is used in his work. Kehne et al. [11] show that for
the energy-flexible operation of a machine tool, the optimization of the process itself is
also possible. In this approach, however, the machine operation is also carried out only
according to volatile energy prices without taking into account the supply technology of
the plant. In addition, Popp et al. [12] shows that an optimized machine tool operation can
also be carried out under the consideration of dependencies. For this, Popp considers the
components of the machine tool but not the supply systems or production specific depen-
dencies of the plant. Additionally, a standardized data model is not used, which makes
it a use-case-specific solution. In contrast, Bahmani et al. [13] show that energy-flexible
production planning based on a generic data model and taking dependencies into account
is possible. However, its functionality is only shown in synthetic use cases.

1.2. Research Gap

The following work aims to address obstacles in realizing energy flexibility potential
in the field of machining, which is considered a small consumer, by demonstrating the
feasibility of using a standardized data model for flexibilizing processes with small indi-
vidual electrical consumption but notable collective flexibility potential. The presented
use case involves a modern computer numerical control (CNC) grinding machine tool
with its corresponding workpiece storage and central cooling supply, which represents a
realistic but simple manufacturing setting. In addition to exhibiting the practicality of the
aforementioned EFDM based on [6], this work establishes an approach for including energy
flexibility considerations in production planning while keeping the model compatible with
energy-market-specific requirements and conditions. In the practical application of the
data model, several obstacles arise. These and open points of previous related works are
addressed in our paper. The following aspects outline the contribution of our work:

• Most of the previous related work does not calculate a (detailed) EFDM with considera-
tion of the production plan. We propose an approach to achieve both an energy-flexible
production plan and a detailed EFDM. Therefore, we take into account the material
flow of the machine tool while calculating the EFDM and the optimization of the
production plan.
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• Previous research does not address a machine tool in combination with its energy-
supply systems. Those systems under consideration are usually highly dependent on
each other and can therefore not be modeled in disjoint data models. In our presented
use case, the cooling-supply system has to provide enough cooling capacity for the
operation of the machine tool. So, we take both systems into account while modeling
the EFDMs with their dependencies.

• Our presented approach shows which assumptions and simplifications are needed to
fill out the data model and parameterize the resulting optimization problem.

The above points close the gap between the theory, modeling, and application of
energy flexibility in a real production environment. The shown approach is transferable
to other use cases, e.g., from the paper industry and other storage systems. This is made
possible by the generic data model used and the solution shown for optimization with the
necessary calculations. These address the research question of how the key figures of the
EFDM can be calculated for a real use case and which data are necessary for energy-flexible
optimization. The remainder of this paper is organized as follows. In Section 2, basic
theoretical insights about the structure of the EFDM and production scheduling are given.
Similarly, the section briefly shows the basics of virtual metering in combination with the
parameter estimation of volume flow. The experimental use case is explained in Section 3.
For the calculation of the EFDMs, the cold flows between the cooling-supply system and
the grinding machine are needed, which have to be measured by sensors. Since, in practice,
sensors cannot be installed everywhere, a virtual sensor is developed and modeled to
estimate the cold flows in Section 4. In Section 5, we initially establish a specific EFDM
for each component of the use-case based on equations or manufacturers’ specifications.
Therefore, the creation of specific EFDMs of the machines is described, which are used in
the experimental system setup. In Section 6, the experimental application and the results of
the energy-flexible operation are described. The energy-flexibility measures involved in
the optimized energy-flexible load profile are subsequently applied to the use-case during
the practical operation of the components, followed by evaluation and discussion. Finally,
Section 7 gives a conclusion of the results and provides approaches for further research.

2. Theoretical Background

Our research is based on the methodology presented in [6], which aims to describe
possible energy flexibilities of physical systems using generic EFDM. As shown in Figure 1,
the three classes Flexible Load, Flexible Storage, and Dependencies of the EFDM span the
Flexibility Space. This space contains all of the possibilities of an energy-flexible system to
vary its energy output compared to the reference case.

Therefore, a method for representing a production system using EFDM is demon-
strated, and the respective boundary conditions necessary are presented. On this basis, the
energy demand of the production machine and the associated supply systems is examined
under the consideration of estimated thermal energy flows using virtual flow sensors.
This offers the advantage that no complex and costly sensor retrofitting is required and is
explained in-depth in Section 2.3.
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Figure 1. The Figure shows the three different classes of the energy flexibility data model (EFDM),
which create the Flexibility Space, which contains the class of possible Flexibility Load Measures.

2.1. Energy-Flexibility Data Model

In the following, we give a description of the energy flexibility data model (EFDM)
classes. These general descriptions are provided in [6], and more detailed explanations were
given in [14]. Additionally, the variables are listed and a mathematical mixed-integer linear
programming (MILP) model is proposed for each of the components. The model is used to
optimize system operation by implementing energy-flexibility measures corresponding
to the values defined in the EFDM. As a proof of concept, this paper aims to show that
the EFDM approach can generally be applied to production systems. To simplify the
optimization, this exemplary model does not consider all of the possible variables provided
in the EFDM framework. The following assumptions are made:

• Each component can only assume one of the different power states:
Pi with i ∈ {upper, lower, reference, working}

• The reference power state Preference is not considered in the optimization model and is
merely used to evaluate energy-flexibility measures in Section 6 of this paper.

• Regeneration duration tR is not modelled.
• The power gradients ∇PAct, ∇PMod, and ∇PDea are not modelled.
• Target energy contents for flexible storages ETar are not considered in the optimiza-

tion model.
• Costs cS associated with storage operation are not considered.
• Dependencies between multiple flexible loads are not modelled explicitely and only

indirectly represented by flexible storages.

In addition to the existing variables, the following variables are introduced for keeping
track of global figures:

• t: the number of current time steps;
• a: the width of a time step in seconds;
• Tmax: the optimization horizon;
• cel: the cost of electricity at time t.

In the following section, we introduce all of the components of the EFDM and the respective
equations describing their behavior.

A Flexible Load models a technical system or the interaction of different technical systems
that have the potential to produce a change in performance [14].

The key figures for describing a flexible load are shown in Table 1.
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Table 1. Description of the key figures in the energy flexibility data model (EFDM) of flexible loads,
following [6].

Key Figure Description

L Set of all flexible loads id
id Flexible load ID
tD Reaction duration
TV Validity
Pid Power states
tH Holding duration
NA Usage number

NMod Modulation number
∇PAct Activation gradient
∇PMod Modulation gradient
∇PDea Deactivation gradient

tR Regeneration duration
cL Cost for operation of flexible load

The set of all flexible loads is defined as L. The momentary power consumption P of a
flexible load is described by

Pid,t = bid,t ·
(

Pupper
id − Plower

id

)
+ Plower

id ∀t, ∀id ∈ L (1)

and with

bstart
id,t ≥ bid,t − bid,t−1

bend
id,t ≥ bid,t−1 − bid,t

}
∀t, ∀id ∈ L (2)

the binary parameters bstart and bend can be equate to 1 if the load is switched on or off,
respectively.

Once the flexible load reaches the upper power state, it must remain at that state for
the duration tupper

H , as constrained by

bend
id,t ·

tupper
H −

t−tupper
H

∑
T=t

bid,T

 ≤ 0 ∀t, ∀id ∈ L (3)

The same applies for the lower power state, as constrained by

bstart
id,t ·

tlower
H −

t−tlower
H

∑
T=t

bid,T

 ≤ 0 ∀t, ∀id ∈ L (4)

where the flexible load must remain for tlower
H seconds. Equation (5) ensures that the

maximum number of usages allowed by the EFDM of the component is not exceeded.

Tmax

∑
t=0

bstart
id,t ≤ NA ∀t, ∀id ∈ L (5)

Finally, the total operating cost of a flexible load over the optimization horizon is
determined by

cL ,id =
Tmax

∑
t=0

(
a · Pid,t · cel

t

)
∀id ∈ L. (6)

Flexible loads could interact with one or more storages, as we describe in the following.
An Energy-Storage system is a technical system or the interaction of different technical

systems that have the potential to store energy. In general, in addition to direct energy storage
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systems, such as heat storage or battery storage, inherent storage such as product storage is also
possible. Energy storage cannot be used for energy flexibility without flexible loads since no power
change is possible without a flexible load [14].

The energy storage is described by the key figures given in Table 2.

Table 2. Description of the key figures in the EFDM of storages, following [6].

Key Figure Description

S Set of all energy storages id
id Storage ID
CS Usable capacity
Et0 Initial energy content incl. time stamp
ETar Target energy content incl. time stamp
ELoss Energy loss

SS Suppliers
ES Drain
cS Cost for operation of flexible storage

The set of all available energy storages is defined as S. The current energy content E
of an energy storage is defined by

Eid,t =Eid,t0 +
t

∑
t=0

a ·
(
SS,id,t − ES,id,t − ELoss,id

)
∀t, ∀id ∈ S

. (7)

A storage’s energy content cannot exceed its capacity CS or fall below its minimum
energy content Cmin

S , so
Cmin

S,id ≤ Eid,t ≤ CS,id ∀t, ∀id ∈ S (8)

it is given as constraint. Lastly, dependencies describe the relations between multiple
flexible loads. Dependencies can be used if switching one flexible load also requires
changes from another flexible load.

The class Dependencies can be used to model constraints and dependencies for the interaction
of multiple flexible loads. For example, the use of one flexible load can imply or exclude the use of
another flexible load.

The key figures to describe those dependencies between flexible loads does not occur
in our use case, so we refer to [6].

In addition to the three classes mentioned above for describing the Flexibility Space, a
flexible load measure (FLM) describes a concrete performance change of the system within
its flexibility space [6,15].

A Flexible Load Measure describes a deliberate action taken to implement a defined change
of state in a production system and encompasses the change in state of a production station and the
interactions in the production system which this change entails. This is accompanied by a concrete
change in performance within the flexibility space, no longer has any degrees of freedom itself, and is
time-terminated.

The key figures to define a FLM are given in Table 3, and an exemplary representation
is shown in Figure 2.
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t0

tD tRtH,1 tH,2

P2

P1

P

t
∇PAct ∇PMod ∇PDea

Figure 2. Simplified representation of an FLM.The figure shows the meaning of the key figures,
which are given in Table 3.

Table 3. Description of the key figures in the EFDM of flexible load measure, following [6].

Key Figure Description

id Flexible load measure ID
tD Reaction duration
t0 Starting time
Pid Power states
tH Holding duration
NA Usage number
∇P Vector of gradients
cM Cost for flexible load measure

2.2. Production Scheduling

Since this paper considers demand-response measures for technical supply systems
in connection to production equipment, it is necessary to take production scheduling into
account. In our study, grinding machines are modeled in the EFDM context, so there are
some specific properties that must be incorporated.

We assume that the grinding machine is part of a flow production line that is con-
figured so that production flows consistently. Therefore, takt time ttakt is the quotient of
available working time divided by customer demand [16]. In our case, demand is de-
fined by an overall production capacity utilization of approximately 70%, meaning the
production line is not utilized for 30% of the available time.

One machine in the production line is considered for the demand-response optimiza-
tion. This leads to the machine becoming a potential bottleneck in the production line.
Therefore, the scheduling problem can be considered to be a single machine schedul-
ing problem, which is solved offline [17]. Possible changes, for example, resulting from
equipment breakdowns, are not accounted for.

Given these simplifications, we apply the above-mentioned models to the grinding
machine with the exception that workpieces are discrete units. Therefore, Equation (7)
must be mapped to discrete steps so that

Eid,t =Eid,0 +

⌊
t

∑
t=0

SS,id,t − ES,id,t − ELoss,id

⌋
∀t, ∀id ∈ S

(9)

follows.

2.3. Virtual Sensors and Pump Theory

In order to quantify the interaction between the grinding machine and the cooling-
supply system in form of the EFDM of the cold storage, the cooling demand of the grinding
machine is required. Apart from installing a physical metering device to directly measure
the volume flow of the cooling medium, a virtual sensor can be introduced to calculate
the volume flow from other measured signals. This approach is especially advantageous if
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purchasing, implementing, and maintaining a physical sensor is expensive [18]. As physical
volume flow sensors are usually either invasive, requiring one to open the system for
installation (e.g., paddle wheel volumetric flow meters [19]), or expensive (e.g., ultrasonic
volumetric flow meters [20]), a virtual sensor is developed to acquire the cooling medium
volume flow.

According to [21], there is currently no uniform definition of virtual sensors. In [22],
virtual energy metering points are subdivided into

• Aggregation and disaggregation approaches,
• Hybrid modeling approaches,
• Approaches based on physical modeling.

Hybrid virtual energy consumption models are characterized as empirical models
based on conditional or process data [22]. In the presented case, we use such a hybrid
approach to develop the virtual energy metering point. In the ETA Research Factory [23],
intelligent pumps (Grundfos Magna3 [24]) containing internal metering points for electric
load and rotational speed are installed. These signals are used as inputs for a data-based
model to predict the pump volume flow. In order to develop the model, the volume flow is
temporarily measured using a physical ultrasonic sensor (Flexim F601 [25]). This temporary
measurement is then used as target value for data-based modeling.

The relation between the predicted volume flow and the cooling demand needed for
the EFDM is derived from the first law of thermodynamics so

Q̇ = ṁ · cp · ∆T

= V̇ · ρ · cp · (Toutlet − Tinlet)
(10)

following [26] for the heat flux, which is equivalent to the cooling demand over time Q̇.
With the density ρ and specific heat capacity cp assumed as constant material prop-

erties of the flow medium, the heat flux depends solely on the volume flow V̇ and the
temperature difference between the inlet and outlet temperature ∆T = Toutlet− Tinlet. Since
the temperature difference can be measured directly with little effort, the volume flow is
the only missing property to obtain the heat flux describing the cooling demand of the
grinding machine.

Following the similarity laws of pumps given in [27], the volume flow of centrifugal
pumps is dependent on the rotational speed, the pressure difference, and the electrical
load. While all of these parameters are dependent on each other, it is usually sufficient
to know two of them to fully describe a pump state [27]. However, since all three of the
parameters are provided by the intelligent pump utilized in this work, all three are used as
input parameters to model the volume flow.

Without knowledge of the pump efficiency in each pump state, the dependency
between the mentioned parameters cannot be explained with physical equations [27].
Therefore, a data-based model is needed. The development of this model is described
in Section 4, and it is subsequently used in Section 6 to obtain the heat flux between
the systems.

3. Experimental Setup

The fundamentals covered in Section 2 lay the foundation for implementing an EFDM
in [6] to a physical industrial setting for evaluating its practicality. The equipment used is
located in the ETA Research Factory (Technical University of Darmstadt) [23], which is a
research facility focused on energy efficiency and flexibility in industrial applications.

In the following section, the use case and utilized equipment are presented. The
setting revolves around a vertical CNC grinding machine for the precision machining
of pump-control disks as part of the ETA Research Factory process chain. After turning,
cleaning, drying, and heat treatment, the parts arrive at the grinding machine as the last
machining process before final cleaning.
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3.1. Grinding Machine

The examined grinding machine is a highly automated vertical CNC grinding machine
for high-volume production including an integrated pick-up automation system [28] as
shown in Figure 3. It is part of a level flow production line as described in Section 2.2.

Figure 3. Picture of the CNC grinding machine of the use case for the energy-flexible operation.

In addition to the grinding machine, the experimentation scope also includes the
grinding machine’s cooling supply and workpiece storage. The grinding machine contains
several components requiring cooling in order to maintain process quality and component
durability and performance. These components include the turning spindle, the two
grinding spindles, and the cooling lubricant supply. In addition, the control cabinet needs
to be cooled during operation. Cooling is circulated within the machine via a temperature
controlled internal cooling circuit. Cooling energy is externally supplied by the central
cooling system through a heat exchanger.

3.2. Cooling System

The cooling-supply system consists of a cooling circuit and an air-chiller unit [29]
providing it with cooling energy. The circuit includes a thermal buffer storage [30], which
adds thermal inertia to the system for added flexibility. Cooling energy is transported
from the chiller to the cold storage and from the cold storage to the grinding machine by
means of pumps and heat exchangers. Cold flux is calculated using a virtual volume-flow
sensor, which is described in detail in Section 4. Since the cooling lubricant supply is
separated from the grinding machine, it has its own internal cooling system, which is also
supplied by the central cooling circuit. The average cooling demand during production
is approximately 477 W at a cooling temperature of 20 ◦C. Cooling energy is transported
from the cooling circuit to cooling energy consumers by centrifugal pump 2 [24], as seen in
Figure 4.
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Figure 4. This schematic experimental setup shows the dependencies between the subsystems.

The network is cooled to a temperature range of 18–22 °C by means of the chiller.
The internal cooling circuit of the chiller transfers cooling to the chilled water network
through a heat exchanger and has a nominal cooling power of 6 kW (at Tsupply = 18 °C
and Tambient = 35 °C). On the other side of the heat exchanger, centrifugal pump 1 [24]
transports the chilled water throughout the network. The chiller is operated by being given
a target temperature to reach via bang-bang control, while compensating thermal loads
to maintain the target temperature. As a result, the chiller usually demonstrates variable
electrical power consumption, depending on how far it is from the target temperature.

To increase the flexibility of the chilled water system, a thermal buffer storage is
installed, which also acts as a hydraulic separator to decouple pumps installed in the
network. The storage allows for charging at different heights in order to separate different
temperature levels and reduce exergy losses. The storage is thermally insulated and allows
temperatures as high as 90 °C and as low as freezing temperature with a volume of 950 L.
However, only a temperature range of 10 °C to 30 °C is required for the following use-case.
A schematic of the experimental setup is shown in Figure 4.

3.3. Production System

The production line considered in this paper consists of five workcenters. Production
begins with milling and turning operations and continues with a cleaning step followed by
heat treatment. After heat treatment, parts are ground in the grinding machine followed
by a final cleaning process. This paper only considers the grinding machine, as it is the
bottleneck of the production line as described in Section 2.2. The key parameters of the
machine can be determined using the takt time ttakt of the production line, which is 101 s
as defined in Section 2.2 in this case. For level production, three grinding machines are
required in the production line. For the purpose of this paper, only one of these three
machines is considered. This leads to a machine cycle time of 303 s.

The grinding machine has a workpiece storage for finished workpieces. This stor-
age must never be completely empty to ensure continuous operation of the subsequent
machines is not interrupted. This storage has a capacity of 20 parts and supplies the subse-
quent production processes, which require seven pieces every 2016 s from the considered
grinding machine, as shown in more detail in Section 5.1.

3.4. Energy Flexibility Components

The aforementioned components represent the three subcategories of the energy-
flexibility data model—flexible loads, storages and dependencies—as described in Section 2
to constitute a flexibility space [6]. In the use-case, both the grinding machine [28] and the
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chiller [29] represent flexible loads, due to their consumption of electrical power. Linked
to these flexible loads are corresponding storages. In the case of the chiller, the storage is
represented by the thermal buffer storage [30] since it stores cooling energy. The workpiece
storage, storing finished parts from the grinding machine, also acts as storage. Although
parts are not directly comparable to thermal or electrical energy stored in a reservoir, they
are considered in order to flexibilize not only the cooling supply but also the supply in
the finished parts and this part of the process chain. Dependencies, which should exist
between flexible loads, are not represented in the use-case since the only flexible loads
within the presented experimental scope (grinding machine and chiller) are only indirectly
connected through the chilled water network and the thermal buffer storage [6]. However,
boundary conditions, which ensure realistic operation, are considered in Section 5.

4. Development and Modelling of a Virtual Volume-Flow Sensor

As described in Section 2, the volume flow of cooling medium and thereby heat flux is
obtained using a virtual sensor in this work. The virtual sensor is developed for pump 1
(see Figure 4), which is speed-regulated and therefore has adaptive operating states. Pump
2, on the other hand, operates in a constant operational state, which is why its volume flow
is assumed constant at 0.617 m3/h. The virtual sensor of pump 1 essentially consists of a
data-based model with the properties of rotational speed and electric load as inputs and
the volume flow as output (see Figure 5).

Virtual 
sensor

Electric load

Rotational speed
Volume flow

Figure 5. Schematic of the virtual volume-flow sensor. The virtual sensor takes the electric load and
rotational speed of the pump as inputs and computes the corresponding volume flow.

Three different methods to estimate the volume flow are developed and compared
within this work:

1. A physical model based on the characteristic diagram provided by the pump supplier;
2. A statistical model using linear regression;
3. A machine learning model.

These three methods represent different modeling strategies typically used in energy
modeling [31].

For the first method, the physical model and the characteristic diagrams are provided
in the data sheet by the pump manufacturer [24]; they visualize whether the dependency
between the volume flow, electric load, and rotational speed of the pump is read into a
table format using an image-recognition algorithm. The pump state is then determined
by linear interpolation between the known characteristic lines of the pump given in these
diagrams. As input parameters, the electric load and the rotational speed, represented
by the relative pump power in %, are used. This approach is based on the information
provided by the pump manufacturer, which is an approximation of the real pump states.
The advantage is that no temporary measurement is needed, but the results (Table 4) show
that this approach is the least accurate of the three.

The second and third method are both data-based methods based on the temporary
measurement of the volume flow with the ultrasonic metering device Flexim F601 [25]. To
capture as many system states as possible within the training data set, the pump states are
manually altered between measurements by setting the control signal to relative power
states between 0 and 100%. The corresponding valve is kept completely open during the
measurements since this is always the case during pump operation in the examined system.
The training data set is displayed in Figure 6.
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Figure 6. Training data for modeling the virtual sensor with the data-based approaches. The different
graphs show the input and output signals introduced in Figure 5. (Top): volume flow (output),
(center): electric load (input 1), and (bottom): rotational speed (input 2).

The data set is prepared before training by removing missing values and outliers. For
outlier detection, a method based on the median absolute deviation from the median within
a rolling window of seven values is used [32].

The linear regression model represents a simple but robust and transparent method to
predict the volume flow. This involves a linear equation with unknown coefficients r0, r1,
and r2, which is set up to compute the volume flow

V̇ = r0 + r1 · Pel + r2 · n (11)

from electric load Pel and the rotational speed n. The coefficients r are determined by
minimizing the cost function (sum of squared errors)

cost =
1
2k

k

∑
i=1

(y(i) − ŷ(i))2 (12)

with y(i) observations, ŷ(i) predictions, and k samples. The values of the coefficients allow
for posterior analyses of the influencing factors of the volume flow to be carried out, and
therefore for some insight into the model to be gained. Due to the linear characteristic, the
model is unlikely to overfit the data, so this makes it robust [33]. The results in Table 4 show
that this approach provides an accurate prediction and generalizes well to unseen data.

As a third method, a more sophisticated machine learning technique is used. Utilizing
a probability-based hyperparameter optimization with the Python library hyperopt [34], a
feedforward neural network and a gradient boosting regression tree (GBRT) algorithm are
tested and evaluated. The GBRT is an ensemble of decision trees [35]. The hyperparameter
search grid includes a variety of hyperparameters, including the network depth and the
dropout rate for the neural network, as well as the number of estimators for the GBRT from
the Python library scikit-learn [36]. As a result of the hyperparameter optimization, the
GBRT algorithm is selected due to its superior performance on unseen data. It performs
very well on the training data set but compared to the linear regression model is less
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transparent and generalizes slightly worse to unseen data, as can be seen at its lower test
score in Table 4.

The results of all of the models on unseen data are compared in Table 4. As a result, the
linear model is selected as a virtual sensor for the volume flow of pump 1 since it performs
well on the test data and is transparent. The predictions of the linear regression model on
the test data are shown in Figure 7.

Table 4. Results of the volume flow modeling: comparison between the three approaches. Metrics:
mean absolute error (MAE), root mean squared error (RMSE), and coefficient of determination
(R2-score).

Modeling Approach MAE (m3/h) RMSE (m3/h) R2-Score (-)

Interpolation model 0.159 0.306 0.876
Linear regression 0.108 0.206 0.943

GBRT 0.099 0.211 0.941

10:00 12:00 14:00 16:00 18:00
Time (hh:mm)

0.0

0.5

1.0

1.5

2.0

Vo
lu

m
e 

flo
w

 (m
3 /

h)

Targets
Predictions

Figure 7. Predictions of the virtual sensor with the linear regression approach on unseen data.

5. Energy-Flexibility Data Model of the System

As mentioned in Section 3, applying the energy-flexibility data model to the use-
case results in representations of two flexible loads (grinding machine and chiller) and
two storages (thermal buffer storage and parts warehouse). As a first step, the data
representation of each component is defined by determining key figures specified by [6].

5.1. Grinding Machine

To obtain the key figures of the grinding machine data model (see Table 5), test runs
are conducted including transitions between the dominant machine states working, reference,
and standby. The main data points observed are the active power intake of the grinding
machine and the machine state. The second important data source is the production plan
that determines how many parts are produced during the validity period. The following
assumptions are made before determining the key figures:

1. The dominant machine states are working corresponding to Pupper, in which parts
are produced, and standby corresponding to Plower, in which the machine stands
still and unnecessary auxiliary units are switched off. Between these two states, the
state reference is defined in which parts are produced in the takt-time ttakt defined
by production planning (without any flexibilitzation). The machine state operational
(between standby and working) is regarded as purely transitional and is represented in
the activation and deactivation gradients. The machine states disabled and off are not
regarded in this study.

2. The mean power intake is assumed to be constant during the machine states.
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3. Production can be halted after each finished part as long as the workpiece storage’s
limits are not breached.

4. To facilitate calculations and optimization, the machine is assumed to be in mode
standby at the start of the shift and ready to produce.

The most important key figures are explained below:
The reaction duration tD depends on the current power state. A signal latency of 0.5 s

is defined as the minimal reaction duration. When transitioning from power states working
or reference to standby, the reaction duration can assume values between 0.5 s and the cycle
time of the workpiece in production (159 s) since production must be finished before being
able to transition into another power state:

tD =

{ 0.5 s, if Pstandby → Pi

[0.5 s, 159 s], if Preference → Pi

[0.5 s, 159 s], if Pworking → Pi
(13)

The validity TV is determined by the production shift:

TV =
[[16.04.2020 06:00:00, 16.04.2020 11:00:00],
[16.04.2020 12:00:00, 16.04.2020 14:00:00]]

(14)

The power state vector Pid is generally defined as

Pid =


P1

P2

...
Pi

 (15)

so in our case for each mean power intake in each dominant state

Pid =

 Pstandby

Preference

Pworking

 =

 1.592 kW
3.889 kW
5.186 kW

 (16)

results.
Possible holding durations tH are defined by the system characteristics and responsible

persons and depend on the assumed power state. A minimum of 30 s holding duration
is defined to prevent high-frequency state changes. In working and reference, the holding
durations are discrete and consist of multiples of the respective takt or process time.
Maximum holding duration is the product of takt or process time and planned product in
validity time. In standby, any holding durations above the minimum can be assumed.

tH =

{ Pstandby : [30 s, inf)
Preference : {1 · 302 s, 2 · 302 s, . . . , 123 · 302 s}
Pworking : {1 · 159 s, 2 · 159 s, . . . , 123 · 159 s}

(17)

The usage number, the number of uses of the flexible load in the planning horizon,

NA = 123 (18)

is determined by the production plan. The power states can be changed at most as many
times as parts are planned for the shift.
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Since each change (activation and deactivation) is regarded as one usage, no modula-
tions of the power state can be achieved during the usage. Therefore,

NMod = 0 (19)

is defined.
The activation gradient denotes the power gradient of the transition from the reference

load profile to another state, i.e., activating a certain flexibility measure. The transition
times between states are determined experimentally. Between reference and working, the
transition time is 0.0 s. From reference to standby, transition time is 376.0 s. The gradient can
thus be calculated by dividing the difference between the power states by the transition
time, resulting in

∇PAct =

(
Pworking

act
Pstandby

act

)
=

(
inf

−6.1 W s−1

)
. (20)

Similarly, the deactivation gradient from working or standby back to reference is deter-
mined. The transition time from working to reference is 0.0 s, while it is 46.0 s from standby to
reference. This results in the

∇PDea =

(
Pworking

dea
Pstandby

dea

)
=

(
− inf

50.0 W s−1

)
. (21)

Concerning the modulation gradients, it applies that for

NMod = 0⇒ ∇PMod = {}.

The regeneration duration tR denotes the time until the FLM can be activated again
after deactivation. In the case of the grinding machine, this waiting period is set to zero since
all relevant constraints (the remaining production time and latency in the reaction duration;
the gradients and workpiece storage capacity; and the production plan) are already covered
in other key figures of the grinding machine or workpiece storage data model.

The costs are an important factor in evaluating whether or not to activate a proposed
FLM. They denote the additional costs that result from activating the measure. In the case
of the grinding machine, the following costs should be taken into account:

• Additional wear and tear due to additional start-up and powering-down;
• Possible workpiece quality reduction due to additional start-up phases and required

rework or additional production rejects;
• Costs that result from a possibly higher risk of production downtime due to the

operation of the system energy flexibly.

The wear and tear costs, the quality-related costs, and the risk costs are not easy to
determine. Further studies in this field are required to provide reliable values. Therefore,
the costs are assumed to be zero in the presented study since it focuses on the technical
aspects of flexibility modeling with reduced complexity.
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Table 5. Specified EFDM of the grinding machine.

Key Figure Calculation Rule Grinding Machine Units

id Assigned by central system Emag_gt -
tD Defined by system characteristics 0.5 s, if Pstandby → Pi s

[0.5 s, 159 s], if Preference → Pi

[0.5 s, 159 s], if Pworking → Pi

TV Assigned by system responsible person [[16.04.2020 06:00:00, 16.04.2020 11:00:00],
[16.04.2020 12:00:00, 16.04.2020 14:00:00]] s

Pid Pi = meant(Pi(t)) Pstandby = 1.5921 kW
Preference = 3.8895
Pworking = 5.1864

tH Defined by system characteristics Pstandby : [30 s, inf) s
Preference : {1 · 302 s, 2 · 302 s, . . . , 123 · 302 s}
Pworking : {1 · 159 s, 2 · 159 s, . . . , 123 · 159 s}

NA Defined by system characteristics 123 -
NMod Defined by system characteristics 0 -

∇PAct Pi
act =

Pi − Pinitial

ttransition
Pworking

act = inf kW s−1

Pstandby
act = −0.0061

∇PMod P(i−>j)
mod =

Pj − Pi

ttransition

- kW s−1

∇PDea Pi
dea =

Pinitial − Pi

ttransition
Pworking

dea = − inf kW s−1

Pstandby
dea = 0.05

tR Defined by system characteristics 0 s
cL Amount of start-ups cost per start-up 0 e

5.2. Chiller

Key figures for the chiller data model are derived through the observation of operation
data, including cooling capacity, electrical energy consumption, the energy efficiency ratio
(EER), and the actual and target temperatures—all of which are constantly monitored and
recorded and represented, respectively, in Figure 8b. Therefore, the EER is calculated by
following [37].

EER =
Cooling power

Electrical power consumption
. (22)

Key figures, mentioned in Table 6, such as power states are limited by data from the
technical specifications of the chiller. The key figures reaction duration, modulation gradients,
and activation gradient are deducted from data generated in experimental operation of the
chiller. Due to the nature of the cooling unit, deriving values for power gradients is not only
dependent on target values but also depends on actual values in addition to demonstrating
a typical hysteresis curve. The operation of the chiller is controlled by setting a target
temperature, which in the use-case is 20 °C, as required by the grinding machine.

Based on the mentioned experimental operation and under the consideration of the
associated valves, tD = 60 s is defined. According to the EFDM of the grinding machine,
the validities should be equal. The possibility of the continuous setpoint setting of the
chiller affects the power states in that they can be variable in the interval Pid ∈ [0.8, 6] kW.
This property—specifically, the bang-bang-control—also infects the holding duration of the
chiller, which is why the value is defined as tH = in f . The same applies to the key figures
NA and NMod. The determination of the gradients is based on the measurements of the
experimental operation (cf. Figure 8b) and is correspondingly

∇PAct =
Pi − Pinitial
ttransition

=
1815.99 W

1560 s
= 1.164 kW s−1 (23)
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∇PMod =
Pj − Pi

ttransition
=

180.27 W
830 s

= 0.217 kW s−1 (24)

∇PDea =
Pinitial − Pi
ttransition

(25)

to be calculated. In this case, for ∇PDea = in f , tR = 0 s is chosen because of the immediate
switch-off behavior of the chiller.

(a) (b)
Figure 8. Here, (a) shows a heatmap that represents the correlation of the EER of the chiller on the
set temperature Tset and the electrical power used. (b) shows the electrical power time series of the
chiller, while in the marked areas the gradients of the EFDM are calculated. Over the first marked
time period, ∇PMod is calculated, and over the second time period ∇PAct is calculated.

Table 6. Specified EFDM of the chiller.

Key Figure Calculation Rule Chiller Units

id Assigned by central system Chiller -
tD Defined by system characteristics 60 s

TV Assigned by system responsible person [[16.04.2020 06:00:00, 16.04.2020 11:00:00],
[16.04.2020 12:00:00, 16.04.2020 14:00:00]] s

Pid Pi = meant(Pi(t)) [0.8, 6] kW
tH Defined by system characteristics inf s
NA Defined by system characteristics inf -

NMod Defined by system characteristics inf -
∇PAct ∇PActi =

Pi − Pinitial
ttransition

0.0024 kW s−1

∇PMod ∇PMod(i−>j) =
Pj − Pi

ttransition

0.0016 kW s−1

∇PDea ∇PDeai =
Pinitial − Pi
ttransition

inf kW s−1

tR Defined by system characteristics 0 s
cL Number of startups cost per startup 0 e

5.3. Cold Storage

The key figures of the cold storage, mentioned in Table 7, need to be defined, so we
can create the full EFDM of the experimental setup. The calculation rules for each key
figure are defined in Table 8, and some more detailed information is given in the following.
At first, we define the id for the storage as “cold storage”. The different temperature values
of the storage are used are Tv

stor with v ∈ V, whereby

V = {cmax, cmin, start, tar, max, min}
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applies, whereby:

cmax ≡ The critical maximum temperature;

cmin ≡ The critical minimal temperature;

start ≡ The start temperature;

tar ≡ The target temperature;

max ≡ The maximum temperature of flexible operation;

min ≡ The minimum temperature of flexible operation .

The capacity of the used storage is calculated by

CS = mstor · cp ·
Tcmax

stor − Tcmin
stor

ru
(26)

with the mass of the storage medium mstor = 1000 kg. As mentioned the storage medium is
water, so cp = 4.184 kJ kg−1 K−1 is used [38]. Furthermore, the temperature range is so se-
lected that its is permissible for the production process and thus follows Tcmax

stor = 18 °C and
Tcmin

stor = 22 °C. To obtain the storage capacity in the EFDM defined form, we need ru = 1
3600

for the conversion between J and W h so that from Equation (26) the capacity range

CS = [0, 4.648]kWh (27)

follows. To calculate the initial energy content of the used storage, we take into account the
actual storage temperature Tstart

stor = 20 °C, and we define Tmin
stor = 20 °C as our lower desired

temperature in the experimental setup. Based on this

Et0 = mstor · cp ·
Tstart

stor − Tmin
stor

ru
= 2.034 kWh (28)

is the result for this key figure. In a similar way, the calculation

ETar = mstor · cp ·
Ttar

stor − Tmin
stor

ru
= 0 kWh (29)

with the defined value Ttar
stor = 18 °C. To take unavoidable energy losses ELoss into account,

the manufacturer-specific heat losses of the storage qBS = 1.37 kWh/24 h is given [39]. In
addition to the total volume V = 1000 L and

∆T = Tcmax
stor − Tcmin

stor (30)

the energy loss of

ELoss =
qBS

V · cp · ρ · ∆T
= 1.228 %/h (31)

follows. For the determination of the efficiency indicator of the supply system of the cold
storage—the chiller—the heatmap of Figure 8 is used to set EER = 2.6 for Ttar

stor = 18 °C.
Furthermore, the heat work required by the chiller by the grinding machine is assumed to
be about 30% of the electric work given in Equation (16) and mentioned in Section 2.2, so
that for one time step t

ES = 0.3 · PGT,t (32)

follows.
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Table 7. Specified EFDM of the workpiece storage.

Key Figure Calculation Rule Workpiece Storage Units

id Assigned by central system Workpiece storage -

CS
Defined by system

characteristics 20 pcs

Et0 Defined by system state 10 pcs

ETar
Defined by system responsible

person 7 pcs

ELoss
Defined by system

characteristics 0 % s−1

SS Supplier ID Emag_gt -
ES see Equation (33) 0.0035 pcs/s

Table 8. Specified EFDM of the cold storage.

Key Figure Calculation Rule Cold Storage Units

id Assigned by central system Cold storage -

CS mstor · cp ·
Tcmax

stor − Tcmin
stor

ru

[0, 4.648] kWh

Et0 mstor · cp ·
Tstart

stor − Tmin
stor

ru

(2.034, TS) (kWh, s)

ETar mstor · cp ·
Ttar

stor − Tmin
stor

ru

(0, TS) (kWh, s)

ELoss
qBS

V · cp · ρ · ∆T
1.228
3600

% s−1

SS (efficiency indicator, ID_Supplier) (2.6, Chiller) (-, -)
ES (TS, 0.3 · PGT,t) (16.04.2020 06:00:00, 0.477) (s -> kW)
cS cost for operation of cold storage 0 e

5.4. Workpiece Storage

As described in Section 3.3, the workpiece storage has a capacity of

CS = 20

workpieces. The initial content of the storage is determined by the current system state and
is assumed to

Et0 = 10

pieces for the use case of this paper. Furthermore, the target energy content must be
determined by a responsible person. In this case,

ETar = 7

is defined.
The supply SS results directly from the produced workpieces of the grinding machine.

Therefore, a coupling to this machine is required.
The drain from the requirements of the production line are described in Section 2.2.

Specifically, the takt time ttakt and the number of machines are required to calculate the
drain. The cleaning machines, which follow the grinding machine in the production process,
require 20 pieces every 2016 s to keep the takt time of 101 s (see also Section 5.1). Since there
are three grinding machines to fulfill this demand, each machine must supply 7 pieces
every 2016 s.

ES =
7 pcs
2016 s

= 0.0035 pcs/s (33)
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6. Application and Demonstration

Based on the optimization approach presented in Section 2 and the flexibility space
created in Section 5, this chapter determines the energy cost-optimal flexible operation
strategy and then implements it on the use case (e.g., Section 3). The results are then
analyzed and discussed.

6.1. Energy Costs Optimal Flexible Operation

There are three steps to the application and demonstration. As a first step, the reference
profile is measured. The result of this measurement is presented in Figure 9. Based on the
measured reference load profile, the key figures for EFDM variables are determined, as
shown in Section 5.

0.000

0.001

0.002

0.003

0.004

Po
w

er
 (k

W
h/

s)

Total electricity usage (reference)
Total electricity usage (optimized)

07:0006:15 06:30 06:45 07:15
Time (hh:mm)

0.00

0.05

0.10

0.15

0.20

N
et

 e
le

ct
ric

ity
 c

os
t (

) Cum. electricity cost (reference)
Cum. electricity cost (optimized)
Electricity price

0.028

0.029

0.030

0.031

0.032

N
et

 e
le

ct
ric

ity
 p

ric
e 

(
/k

W
h)

Figure 9. Comparison of the electricity cost of reference and optimized load profile. The upper graph
shows the different operating modes and the load curve changed by the flexibilized and optimized
operation. The resulting changes in electrical costs are shown in the lower graph. It can be seen that
cost savings were achieved by making the production schedule more flexible.

With this reference profile, the optimization can be performed, which can in turn be
utilized to perform a second experiment for the verification of the results. These are used
in combination with the model proposed in Section 2 to determine when the grinding
machine and the chiller should ideally operate.

Minimal electricity cost is used as an objective for the optimization. Day-ahead
electricity prices in Germany from the 9 of January 2018 are used as a reference case for
this. The electricity cost per machine is then calculated using

cL,id,t = a · Pid,t · cel
t (34)

which follows from Equation (6). Using Equation (34), the objective is to minimize the total
electricity cost with

min ∑
id

Tmax

∑
t

cid,t . (35)

Since the grinding machine and the chiller are connected by the cold storage, the cold
storage fulfills a special role in this paper. The electric power consumption of the chiller
and the grinding machine must be converted into heat power to enable the calculation of
the energy content of the storage. The heat work performed by the chiller is equivalent to
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the electric work bch,t · Pch,t · a times the EER. The heat work performed by the grinding
machine is assumed to be about 30% of the electric work, so

Ech,t =Ech,t0 +
t

∑
t=0

bch · Pch,t · a · EERch

− Eloss,ch · a · t− 0.3
t

∑
t=0
·PGT,t · a

(36)

applies. Following the result of the optimization and the EFDM of the system, the FLM
for the grinding machine is calculated. These calculations consist of an algorithmic solver.
We use the industrial solver CPLEX by IBM [40] as the solver, which can solve MILP using
different solving methods. The final result flexible load measure is described in Table 9
and exemplarily represented in Figure 10. For the implementation of the optimization
results, the control signals were given manually to the machine tool and the chiller. In this
way, the correct execution of the control signals could be guaranteed and errors in the data
transmission could be excluded. The course of the implemented flexibility measure based
on optimization can be seen in Figure 11. The results of the test to validate the optimization
are considered below.

t0

tD tH,1 tH,2

P1

P

t
∇PAct ∇PDea

Figure 10. Simplified representation of the FLM for the grinding machine, which are given in Table 9.
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Figure 11. Results of the optimization. (Top): Control signal of the flexible loads chiller and grinding
machine. (Center): Comparison of the electricity consumption of the flexible loads (calculated vs.
actual) including the corresponding electricity prices. (Bottom): Comparison of the storage content
of workpiece and cold storage (calculated vs. actual).
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Table 9. Description of the key figures in the EFDM of flexible load measure, following [6].

Key Figure Value Units

id Grinding Machine -
tD 159 s
t0 [16.04.2020 06:00] s
Pid [5.18] kW
tH [4400] s
NA 2 -
∇P [inf, -, − inf] kW s−1

cM 0.21 e

6.2. Discussion

The results of our model and the optimization are shown in Figure 11. The optimiza-
tion horizon ranges from 6:00 am to 7:30 am, which includes one electricity price change
from lower to higher prices at 7:00 am. The operating times of the grinding machine
and the chiller are shown in the topmost graph of the figure. Due to the optimization,
energy-consuming activities are mostly concentrated in the time range before this price
change, when prices are lower. This is the expected result. While the number of produced
workpieces in this time range is equal, the optimization reduced the energy cost by 6.6%.
This is equivalent to a reduction in energy cost per piece by 1.9%. In addition to the energy
costs saved, Biel and Glock [41] showed that the implementation costs of the approach
demonstrated are low. Therefore, implementation according to the chosen approach is
profitable due to the reduced energy costs.

The middle graph in Figure 11 shows that the energy consumption model of the
grinding machine fits the actual data well. Small deviations result from disregarding
gradients and load peaks. Such deviations are not relevant for the use case, if the total
energy consumption is approximately correct.

The model of the chiller does not fit the actual data as well as the grinding machine
model. For the chiller model, reaction times and gradients appear to have a larger influence.
Therefore, future research should evaluate ways to model these factors. The capacity and
energy loss of the cold storage have most likely been underestimated as well since the
modeled energy content decreases faster than the measured values. This can be seen in
the lower graph of Figure 11. These modeling errors do not invalidate the overall results,
however, since improvements to the chiller and cold storage models would most likely lead
to higher energy cost savings. These savings would result from shorter operating times of
the chiller, resulting mostly from the higher cold storage capacity.

Figure 9 shows a comparison of the optimized energy consumption with the reference
case. The energy consumption of the optimized case is aggregated into a shorter time frame,
with longer pauses, while the reference case produces a very regular energy consumption
pattern with shorter pauses. The upper graph in the figure also shows that additional effects
resulting from longer pauses may contribute to the lower overall energy consumption. This
may be due to machines changing into standby mode, thus reducing energy consumption.

The lower graph in Figure 9 shows cumulated energy consumption and the energy
price curve. In this graph, the overall energy cost savings are visible. The savings result from
the decreased overall power consumption, which decreased from 6.76 kWh to 6.44 kWh, as
well as from the increased usage of the lower energy prices.

In the course of the validation experiments, the developed virtual sensors, which were
used to estimate the heat demand of the machine tool, were also evaluated. For this purpose
for pump 1, the rotational speed and electric load, as well as their volume flow, are recorded.
An analysis shows that the volume flow was nearly constant at 1.194± 0.005 m3/h during
the experiments, indicating that the pump was operated in a constant operational state. The
application of the previously developed linear model yields satisfactory results (prediction:
1.167± 0.004 m3/h), with a normalized mean absolute error of only 2.3%.

A measurement of the volume flow of pump 2 yields that the assumption in Section 4
of a constant volume flow of 0.617 m3/h was not valid. During the experiments, the
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pump assumed a volume flow oscillating around 0.537± 0.006 m3/h instead, leading to
a normalized mean absolute error of 14.8%. The development of a virtual volume-flow
sensor for pump 2 in analogy to pump 1 would therefore be required for the productive
implementation of the results.

The results of pump 1 show that the virtual volume-flow sensor is robust and can be
used as a valid alternative to a permanent volume-flow metering device. The advantage
of a virtual sensor compared to a permanent physical sensor is the reduced investment
cost since only a temporary measurement is needed. However, a portable volume-flow
meter is required for that. A disadvantage of virtual sensors is the effort needed to take the
temporary measurement in several operational states and develop the data-based model.
Furthermore, unknown operating states may not be captured by the virtual sensor, as the
results of pump 2 show.

7. Conclusions and Outlook

Our approach for the energy-flexible operation of a machine tool with a cooling-supply
system, which we have demonstrated and validated on the realistic use case, is a suitable
method for the future flexibilization of production processes. We have thereby come to the
following central conclusions:

• We successfully combine a generic energy-flexibility data model with energy-oriented
production planning. For this purpose, we have taken the material flow of the produc-
tion process into account when deriving the EFDM.

• Not only the machine tool was considered as a system boundary for energy-flexible
operation but also the associated supply systems. This step is necessary to obtain a
realistic EFDM with correct dependencies.

• To realize a holistic approach, we show which assumptions and data are required for
a correct calculation of the EFDM. Since data from the machines are needed for the
calculation but are not always available as measured values, we have implemented a
parameter-estimation method.

It has been shown that the applicability of EFDM to direct optimization to reduce
energy consumption is possible. By transferring the calculated energy-flexible energy-
optimal machine operation to the use case, scalability to real production systems is ensured,
with has benefits in terms of the energy and cost savings realized. The approach was
validated on a real production machine with supply systems, and its functionality was
proven. In the future, the approach will be transferred to many industrial companies
within the framework of the synergy project. This will ensure its application to real
applications in the industrial landscape. In addition, the ETA research factory is working
on the implementation of several combined energy-flexibility measures, which are to be
implemented simultaneously. The successfully realized approach allows one to fill the gaps
in the previous research completely or partially.

Similarly, the methods and results demonstrated have limitations and give rise to further
avenues of research. On the one hand, the effects of production and material flow, as well as
maintenance intervals that limit machine availability, need to be considered in more detail. In
addition, approaches need to be investigated to reduce the complexity of EFDM key figure
calculation and thus improve its applicability. The optimization algorithms used showed good
results, reducing the cost of machine operation. In this respect, the additional improvement
potential of both longer optimization horizons and rolling optimization approaches are to
be evaluated. The improved accuracy of the boundary conditions thus generated can be
assumed to result in additional cost savings. Furthermore, the sensitivity and uncertainty of
the analysis of the optimization algorithm could be improved in the results. Further potential
for research is offered with respect to the data availability when using the virtual sensors.
Here, the heat demand prognosis could be improved by permanently learning prognosis
algorithms. Similarly, an increase in the model accuracy of the overall system offers further
research potential since the system inertia can be better represented in this way. Furthermore,
it has to be investigated to what extent the transfer of the system into the EFDM offers the
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possibility to trade the system flexibility for the electricity or flexibility market in order to
additionally increase the monetary revenues [42]. In summary, the approach reduces the gap
between demand flexibility on the production level by adapting to fluctuating electricity prices
and energy-optimal production planning as it is currently often used. Thus, the approach can
make an active contribution to the energy transition.
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