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Abstract: In a smart home with distributed energy resources, the home energy management system
(HEMS) controls the photovoltaic (PV) storage system by executing the optimization algorithm to
achieve the lowest power cost. The existing mixed integer linear programming (MILP) algorithm is
not suitable for execution on the end-user side due to its high computational complexity. The HEMS
algorithm based on a long short-term memory neural network (LSTM-HEMS) can effectively solve the
problem of the high computational complexity of MILP, but its optimization outcome is not high due
to the accumulation of prediction errors. In order to achieve a better balance between computational
complexity and optimization outcome, this paper proposes a lightweight optimization algorithm
called the FastInformer-HEMS, which introduces the E-Attn attention mechanism based on Informer
and uses global average pooling to extract the attention characteristics. Meanwhile, the proposed
method introduces the maximum self-consumption algorithm as a backup strategy to ensure the
safe operation of the system. The simulated results show that the computational complexity of the
proposed FastInformer-HEMS is the lowest among the existing algorithms. Compared with the
existing LSTM-HEMS, the proposed algorithm reduces the power consumption cost by 12.3% and
6.6% in the two typical scenarios, while the execution time decreases by 13.6 times.

Keywords: home energy management system; photovoltaic storage system; FastInformer; attention
mechanism; multi-step prediction; self-consumption maximum

1. Introduction

In developed countries and regions, residential areas are responsible for nearly 40%
of the energy consumption. Compared to industry and transportation, residential areas
have significant potential for energy and cost savings, as well as carbon reduction [1].
In recent years, the increase in the number of distributed power generation devices and
controllable electrical appliances has made home energy management systems (HEMS)
more complex. Considering the limitations of the operation environment on the end-user
side, efficient lightweight optimization algorithms [2] are urgently needed to help residents
reduce unnecessary energy consumption and reduce electricity cost.

At present, algorithms applied in home energy system management can be divided
into four categories, namely, heuristic algorithms, operational research algorithms, rein-
forcement learning and machine learning. The heuristic algorithm [3-5] obtains a fea-
sible solution for the optimization problem at the cost of an acceptable time and space.
Bouakkaz et al. [4] established an optimization model to minimize the energy cost and pro-
posed a particle swarm optimization algorithm to obtain the optimal day-ahead scheduling
plan of a battery. Ahmad et al. [5] established an optimization model to minimize energy
cost and the peak-to-average ratio and used a genetic algorithm to obtain the optimal
day-ahead scheduling of household appliances. Operational research algorithms, such as
mixed-integer linear programming (MILP) and dynamic programming, are also applied
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in home energy management systems. Azuatalam et al. [6] established an MILP model to
minimize the cost of electricity for families equipped with PV-storage systems and used
the CPLEX solver to establish a day-ahead schedule for appliances. Although the planning
results of the methods mentioned above are of high quality, their computational complexity
increases exponentially with the number of devices. Moreover, their optimization quality
depends on the prediction of future information.

In order to overcome the limitation of the high computational complexity of optimiza-
tion algorithms mentioned above, early scholars proposed improving methods such as
reducing state space [7,8] and reducing MILP scenarios [9]; however, they still could not
fundamentally solve the problem of high computational complexity. In this regard, some
scholars have introduced reinforcement learning [10-13] and machine learning [14-17]
methods. Although reinforcement learning has the advantages of not requiring prior
knowledge and being less affected by environmental fluctuation, its model is difficult to
converge [13]. Huy et al. [14] proposed an hourly demand response strategy based on
machine learning, which is directly invoked online after learning the mapping relation-
ship between MILP planning results and the environmental state. The simulated results
show that the results of machine learning-based algorithms are better than reinforcement
learning. Paridari et al. [18] proposed a plug-and-play algorithm for home energy system
management, which adopted a half-hour demand response strategy based on LSTM model
and achieved good results. However, it only has a good effect on one-step prediction. Due
to the accumulation of errors in multi-step prediction, the prediction accuracy cannot meet
the requirements of a demand response strategy. Recently, many scholars have applied the
Transformer [19] model in the field of natural language processing to the prediction task
of long time series. The Informer model proposed by Zhou et al. [20] realized multi-step
prediction and performed well, but its computational complexity still has room to improve.

Given the limited resources on the end-user side, the optimization algorithm for a
home energy management system urgently needs to improve the accuracy of multi-step
prediction while reducing the computational complexity to continuously improve the
optimization outcome. Therefore, we propose a lightweight optimization algorithm for a
home energy management system with a PV-storage unit. Based on the Informer model,
the network structure and attention mechanism are improved to reduce the computational
complexity and improve the optimization benefits. The main contributions of this paper
as follows:

(@) A lightweight optimization algorithm called the FastInformer-HEMS is proposed,
which introduces the E-Attn attention mechanism [21] and uses global average pooling
to extract attention features and improve the accuracy of a battery energy level’s multi-
step prediction and effectively reduce the computational complexity.

(b) Considering the need for safe operation, self-consumption maximum (SCM) is in-
troduced as the backup security policy for the first time to ensure that the executed
strategy is safe and feasible.

(¢) The simulation results show that the proposed algorithm has lower electricity cost
than the existing HEMS algorithms, and it has the lowest computational complexity
among all algorithms.

2. Background of Home Energy Management

This section introduces the common structure of a home energy system with PV stor-
age, formulates the home energy management optimization problem and finally introduces
the algorithm for home energy management based on machine learning.

2.1. Structure of Home Energy System

The common structure of a home energy system includes a battery storage unit, PV
solar panels and residential appliances. The system structure is shown in Figure 1.
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Figure 1. System architecture in a smart home.

2.2. Home Energy Management Optimization

The goal of home energy management optimization is to minimize a household’s en-
ergy costs over a decision horizon. The optimization problem of home energy management
system is essentially that an HEMS uses optimization techniques to control the battery or
appliances by solving a sequence optimization problem during a decision period (usually
24 h) before the beginning of each day. We consider a simple home energy system, which
consists of a photovoltaic power generation unit, a battery storage unit and a corresponding
inverter, as depicted in Figure 1 for convenience. Additionally, the specific residential loads
are not classified and modeled individually. In this paper, we assume that electricity price
is a time-of-use price so that electricity price is not a random variable.

The uncontrollable inputs of the system are power demand, photovoltaic output and
electricity price, in which the state variable Sz represents the average load demand, SZU
represents the average photovoltaic output, s]’: is the electricity tariff, the random variable
wz represents the change of electrical demand, and w]’: ? represents the variations of the PV
output. The device controlled by the system is a battery, and the state variable sf represents
the battery SOC (state of charge), while the controllable variable xZ represents the charge
and discharge power of the battery.

For each time step, k, in the decision horizon, the system variable set is X; = [xﬂ ,

b od PV P p
Sk [sk,sk,sk ,sk}, Wy [wk

Formula (1):

° wd] The power balance of the system is shown in

)

where x} = s,fv + w,’(w — b xZ is the inverter power at the DC side, 7' is the conversion

s,‘f—i—wﬁ = q’x}c—i-xf

efficiency of the inverter, " is the charge and discharge efficiency of the battery, and
xi represents the power purchased and sold by the grid. The charge power of the battery
meets x,€+ < 6°. The discharge power meets x,é_ > 6. The battery power is satisfied when
S]Iz,min S S]Iz § SIi,max.

The system transfer function determines the change of state variables, as shown in

Formula (2): - (1 —1° (Sh>> (
ki1 £

where 1° (s,’z) represents the self-discharge process of the battery. It can be seen from

b b

sp— x4 @)

b+ b+
)

Formula (2) that the multi-step prediction accuracy of battery power SZ 41 directly affects
the execution action x]’z in the policy for an HEMS.
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The optimal strategy, 7*, is a choice of action for each state that minimizes the
expected sum of future costs over the decision horizon, as shown in Formula (3):

K
F™ = mninE{ Y Cr(Sk, (S, wk)} 3)
k=0

Here, Cy (S, 71(Sk), Wg) is the electricity cost in the decision horizon and can be ex-
pressed as follows:

Cr(Sk, 7t(Sg), Wy) = s,’f (sﬁ + wi + nix;;) (4)

Depending on the state variable, Sy = {si, sz, szv, s]’(J } or W, = {w,fv, wi] , of each time
step, the HEMS obtains the action, x, of the battery, x,lé.

2.3. Algorithm Based on Machine Learning for Home Energy Management System

MILP models the HEMS problem as a mathematical programming problem, and the
dynamic programming algorithm models the HEMS problem as a Markov decision process.
The planning quality of such methods depends on the accurate prediction of PV and the
electrical demand. Additionally, their computational costs are high.

In view of the problems mentioned above, a better solution is the home energy man-
agement algorithm based on machine learning [18]. The machine learning algorithm is used
to realize the mapping of the system state Sy to the decision variable xZ so that the planning
result can be obtained quickly with a low computational cost. Additionally, its planning
quality does not depend on the accurate prediction of PV and the electrical demand.

The existing method uses LSTM to predict the decision variables step by step as shown
in Figure 2a. There is error accumulation in the decision horizon, which indirectly results
in poor planning quality. To solve this problem, we propose a lightweight optimization
algorithm, the FastInformer-HEMS, which can reduce computational complexity and
improve optimization benefits at the same time.
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Figure 2. Main types of multi-horizon forecasting models. (a) Iterative one-step; (b) multi-step.

3. FastInformer-HEMS Algorithm

This section first introduces the overall framework of the optimization algorithm,
the FastInformer-HEMS, and then introduces the specific application steps, including
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Input module

the prediction module, security module and strategy generation module, before finally
introducing the FastInformer model.

3.1. Algorithm Framework

Aiming at the problem of limited resources in end-user side and error accumula-
tion caused by one-step prediction, we introduce the Informer model and propose the
FastInformer-HEMS algorithm by improving it. The algorithm first uses the prediction
module to realize the multi-step prediction of the battery energy level and then quickly
obtains the decision variables via the security module and the strategy generation module.
The overall framework is shown in Figure 3.

Iopoouyg
aIned,J
I9p022(J

— 5

FastInformer model

Prediction module Safety module  Policy generation Output module
module

Figure 3. Framework of FastInformer-HEMS.

The prediction module of the algorithm takes the historical photovoltaic output,
electrical demand, electricity price and battery power as the inputs of the FastInformer
model. After encoding and decoding, the prediction module outputs the battery energy
level for a period in the future. The charge or discharge power of the battery and the
electrical grid power are calculated by the strategy generation module. Meanwhile, the
security module chooses to execute the backup policy to generate feasible action at the time
step when the predicted value does not satisfty Formulas (5) and (6).

The formation of the FastInformer-HEMS is described in the following sections.

3.1.1. Prediction Module

The PV generation, electrical demand, time-of-use electricity price and battery power
of the previous few days are put into the prediction module, and the proposed multi-step
prediction model FastInformer (described in Section 3.2) is used to predict the optimal
battery energy level in the next 24 h.

FastInformer first calculates the historical optimal energy level of the battery by using
the MILP solver with the household’s historical data, and then the model is trained using
the historical environment information as input and the historical optimal solution as the
label. Therefore, the trained FastInformer model can output the optimal battery power in
the future.

3.1.2. Safety Module

The optimal battery energy level value predicted by the prediction module is used as
the input of the safety module, and the SCM is used as the backup safety strategy to filter
the predicted value. When the prediction value does not meet the safe operation conditions
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as shown below, the safety module will choose to perform the backup strategy to ensure
the safe operation of the system,

<l < ®)
sb b
e, —e ]

0< L <P ©6)

where ¢! denotes the predicted value of battery energy level at time step ¢, e’ denotes the

lowest energy level of the battery, 2 denotes the highest energy level of the battery, and P
represents the upper limit of battery charge or the discharge power.

If & does not satisfy the safe operation conditions, the system power gap Pf" is
calculated as follows, where ;7 denotes the inverter efficiency:

Ptgup — ﬂiPtPU _ ;oad (7)

When P87 > 0, it means that the photovoltaic power generation in the current system
can meet the electrical demand, and the left PV generation will be charged to the battery or
sold to the grid. The battery charging power is calculated as follows, where 7" represents
the battery charging or discharging efficiency.

P8P, e —eb
1$+—mm< gwpﬁy bgrl (8)
U ]

After charging the battery, if there is power left, it will be sold to the grid. The grid
power P{~ is shown below.

PET = |PE| —yiytplt ©)

When P87 < 0, it indicates that the photovoltaic generation of the system does
not meet the load. According to Equation (2), it is necessary to discharge the battery or
buy electricity from the grid to balance the system’s power. The discharge power Ptb Tis
calculated as follows:

nb(éb—ef_l) e ﬂhpt?ap

b— .
P/~ = min Al , Py, 7 (10)
The system needs to purchase power P{ * from the grid as shown below:
ipbf
e =[] -2 m
U

The specific process of the backup safety strategy is shown in Figure 4; that is, the
photovoltaic generation and storage battery are preferentially used to meet the load demand
and then consider the interaction with the grid.

3.1.3. Strategy Generation Module

The safety module outputs the set of future optimal battery power prediction values
[éf 1 éf FRVERR élt’ |\ 48] that meet the operation requirements. The process of calculating the
charging power Pthj'x, discharging power Pth:x, buying power Ptg:x
at time step t + x is as follows.

and selling power P},
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Figure 4. Alternate safe policy.

According to Formula (2), the power gap between the two time steps, ¢ 11 and &b s

can determine the power of buying and selling electricity and the power gap,
Ae =& =8, 1
When Ae > 0, the battery needs to be charged, and the charge power Pffx is calculated

as follows: A
b+ _  Be€

After charging the battery, it is necessary to buy or sell electricity to the grid to achieve
system power balance. Grid power Ptg ', is calculated as follows.

P‘g

tx = Wipffx - tliaf - ’71"7beJr (13)

t+x

When P, . > 0, the power of selling electricity P} 'y = Al ' v When P 'y < 0, the power
of buying electricity Pfjx =-p? e

When Ae < 0, the battery needs to be discharged, and the discharge power Pf:x is
calculated as follows:
ph— _ nPAe
B TTOAf
Similarly, it is necessary to buy or sell electricity from the grid to maintain the power
balance of the system. The calculation of Ptg ', is shown in Equation (15):

(14)

g i ppo toad _ ' PLE
X
Pt+x = HlPt—',-x - tgrax - Ub (15)
When Pthrx > 0, the selling power P? = Ptg+x, when Ptg+x < 0, the buying power
P8+ —_p
t+x t+xt

The strategy generation process is shown in Figure 5.
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Figure 5. Policy generation process.

After calculating the amount of bought electricity or sold electricity, the cost in the
decision period can be calculated with the following equation:

C=Y (TPt —TfipfT) (16)

teT
where T*" denotes the time-of-use electricity price and T/* denotes the electricity price.

3.2. FastInformer Model

The self-attention mechanism of Transformer makes it perform better than LSTM in
long sequence processing. Based on Transformer, Informer [19] adopts a generative decoder
to output a long time series in one step, which can solve the problem of error accumulation
caused by one-step iterative prediction.

The proposed FastInformer reduces the overall computational complexity of Informer,
thus making the HEMS take less time to execute the optimization algorithm. The model is
composed of encoder and decoder, and the structure is shown in Figure 6.

Output: Future battery SOC

______________ A
7777777777777 Feature Map | L L T
Encoder I i
; Fully connected layer
| Add&Norm |
‘ GAP ‘ Decoder
| Multi-Head
’ Add&Norm }'— ; ; Attention
T | |
| E-Attn | !
! Norm
Ll e e e ] EIEEEE T ofolo[olo[o[0]
Input: Pp,,,. Proqq. tariffs

battery SOC . time stamp

Figure 6. FastiInformer model.
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3.2.1. Encoder

The encoder is designed to extract useful features from the input so that it can be
effectively decoded in the decoder. The encoder layer in Informer is composed of sparse
attention module and distillation layer. The proposed FastInformer model introduces
E-Attn as the attention module and adopts the global average pooling (GAP) to extract
attention features so that its computational complexity is lower than that of Informer.

E-Attn attention module is an attention mechanism with linear complexity in visual
tasks, which uses two fully connected networks, My and My, to replace the key and value
in attention calculation. This structure is shown in Figure 7.

Output

Matrix multiple

[ Attention mechanism ]

|
Matrix
multiple

[ Linear ] [ Linear ] [ Linear
layer layer layer
tot

Q K

Input
(a) (b)

Figure 7. Attention module. (a) ProbSparse attention; (b) E-Attn attention.

When F;,, denotes the input vector, it becomes vector Q via the fully connected layer,
and when the output vector is Fyy, the attention calculation formula is shown as follows:

Fout = Norm (QMIE)MV (17)

Differently from the original attention mechanism, M and M, are two fully connected
layers. In terms of calculating attention, E-Attn attention does not need a matrix multiple so
its computational complexity is reduced from O(nlogn) to O(n) compared to ProbSparse
attention, as shown in Figure 6a.

Informer’s encoder adopts multi-layer convolution to extract features after calculat-
ing the attention weight. The computational complexity of multi-layer convolution is

O (21[):1 M?eK?eC;_4 0C1> , where M is the edge length of the output feature map of each
convolution core, K is the edge length of each convolution core, and [ is the /th convolution
layer. Considering the sparsity of the attention matrix, FastInformer uses the global average

pooling to extract the features of the attention matrix, which reduces the computational
complexity of this part to O (1).

3.2.2. Decoder

The proposed FastInformer model adopts a generative decoder and adopts the fully
connected layer to the output multi-step prediction data at one time, avoiding the error
accumulation caused by one-step prediction. In order to reduce the computational com-
plexity of the decoder, the FastInformer decoder only retains the cross-attention module,
which reduces the computational complexity of the whole model.
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4. Results and Analysis

This section first introduces the data set and experiment settings and then introduces
the comparison algorithms and evaluation indicators, before finally verifying the effective-
ness of the FastInformer-HEMS in terms of power consumption cost and time consumption
in the family scenario of a one-day decision period and a multi-day decision period.

4.1. Dataset

The dataset used is from real data of the smart grid project [22]. This dataset contains
electrical demand and PV generation data of customers in Sydney, Australia from 2011 to
2013, belonging to the home energy system described in Section 2.1. The daily decision
horizon is a 24 h period divided into 30 min time intervals giving a K = 48 time-step. The
information of the energy storage battery used by the household is shown in Table 1.

Table 1. Battery Specifications.

Variable Value
Battery capacity (kWh) 14.0
Depth of discharge (kWh) 13.5
Maximum charging power (kW) 5.0
Efficiency 90%

4.2. Experiment Setup

In order to compare the performance of different algorithms, the experiments are
carried out on an NVIDIA GeForce GTX 1080 Ti GPU machine in python environments,
and the neural network is built with pytorch. We set the efficiency of the battery as a
constant since we tested the policies in a simulated environment instead of a hardware
environment. In a real hardware system, the efficiency of the battery and inverter is strictly
not linear [23], and we use the constant to approximate the efficiency since we mainly focus
on the differences between different policies in our simulated environment. The grid search
method is used to determine the model hyperparameters. The model hyperparameter
search space of FastInformer is shown in Table 2.

Table 2. Search space of model hyperparameter.

Hyperparameter Space
Input length of encoder [12-336]
Label length of decoder [4-168]

Output length of decoder [1-96]
Batch size [1-64]
Attention heads [4,8,16]

After many experiments, the input length of FastInformer’s encoder is set to 96, the
label length of decoder is set to 48, the output length of decoder is 48 and the batch size
is 32.

The on-grid electricity price represents the price of selling electricity, and the time-of-
use electricity price represents the price of buying electricity from the grid at a different
time step. The specific information of time-of-use and feed-in tariff are shown in Figure 8.
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Figure 8. Information of electricity price.

4.3. Comparison Algorithm and Evaluation Index

In order to verify the effectiveness of the model, the FastInformer-HEMS is compared
with the following three algorithms:

(@) The mixed integer linear programming algorithm (MILP), which assumes that the
future PV and load demand are perfectly predictable so that its planning quality is
the highest.

(b) The HEMS algorithm based on LSTM (LSTM-HEMS), which is a good choice to avoid
the high computational complexity of MILP at present. It adopts the LSTM model to
predict decision variables step by step as shown in Figure 2a.

(¢) The Informer-based algorithm for an HEMS (Informer-HEMS), which introduces
Informer to realize the multi-step prediction of the battery energy level.

In this paper, the electricity cost and execution time in the decision-making horizon
are used as the evaluation indicators of each policy. In addition, since the three algorithms
based on the neural network all predict the future energy level of the battery first and then
obtain the decision variables indirectly, it is necessary to compare the prediction accuracy
of the battery’s energy level.

4.4. Analysis of Experiment Results
4.4.1. Quality of Strategies over a Day

In order to compare the execution quality of the three HEMS strategies and MILP
in one day, we use the historical data of the same household in the first two years and
240 days from the third year to train the model and use the data after the 241st day in 2013
as the environmental information to simulate the online execution of the strategy.

In order to comprehensively evaluate the performance of the strategies, we compare
the execution quality of the strategies over a day in two typical scenarios. In scenario
1, the photovoltaic power generation energy level is large enough to basically meet the
household electrical demand. In scenario 2, the photovoltaic generation cannot meet the
user demand. In this paper, the 241st and 243rd days are selected as the specific examples of
the two typical scenarios for analysis. The information of the scenarios is shown in Table 3.

Table 3. Instance information of typical scenarios.

Typical Scenarios Electricity Demand (kWh) PV Generation (kWh)
Scenario 1 21.770 31.739
Scenario 2 19.699 9.136

Prediction of Battery’s Energy Level in Two Typical Scenarios
In scenario 1, the photovoltaic power generation capacity basically meets the user’s
electrical demand. In order to avoid purchasing power from the grid during the next day’s
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high electricity price period, the optimal strategy MILP will charge the battery during the
low electricity price period, which will reduce the power consumption cost of the next day.
As shown in Figure 9, the three HEMS algorithms based on neural networks can all imitate
MILP well. Compared to the results of MILP, the average prediction error per time step of
the Informer-HEMS is 0.94 kWh, the average error of the FastInformer-HEMS per time step
is 1.14 kWh, and the average error of the LSTM-HEMS is 1.64 kWh. The results show that

the prediction accuracy of the proposed the FastInformer-HEMS is higher than that of the
existing LSTM-HEMS.

—— MILP

—e- LSTM-HEMS

—o— Informer—HEMS
—— FastInformer—HEMS

Battery capacity (kWh)
IS o ® = N

N
N

T T T T r T T T T T T T
0 2 4 6 8 10 12 14 16 18 20 22
Time (h)

Figure 9. Prediction of battery’s energy level in scenario one.

In scenario 2, due to weather and other reasons, the household’s photovoltaic genera-
tion cannot meet the electrical demand. In order to reduce the power consumption cost
of the day, the perfect optimization of MILP will purchase power at the low electricity
price period of the day and discharge the battery in the high electricity price period to
meet the electrical demand, thus reducing the power consumption cost. Compared to the
LSTM-HEMS, the strategy’s prediction of the battery energy level is closer to MILP, as
shown in Figure 10.

—x— MILP

—e- LSTM-HEMS

—o— Informer—HEMS
—+— FastInformer—-HEMS

Battery capacity (kWh)
o

T T T T T : r : T T T T
0 2 4 6 8 10 12 14 16 18 20 22
Time (h)

Figure 10. Prediction of battery’s energy level in scenario two.

Electricity Costs in Two Typical Scenarios

The prediction module outputs the optimal energy level of the battery. Then, the
strategy generation module calculates the trading power with the grid and the charge or
discharge power of the battery depending on the predicted value. When the predicted
value violates the safe operation conditions, the safety module will perform the backup
strategy to generate the feasible decision variable. According to the formula in Sections 3.1.2
and 3.1.3, the charge or discharge power of the battery and the trading power with the
grid at each time step can be calculated, as shown in Figure 11. It can be seen from the
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figure that the FastInformer-HEMS can effectively imitate MILP’s strategy and charge the
battery with surplus photovoltaic generation. In addition, the battery is charged in the
period of low electricity price, and the battery is preferentially discharged in the period of
high electricity price to meet the electrical demand.
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Figure 11. Optimization results of algorithms in scenario one.
(c) Informer-HEMS; (d) FastInformer-HEMS.

(a) MILP; (b) LSTM-HEMS;

In scenario 2, the optimization results of each policy are shown in Figure 12. Differently
from scenario 1, the photovoltaic power generation in scenario 2 cannot meet the power
demand, so we need to buy electricity from the grid to maintain the system power balance
at most time steps over a decision horizon.

After obtaining the power set of purchasing electricity or selling electricity over a day,
the cost over a day is calculated according to Formula (16). The electricity costs in two
scenarios are shown in Table 4. Compared with the benchmark, the Fastinformer-HEMS
reduces the electricity costs to 45.2% and 61.4% in the two scenarios, which is close to the
electricity cost of MILP. Compared to the LSTM-HEMS, the FastInformer-HEMS algorithm
can reduce the cost by 12.3% and 6.6% in the two typical scenarios. The results show that
the proposed algorithm can effectively reduce the electricity cost.

4.4.2. Cost of Strategies over Several Days

In order to fairly evaluate the performance of the different strategies, we implement
the strategies for the multi-day decision period, which includes the two typical scenarios
described in the previous section. As shown in Table 5, the execution cost of the LSTM-
HEMS over seven days is 8% higher than that of the FastInformer-HEMS, which proves
that the FastInformer-HEMS can effectively overcome the shortcoming of high electricity
consumption cost caused by the low accuracy of battery energy level prediction of LSTM.
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Figure 12. Optimization results of algorithms in scenario two.
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Table 4. Costs of policies over a day.

Time (h)

(d)

(a) MILP; (b) LSTM-HEMS;

Policies

Cost in Scenario 1 ($)

Cost in Scenario 2 ($)

Benchmark (no PV-battery)

MILP
LSTM-HEMS
Informer-HEMS

FastInformer-HEMS

6.662 (100%)
2.280 (34.2%)
3.831 (57.5%)
2.650 (39.8%)
3.014 (45.2%)

9.660 (100%)
5.000 (51.8%)
6.564 (68.0%)
5.650 (58.5%)
5.935 (61.4%)

Table 5. Costs of policies over several days.

Policies Cost ($/Week) Cost ($/Month) Cost ($/4 months)
Benchmark (no PV-battery) 56.798 (100%) 248.431 (100%) 1085.108 (100%)
MILP 24.660 (43.4%) 114.096 (45.9%) 554.285 (51.1%)
LSTM-HEMS 35.113 (61.8%) 155.766 (62.7%) 157.505 (63.4%)
Informer-HEMS 30.554 (53.8%) 141.109 (56.8%) 638.044 (58.8%)
FastInformer-HEMS 31.543 (55.5%) 144.338 (58.1%) 645.639 (59.5%)

It is worth noting that the costs of the FastiInformer-HEMS and the Informer-HEMS are
still higher than that of the optimal MILP, which is 12.1% and 10.4%, respectively. However,
compared to the benchmark and the existing LSTM-HEMS, they can still effectively reduce
the electricity cost, which proves that the accuracy of multi-step prediction is higher
than that of one-step iterative prediction. Furthermore, although the performance of the
FastInformer-HEMS and the Informer-HEMS has slightly decreased with the increase in
the decision horizon, they both perform better than the LSTM-HEMS. In terms of cost
over a month, the cost of FastInformer-HEMS has decreased by 4.6% compared to the
LSTM-HEMS and decreased by 41.9% compared with the benchmark.
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4.4.3. Execution Time of Strategies

The average execution time of the strategy over a day is shown in Table 6. The
execution time of MILP over a day is nearly 10 s longer than that of the HEMS algorithm
based on a neural network because it needs to traverse the solution space to select the
optimal solution as the output. Although it takes only 10.74 s for MILP to execute in
this simple system, the time complexity of the algorithm increases exponentially with the
increase in the appliance’s number. Considering the large number of appliances and the
limited computing resource on the end-user side, it is necessary to study the lightweight
optimization algorithm with low computational complexity.

Table 6. Execution time of policies over a day.

Policies Time (s)
MILP 10.740
LSTM-HEMS 0.204
Informer-HEMS 0.023
FastInformer-HEMS 0.015

It can be seen from Table 6 that the FastInformer-HEMS takes the shortest time among
the four strategies because the algorithm adopts parallel computing and can output multi-
step prediction results in the prediction module. In comparison, the LSTM-HEMS cannot
carry out parallel operations, and it needs to be iterated step by step, so it takes a longer
time. The data shows that the execution time of the FastInformer-HEMS is the shortest
among the four algorithms.

Although the execution time of the Informer-HEMS and the FastInformer-HEMS are
similar, the FastInformer-HEMS performs better with the increase in input sequence length,
as shown in Figure 13.

—e— FastInformer—HEMS Pl
1 -»- Informer—HEMS 7

3
3

®
3

IS
8

Policy execution time/ms
N o
3 8

4‘8 9‘6 1 A‘M 1 <}2 ZA‘SO ZéB 3C‘ib 72‘0
Input sequence length

Figure 13. Policy execution time comparison.

It can be seen from Figure 13 that the execution speed of the FastInformer-HEMS is
faster than that of the Informer-HEMS. With the increase in the length of the input sequence,
the gap between the two policies becomes larger and larger.

Compared to the Informer-HEMS, the cost of the FastInformer-HEMS over sev-
eral days, as shown in Section 4.4.2, is 3% higher, but the execution time is reduced
by 34.8%, which is more suitable for deployment on the end-user side with limited
computing resources.

5. Conclusions

This paper proposes a lightweight optimization algorithm for a home energy manage-
ment system, the FastInformer-HEMS, which introduces the E-Attn attention mechanism
and uses global average pooling to extract attention features. It realizes the battery energy
level’s multi-step prediction while effectively reducing the computational complexity of
Informer. At the same time, SCM is introduced as an alternative security policy for the
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first time to ensure that the policy is feasible. In order to verify the effectiveness of the
algorithm, real family data are selected for simulation experiments in one day and multiple
days of the decision-making period.

The results show that the FastInformer-HEMS has the shortest execution time. Ad-
ditionally, the existing MILP algorithm is not suitable for execution on the end-user side
for its high computational complexity. The LSTM-HEMS can effectively solve the problem
of the high computational complexity of MILP, but its optimization outcome is not high
due to the accumulation of prediction errors. Compared to the existing LSTM-HEMS
policy, the proposed policy can further reduce the power consumption cost of the system.
Compared with the Informer-HEMS, the proposed policy can achieve a better balance
between computational complexity and the optimization outcome.

Future work will focus on the classification of user power consumption patterns and
the improvement of the model structure to further improve the quality of solutions.
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