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Abstract: Predicting multiphase flow in complex fractured reservoirs is essential for developing un-
conventional resources, such as shale gas and oil. Traditional numerical methods are computationally
expensive, and deep learning methods, as an alternative approach, have become an increasingly
popular topic. Fourier neural operator (FNO) networks have been shown to be a hundred times faster
than convolutional neural networks (CNNs) in predicting multiphase flow in conventional reservoirs.
However, there are few relevant studies on applying FNO to predict multiphase flow in reservoirs
with complex fractures. In the present study, FNO-net and U-net (CNN-based) were successfully
applied to predict pressure and gas saturation fields for the 2D heterogeneous fractured reservoirs.
The tested results show that FNO can accurately depict the influence of fine fractures, while the
CNN-based method has relatively poor performance in the treatment of fracture systems, both in
terms of accuracy and computational speed. In addition, by adding initial conditions and boundary
conditions to the loss function of FNO, we prove the necessity of adding physical constraints to the
data-driven model. This work contributes to improving the understanding of the applicability of
FNO-net, and provides new insights into deep learning methods for predicting multiphase flow in
complex fractured reservoirs.

Keywords: Fourier neural operator; multiphase flow; fractured reservoirs; deep learning

1. Introduction

In recent years, with the progress of global exploration and well-fracturing technology
for unconventional oil and gas reservoirs, the production and development of fractured
reservoirs have received a great amount of attention [1–4]. Fractures are the main channel of
oil and gas flow in this type of reservoir, and these reservoirs have a high permeability and
low storage volume [5]. As a result of the high degree of heterogeneity in the flow character-
istics in fractured reservoirs, a numerical simulation is one of the most effective techniques
to predict the hydrodynamic behaviors of fractured reservoirs [6]. The approaches for
simulating fluid flow in fractured reservoirs mainly include the continuous medium model
and the discrete model. The continuous medium model involves the equivalent continuum
model [7] and dual or more medium models [8–12]. The discrete model mainly consists
of the discrete fracture model (DFM) [13–16] and the embedded discrete fracture model
(EDFM) [17–20].

Some researchers have applied traditional numerical methods to solve the above two
types of models. Fang et al. (2017) proposed a coupled boundary element and a finite
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element method (FEM) for the flow analysis through fractured porous media [21]. Du et al.
(2020) applied the block center finite volume method (FVM) to simulate CO2-EOR and
geological storage in fractured reservoirs based on EDFM [22]. Matthai et al. (2005) repre-
sented a control-volume FEM to simulate a two-phase flow with a fractured reservoir [23].
Dangelo and Scotti (2012) proposed a mixed FEM for the Darcy flow in fractured porous
media with non-matching grids [24]. In summary, most of the above methods are computa-
tionally expensive because of the involved gridding and flow solutions, especially when
coupled with the multiphase flow at the fracture matrix interfaces.

The data-driven based machine learning (ML) method is a particular type of artificial
neural network that has found tremendous strides in subsurface flow prediction. Several
machine learning-based surrogates have been proposed to provide runtimes of several
orders of magnitude faster and more accurately than numerical simulations [25,26]. Most
existing classic data-driven methods are mainly based on convolutional neural networks
(CNNs), that concentrate on learning Euclidean space mappings from traditional numerical
simulation data [27–29]. Mo et al. (2019) proposed a deep convolutional encoder-decoder
based surrogate for multiphase flow in a geological carbon storage process [30], demon-
strating the great potential of the surrogate model in accurately forecasting the subsurface
flow and improving computational efficiency. Tan et al. (2023) proposed a deep learning
algorithm based on SHM data to characterize the spatial distribution of mining-induced
stress [31]. Ali Takbiri et al. (2020) developed a data-driven surrogate for numerical flow
simulations in porous media [32]. Wang et al. (2022) applied the theory-guided convo-
lutional neural network (TgCNN) framework to simulate two-phase porous media flow
problems [33]. These alternative models can significantly reduce the computational cost
and improve optimization efficiency compared to numerical simulations. However, clas-
sic data-driven operators map between finite-dimensional spaces and are confined to a
particular discretization, that makes it difficult to handle the complex partial differential
equation (PDE) problems.

Recently, a Fourier neural operator (FNO) has been proposed to learn a mapping
between two infinite-dimensional spaces from finite sets of input/output observations
using the Nvidia machine-learning group in ICLR 2021 [34]. Compared to the classic
data-driven methods, FNO has shown its capabilities in solving benchmark PDE problems,
especially for Navier–Stokes equations. Wen and Bensen (2022) proposed a U-FNO based on
U-net to solve a CO2-water multiphase flow problem [35], the forecasts of the distribution
of the flow field demonstrated the superiority of the U-FNO approach compared to CNNs.
Then, Zhang et.al (2022) used the FNO to solve the subsurface 2D oil/water two-phase
flow PDE [36], and the predictions for pressure and saturation confirmed that the FNO-net
can increase in speed up to one hundred times faster than classic data-driven methods.
At present, to the best of our knowledge, there is no research on using FNO to predict
multiphase flow in fractured reservoirs.

In this work, two deep-learning models are built to simulate and predict multiphase
flow in a complex fractured reservoir. these two models adopt the FNO-net and U-net
architectures, respectively, that can predict the flow field distribution in the n+1 time step,
where only the simulation results in the n time step need to be used as input data. In this
way, we have successfully tested this model on a 2D heterogeneous reservoir with complex
fractures. In addition, for the same test case, we evaluated the performance of FNO and
CNN models in predicting multiphase flow in fractured reservoirs from the aspects of
computational cost and accuracy. we also analyzed the effects of the physical constraints of
the initial conditions and boundary conditions on the prediction ability of the two models.

This paper is organized as follows: Section 2 describes the problem setup with gov-
erning equations, the FNO architecture, and model training details. Section 3 describes
the test of our approach on two complex cases and the discussion of the results. Section 4
concludes our research work and discusses the potential extensions to this field.
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2. Methodology

This section introduces the governing equations for the multiphase flow in the complex
fractured reservoirs, the FNO architecture, and the training procedure.

2.1. Governing Equations

Modeling the multiphase flow in the complex fractured reservoir requires solving the
porous fluid model and porous media model for the fracture. In this study, we consider a
2D heterogeneous black oil model as the porous fluid. The black oil model is isothermal, it
has three components (water, oil, and gas), and three phases (water, oil, and gas). The mass
conservation equations for the oil phase can be written as [37–39] :

∂(φboSo)

∂t
= ∇·

[
bo

KKro

µo
· (∇Po − gρo∇z)

]
− qo (1)

The mass conservation equations for the water phase can be written as :

∂(φbwSw)

∂t
= ∇·

[
bw

KKrw

µw
· (∇Pw − gρw∇z)

]
− qw (2)

The gas component can exist in the oil phase (solution gas) and gas phase (free gas).
The mass conservation equations for the gas phase can be written as :

∂
[
φ
(
bgSg + RsboSo

)]
∂t

= ∇·
[
bgλg·

(
∇Pg − gρg∇z

)]
− qg

+∇· [Rsboλo· (∇Po − gρo∇z)]− Rsqo

(3)

where t denotes the time, and porosity is denoted by φ. So, Kro, ρo, and µo are the oil phase
saturation, relative permeability, density, and viscosity. Po is the oil phase pressure. g is
the acceleration due to gravity, and z represents the depth. qo is the source term of the oil
phase. Here, bo = 1/Bo, Bo denotes the formation volume factor of the oil phase. Sw, Krw,
ρw, µw, Pw, and qo are the water phase saturation, relative permeability, density, viscosity,
pressure, and the source term. Furthermore, bw = 1/Bw, Bw denotes the formation volume
factor of the water phase. Rs are the functions of pressure and the relative permeability.

We used embedded discrete fracture modeling (EDFM) for the porous media model
to deal with the fractures. EDFM was proposed by Li and Lee (2008), which borrows the
dual-medium concept from conventional dual-continuum models, and also incorporates
the effect of each fracture explicitly [40]. In EDFM, the control volume of the fracture does
not exist in the vicinity of the matrix grid blocks, and each fracture has a virtual aperture in
the computational grids. The following equation describes the fluid cross-flow between the
porous matrix and fracture:

qm f =
2lm f (Km· n)· n

µ
∇P (4)

The normal unit vector of the fracture segment are denoted by n; Km is the permeability
tensor in the global coordinate system, lm f is the intersection length between the fracture
segment and matrix element, and µ is the fluid viscosity.

2.2. FNO Architecture

The Fourier neural operator is effective in learning the mapping relationships between
the infinite-dimensional function spaces that convert a traditional convolutional operation
into a multiplication operation using the Fourier transform [34]. This causes the higher
modes of the neural layer to be removed from the Fourier space, leaving only the lower
modes in the Fourier layer. Hence, FNO can greatly improve the computational efficiency of
the training process. The goal of FNO is to use a neural network G†(a) = u to approximate
the mapping of function G : A → U , G ≈ G†.
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Figure 1 shows the full FNO architecture; input observation c(x) is first lifted to a
higher dimensional potential representation e0(x) = M(c(x)) by fully-connected shallow
neural network M. Then, e0(x) is used as input for an iterative Fourier layer e0 → e1 →
e2 → · · · → eN . The concrete iterative process from state en → en+1 can be written as:

en+1(x) = σ(Wen(x) + (K(a; φ)en(x))(x)) (5)

Figure 1. Architecture of the FNO. F denotes the Fourier transform, and F−1 denotes the inverse
Fourier transform. Rφ is a Fourier transform of periodic function κ; W is a local liner transform; σ is a
non-linear activation function; e0 and e1 are the input and output of Fourier layer 1.

Here, σ is a non-linear activation function, W is a linear transformation, and K is an
integral kernel transformation parameterized by a neural network. (K(a; φ)en(x))(x) is the
bias, that can be written as an integral:

(K(a; φ)en(x))(x) =
∫

κφ(x, y)en(y)dy (6)

To accelerate the integration process
∫

κφ(x, y)en(y)dy of Equation (6), Li et al. (2020)
imposed a condition that is κφ(x, y) = κφ(x− y) and the new integral is [41]:

(K(a; φ)en(x))(x) =
∫

κφ(x− y)en(y)dy

= F−1(Rφ· (F en))(x)
(7)

where F denotes the Fourier transform, and F−1 denotes the inverse Fourier transform. Rφ

is a Fourier transform of periodic function κ, Rφ = F (κφ), and κφ is a the kernel of the neural
network. Following the N Fourier layer iteration, the last state output eN(x) is projected
back to the original space using a fully connected neural network S, y(x) = S(eN(x)).

In every block of the Fourier layer, FNO approximates highly non-linear functions
mainly via combining the linear transform W and global integral operator Rφ (Fourier
transform). Rφ can be parameterized as a complex-valued tensor in the Fourier space
from truncating high Fourier frequency modes k, and it can greatly reduce the number of
trainable parameters and improve efficiency during the process of training.

2.3. CNN Class Network Architecture

The convolutional neural network (CNN) evolved from a multi-layer perceptron
(MLP) [42]. Due to its structural characteristics of a local region connection, weight sharing
and downsampling, the convolutional neural network achieves excellent performance for
image processing, and has been widely used in various fields. A typical CNN consists
of three parts: The convolution layer, the pooling layer, and the fully connected layer.
The convolution layer is responsible for extracting local features in the image. The pooling
layer is used to greatly reduce the magnitude of the net parameters (dimension reduction);
the fully connected layer is similar to the part of the traditional neural network, that is
used to output results. The other CNN class network is a full convolutional neural network
(FCN) [43]. The difference between the FCN and the CNN is that the latter’s full connection
FC layer is replaced by the Conv. Therefore, images of any size can be input into FCN. U-net
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was proposed by Ronneberger in 2015 [44], and is a variant of the FCN. Comparing the
FCN, one of the most outstanding contributions of U-net is its skip connection operation,
that reduces the image details lost due to downsampling, thus helping the network to more
accurately locate the image. In this study, We use U-net to complete the same test, and we
also compare the performances of the FNO-net and U-net. The U-net still retained two
main structures: encoder and decoder [45]. The detailed U-net architecture is shown in
Figure 2. The blue arrow is a convolution block composed of a 3 × 3 convolution layer
and a ReLU layer, that can be used to extract and output feature maps of the same size as
the input image. The red arrow is 2 × 2 max pooling to extract the downsampled feature
maps. The orange arrow is an up-convolution operation that can obtain an upsampled
feature map. The grey arrow denotes the concatenation operation, and the main function
is concatenating the feature maps (blue box) from the left with the right feature maps
(green box).

Figure 2. Architecture of U-net.

2.4. Training Details and Loss Function Design

In the current study, the Stanford in-house new generation reservoir simulator ADG-
PRS [46,47] was used to generate the simulation results of multi-phase flow in the heteroge-
neous reservoir with a complex fracture distribution. Permeability fields can be regarded
as stochastic fields. The heterogeneity in the horizontal permeability kx is generated by
Stanford Geo statistical Modeling Software (SGeMS) [48]. Permeability map ky is calculated
by multiplying the kx map by the anisotropy map. The porosity map is perturbed with
a random Gaussian noise ε with a mean value of zero and a standard deviation of 0.005.
In addition, four parameters are required to define the distribution of the natural fractures
in numerical simulations: fracture coordinate position, depth, permeability, and poros-
ity [40]. Then, the simulator runs, the field distribution of time step N can be divided into
datasets to train the FNO model. There are two key hyper-parameters in FNO-net: firstly,
the width of the convolution layer, that refers to the number of features learned at every
Fourier layer; secondly, frequency mode k, that defines the number of lower Fourier modes
retained after removing the high Fourier mode in the Fourier series expansion. The value
of frequency mode k depends on the concrete size of the grid space. To predict the field
distribution at time tn+1 using only the simulation results at time tn as input data, the two
hyper parameters of FNO need to be redefined. In this research, we assign the value of
frequency mode k = 4 and width as 1. The FNO-net structure of the training is illustrated
in Table 1. The details of the data preparation are described in Section 3.
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Table 1. FNO-net structure for training. Padding denotes a padding operator that accommodates
the non-periodic boundaries. Linear denotes the linear transformation to lift the input to the high
dimensional space and the projection back to the original space. F1–F5 denotes five Fourier layers.

Network Layer Output Shape

Frequency mode k ,width (4, 1)
Input (1050, 148, 56, 1, 1)

Padding (1050, 148, 56, 32, 1)
Linear (1050, 148, 56, 32, 1)

F1:Fourier3d/conv3d/BatchNorm3d (1050, 148, 56, 32, 36)
F2:Fourier3d/conv3d/BatchNorm3d (1050, 148, 56, 32, 36)
F3:Fourier3d/conv3d/BatchNorm3d (1050, 148, 56, 32, 36)
F4:Fourier3d/conv3d/BatchNorm3d (1050, 148, 56, 32, 36)
F5:Fourier3d/conv3d/BatchNorm3d (1050, 148, 56, 32, 36)

Projection1 (1050, 148, 56, 32, 128)
Projection2 (1050, 148, 56, 32, 1)

Output (1050, 148, 56, 1, 1)

The total loss function for the FNO-net in this study can be divided into three parts:
L2-loss. The L2 norm can prevent over-fitting and improves the generalization ability of
the model; BC (boundary condition)-loss; IC (initial condition)-loss. The total loss function
is written as:

Losstotal = L2(u, û) + λ1LossBC + λ2LossIC (8)

The L2-loss:

L2(u, û) =
‖u− û‖2

‖u‖2
+ β
‖du/dr − dû/dr‖2

‖du/dr‖2
(9)

L2 norm is mainly minimizing the mean squared error between prediction û and
ground truth u. Where du/dr is the first derivative of the data, dû/dr is the first derivative
of the predicted output, ‖‖2 is the L2 norm, and β is a hyper-parameter. The relative L2-loss
can prevent over-fitting and improve the generalization ability of the model, especially
when the training data have large variances in the norm [49].

For our test case, the boundary conditions are four Newman boundaries. Newman
boundary conditions can be written as:

K(x)∇h(x)· n(x) = 0, x ∈ ΓN (10)

Equation (10) denotes the Newman boundary condition. The pressure cannot be
transmitted outward through the boundary, that is, its derivative in the direction of the
outward normal is limited to zero. K(x) denotes the hydraulic conductivity; h(x) denotes
the hydraulic head; n(x) denotes an outward unit vector that is normal to the boundary
with the model parameters, such as hydraulic conductivity K(x), which is available, and
the boundary and initial conditions are specified; therefore, the problems can be solved
with numerical simulators.

LossBC(θP) =
1

NbcNbcNt

Nbc

∑
i=1

Nbc

∑
j=1

Nt

∑
k=1
‖Rl(θP)‖2

2 (11)

Equation (11) denotes the loss function of the boundary condition. Nbc is the number
of the test point in the boundaries. Nt is the number of the time step in the test case. Rl(θP)
represents the residual of Equation (10) for phase l.

RP,IC(θP) = P̂(θP)− P(θP) (12)

RS,IC(θS) = Ŝ(θS)− S(θS) (13)
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Equations (15) and (16) are the difference between the predicted value and the initial
value, respectively. RP,IC is the pressure residual. RS,IC is the saturation residual.

LossIC =
1

NIC

NIC

∑
i=1
‖RP,IC(θP)‖2

2 +
1

NIC

NIC

∑
i=1
‖RS,IC(θS)‖2

2 (14)

Equation (14) denotes the loss function of the initial condition. The parameters of
the network are optimized by minimizing the above total loss function with the adaptive
moment estimation (Adam) optimization algorithm [50]. The initial hyper-parameter β is
1. In the training process, the initial learning rate is 0.001 and the learning rate gradually
decreases with a certain step and reduction rate. Training stops when the total loss no
longer decreases.

For U-net, the same datasets were used as input data for training and prediction. The U-
net structure designed for this study is shown in Table 2. Considering the large difference
between the pressure and saturation values, we normalized the pressure field data in the
training. The learning rate of the model is modified dynamically with a decrement multiple
of 0.1 and an interval of 20 epochs. The most common loss function mean squared error
(MSE) was selected. The MSE loss is the square of the difference between predictions and
the ground truth, and it averages it out across the whole dataset. MSE can be written as :

MSE =
1
N

N

∑
i=1

(ui − ûi)
2 (15)

LossU−net = MSE + λ3LossBC + λ4LossIC (16)

where N is the number of samples we are testing against, ui are the true values, and ûi
are the prediction values. To test the effect of the boundary condition and initial condition
constraint on the model accuracy, we also added BC and IC parts in the U− net loss function.

Table 2. The network architectures of U-net. The convolutional layer kernel size, stride, and padding
are (3, 3), (1, 1), and 1. ReLU is a rectified linear layer; MaxPool2d represents a downsample layer
with kernel size (2, 2) and strides (2, 2); upsampled denotes an upsample layer with scale factor 2.

Network Layer Output Shape

Input (1, 148, 56)
Conv2d/ReLu/Conv2d/ReLu (64, 148, 56)

MaxPool2d/ Conv2d/ReLu/Conv2d/ReLu (128, 74, 28)
MaxPool2d/ Conv2d/ReLu/Conv2d/ReLu (128, 37, 14)

Conv2d/ReLu/Conv2d/ReLu (128, 37, 14)
Conv2d/ReLu/Conv2d/ReLu (128, 37, 14)

Upsampled/Conv2d/ReLu/Conv2d/ReLu (256, 74, 28)
Upsampled/Conv2d/ReLu/Conv2d/ReLu (192, 148, 56)

Conv2d/ReLu/Conv2d/ReLu (64, 148, 56)
Output (1, 148, 56)

Figure 3 presents a flowchart that shows the deep learning (DL) procedure in multi-
phase flow. Firstly, the distribution of pressure and saturation fields at time step T is used as
input data for FNO and U-NET. Secondly, the network outputs the predicted values of pres-
sure and the saturation fields at time step T + 1 through training. Then, the loss function,
considering the constraints of the initial conditions and boundary conditions, is calculated
by Equations (8) and (16). The network weight is updated through backward propagation.
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Figure 3. The procedure of FNO and U-net in multiphase flow prediction.

Now, we introduce several error metrics, that will be used to evaluate the performance
of the model. The relative error for the predicted results is defined as:

Ai =
1
T

1
N

T

∑
t=1

N

∑
n=1
|ui − ûi| (17)

ai =
1
T

1
N

T

∑
t=1

N

∑
n=1
|ui| (18)

REi =
Ai
ai

(19)

where T represents the number of the simulated time steps, N represents the number
of grids, ui represents the actual value, such as the gas saturation distribution and pres-
sure, and ûi represents the corresponding predicted value in the output. Variable Ai is
the average absolute error, ai is the average of the actual value, and REi represents the
relative error.

3. Results and Discussion

In this section, we demonstrate the simulation performance of FNO-net and U-net
in 2D multi-phase subsurface flow in a fractured reservoir. The test case was a 2D
(1480 ft × 560 ft) heterogeneous reservoir with a complex fracture. The numerical simula-
tion results were obtained from the Stanford new generation reservoir simulator ADGPRS.
Once the simulation completed its run, the simulation results, such as pressure and satu-
ration field distributions were divided into datasets. Then, the FNO network performed
training and prediction. In addition, we evaluated the performance of the FNO and U-net
models in predicting the same test case from the aspects of runtimes and accuracy. The de-
tails of data processing (pre- and post-processing) and model training are described for the
case, as follows. We made predictions and error metrics for saturation and pressure.

The implementation of the FNO neural network and U-net in this paper is based on
the popular open-source software library, PyTorch, for machine learning. The test case
in this study was performed on the DELL Precision T7920 workstation with 2 Inter(R)
Xeon(R) Gold 6230R CPU@ 2.10 GHz, and 2 NVIDIA 3090 GPU. All codes and data
required to reproduce the results and presented in the paper will be available at https:
//github.com/HPMPS (accessed on 21 April 2023) upon publication.

The test reservoir domain was discretized using the Cartesian grid, with 148 × 56 grid
cells in the x and y directions. The total number of grids was 7395 with seven production
wells. All production well coordinates were (47, 22), (90, 22), (130, 20), (90, 30), (90, 10),
(47, 10), and (47, 30). The oil production rate was 14.7 STB/day in every production well

https://github.com/HPMPS
https://github.com/HPMPS
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control. We used SGeMS’s sequential Gaussian simulation to generate permeability fields
(kx, ky) with a 148 × 56 grid size.

Figure 4 shows kx and ky. The well configuration in the 2D reservoir is shown in
Figure 5a. Forty-two natural fractures were also added to the heterogeneous reservoir.
The 42 natural fractures have been defined by the coordinates method in this reservoir
modeling. The concrete parameters of these fractures, including position, permeability in
horizontal directions, permeability in vertical directions, porosity in fracture, and aperture
of fracture are listed in Table A1. The distribution of these fractures is plotted in Figure 5a.
In Figure 5b, krow is the relative permeability of oil in a two-phase oil-water system, krw
is the relative permeability of water in a two-phase oil-water system, krog is the relative
permeability of oil in a two-phase gas-oil system, and krg is the relative permeability of gas
in a two-phase gas-oil system.

Figure 4. Permeability fields kx, ky.

(a) (b)

Figure 5. The top figure in (a) is the well configuration for the test case, and each well penetrates all
layers vertically. The bottom figure in (a) is the fracture distribution. The top figure in (b) are the
relative permeabilities for the water and oil systems. The bottom figure in (b) presents the relative
permeabilities for the oil and gas system.
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Once the numerical model was built, the ADGPRS simulator ran for 5255 days with
1051 time steps, and 5 days for each time step. Then, the simulation results were generated,
including the pressure, oil saturation, and water saturation distribution, and these results
were used as input data for the FNO network for training. In the training process, the FNO
network training, testing, and validation are described as follows. The dataset organization
involved each batch with consecutive two time steps, batch 1 was one to two time steps,
batch 2 was two to three time steps, and so on. The last one was 1049 to 1050 time steps,
the total batch number was 1050. Figure 6 illustrates the preparation of the batches. For the
first batch, the values of the one time step were used as input data to train the FNO-
net and the predicted û values in Equation (9). Then, the values in the two time steps
were also introduced in Equation (9) as truth values u to calculate the L2 loss function
in the equation. By combining the BC loss and IC loss, we optimized the total loss in
Equation (8) using the Adam optimization method. Among the 1000 batches, 800 batches
were randomly selected as the training set and the remaining 200 batches as the testing set.
To demonstrate the prediction capability in the time series, the values in the three 150, 650,
and 1150 time steps were used as the validation data and were excluded from training and
testing. The procedure of data preparation for U-net was the same as that for FNO-net.

Figure 6. Dataset organization.

The input shape for the FNO network was (1050, 148, 56, 1, 1), where 1050 was the
number of samples, 145 was the number of grids in the x-dimension, 51 was the number
of grids in the y-dimension, one was the required place holder for the variables, and one
was the first one time step in the time series. The output shape was (1050, 148, 56, 1),
where one was the sequential one time step. The input shape for U-net was (1050, 148,
56) and the output shape was (1050, 148, 56). The same test case of multiphase flow in a
fractured reservoir is the benchmark to compare the computational cost of FNO and U-net.
The results are shown in Table 3. For FNO networks, it takes about 1300 s to train 500 epochs
using 1051 time step data in an NVIDIA GeForce GTX 3090 Ti GPU computer. Each epoch
takes 2.6 s. To the contrary, U-net takes about 25,612 s to train 500 epochs, with each epoch
taking 51.2 s. The comparative results of FNO and U-net in terms of accuracy, ease of use,
and ability to describe fractures are presented in Table 3.

Table 3. Comparison of the performance between FNO and U-net models.

Model Per Epoch Time (s) Ease of Use Order of Error The Ability to Describe
Fractures

FNO-net 2.6 Easy 10−3 Fully describe
U-net 51.2 Easy 10−2 Partially describe

The performance of the constructed FNO-net and U-net models are evaluated here.
Figures 7 and 8 represent the prediction results of oil saturation at T = 150 time steps,
650 time steps, and 1150 time steps by FNO and U-net, respectively. As Figure 7 shows,
the average difference between the ground truth value and the predicted value is 10−3

by FNO. Figure 8 shows that the average difference between the ground truth value and
the predicted value is 10−2 by U-net. The error of U-net is 10 times larger than FNO-net.
FNO achieved the best performance. In comparison with the first row from Figures 7 and 8,
FNO can accurately depict the influence of fine fractures, while U-net can hardly depict
this phenomenon. These results show that FNO has a better ability to capture the influence
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of fractures. The third column error graph in Figures 7 and 8 displays that the errors of
the FNO model mainly exist near the production well. To improve the prediction in this
narrow area, one approach is that the training data are denser in this area. In addition, it
can be found that U-net has very poor performance at the boundary in Figure 8, while FNO
can better predict the saturation distribution at the boundary. These error results show that
adding the boundary condition and the initial condition constraints to the loss function
have a positive effect on the predicted oil saturation.

Figure 7. Prediction of the oil saturation distribution at 150 time steps, 650 time steps, and 1150 time
steps by FNO-net: numerical simulation results (first column), network results (second column), and
errors (third column).

Figure 8. Prediction of the oil saturation distribution at 150 time steps, 650 time steps, and 1150 time
steps by U-net: numerical simulation results (first column), network results (second column), and
errors (third column).

Figure 9 displays the predicted pressure distribution by FNO-net for the test case at
the time steps of 50 (first row), 250 (second row), and 450 (third row), respectively. Figure 9
shows that the FNO model achieves approximation accuracy for the strongly non-linear
and discontinuous pressure field, as expected. The maximum difference between the
ground truth value and the predicted value is 6 psi by FNO, although the pressure field
truth value varies from 1000 psi to 3000 psi. Comparing the predicted results by U-net
in Figure 10, the maximum difference between the ground truth value and the predicted
value reaches 80 psi. The error of U-net is 13 times larger than FNO-net. FNO also achieved
better performance in the prediction of pressure distribution. The error results in Figure 10
also show that U-net has very poor performance at the boundary.
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Figure 9. Prediction of the pressure distribution at 150 time steps, 650 time steps, and 1150 time steps
by FNO-net: numerical simulation results (first column), network results (second column), and errors
(third column).

Figure 10. Prediction of the pressure distribution at 150 time steps, 650 time steps, and 1150 time
steps by U-net: numerical simulation results (first column), network results (second column), and
errors (third column).

In this test case, the variation ranges for the oil phase saturation, gas phase saturation,
and pressure truth value are, respectively, (0, 1), (0, 0.091), and (1000 psi, 3000 psi). This
mixed complex scale greatly increases the difficulty of the deep learning model prediction.
To test the predicted ability of two networks in the fractured reservoir in detail, we present
cross plots of the predicted and ground truth values for three test time steps in Figure 11.
The left column of Figure 11 presents the FNO results and the right column shows the U-net
results. The left column in Figure 11 shows that all test points of FNO for oil saturation, gas
saturation, and pressure fall near line 45◦, which demonstrates that FNO-net solutions are
in close agreement with the ground truth values. Among them, the prediction error of FNO
for gas saturation is the largest, these results show that the capacity of the FNO model to
treat fractured reservoirs is sufficient to meet engineering requirements. The right column
of Figure 11 illustrates U-net’s poor performance in predicting oil saturation, and especially
gas saturation. The first figure in the right column of Figure 11 shows that the predicted
value of oil saturation deviates abnormally near 0.6, which may be caused by not adding
the constraints of the initial conditions and boundary conditions into the loss function of
the U-net model. If we add the constraints of the initial conditions and boundary conditions
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to the U-net loss function, the model can better describe the local non-linear characteristics
of the boundary and the accuracy of the gas saturation in the front.

For gas saturation distribution, the ground truth value varies from 0 to 0.0091. We
also tested the reconstruction ability of the two networks on such a small scale. Figure 12
illustrates the predicted results of gas saturation using FNO-net, it can found that the
maximum error is 0.006. Figure 13 shows that the U-net model reconstruction performance
of the gas saturation is poor, especially near the fractures, with an overall maximum error
of 0.02, which is more than 20 percent. This accuracy is not enough for the method to be
applied to simulate the subsurface flow in fractured systems.

Figure 11. Cross plots of the predicted and ground truth values for oil saturation, pressure, and gas
saturation at three test time steps. Red dots represent the results at 150 time steps, blue dots at
650 time steps, and green dots at 1150 time steps. The first row is for oil saturation, the second row is
for pressure, and the third row is for gas saturation. FNO-net results are presented in the first column
and U-net results are presented in the second column.
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Figure 12. Prediction of the gas saturation distribution at 150 time steps, 650 time steps, and 1150 time
steps using FNO-net: numerical simulation results (first column), network results (second column),
and errors (third column).

Figure 13. Prediction of the gas saturation distribution at 150 time steps, 650 time steps, and 1150 time
steps using U-net: numerical simulation results (first column), network results (second column), and
errors (third column).

4. Conclusions

Classic CNN-based deep learning methods, such as U-net attempt to learn mappings
between finite-dimensional Euclidean spaces, making them confined to a particular dis-
cretization. Moreover, the FNO tries to learn function-to-function mappings directly, which
enables FNO to have a better generalization ability to deal with time series problems
and predict future time step states through historical time step states. In this study, two
deep learning models FNO and U-net were constructed to predict in 2D, the three-phase
subsurface flow in a complex fracture reservoir. Compared with the results of pressure, oil
saturation, and gas saturation field distributions, The FNO-net provided better prediction
performance than the U-net in predicting the flow process precisely and quickly. The re-
sults show that FNO has a better ability than U-net to describe the influence of fractures,
and U-net can hardly depict this phenomenon. In addition, it is essential to add the physical
constraints of the initial conditions and boundary conditions to the loss function of the
pure data-driven model to improve the predictive performance of the model.

Key achievements in this work:

1. Our work successfully implemented two current advanced deep learning models
to predict subsurface flow in complex fractured reservoirs. The performance of the
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two models was evaluated from the aspects of computational cost, accuracy, and
fracture description;

2. By adding initial conditions and boundary conditions to the network loss function,
we proved the necessity of adding physical constraints to the data-driven model;

3. This work contributes to advancing the understanding of the applicability of FNO-net,
and provides new insights into deep learning methods for predicting multiphase flow
in complex fractured reservoirs.
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Appendix A

Table A1. Parameters of the natural fractures in the simulated case study.

Natural
Fracture PERM (mD) PERMV (mD) PORO APERTURE

Fracture1 120 1.5 0.9 0.02
Fracture2 400 12.5 0.5 0.04
Fracture3 180 10.5 0.4 0.1
Fracture4 240 4.5 0.19 0.02
Fracture5 185 6.5 0.16 0.08
Fracture6 255 7.3 0.55 0.2
Fracture7 860 1.5 0.19 0.25
Fracture8 385 4.5 0.29 0.25
Fracture9 722 3.5 0.29 0.52

https://github.com/HPMPS
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Table A1. Cont.

Natural
Fracture PERM (mD) PERMV (mD) PORO APERTURE

Fracture10 486 4.7 0.39 0.48
Fracture11 510 2.6 0.69 0.83
Fracture12 130 1.2 0.74 0.55
Fracture13 558 1.3 0.98 0.35
Fracture14 650 1.55 0.78 0.53
Fracture15 255 1.57 0.75 0.08
Fracture16 257 1.35 0.5 0.07
Fracture17 357 1.55 0.94 0.07
Fracture18 457 1.45 0.93 0.06
Fracture19 557 1.75 0.98 0.05
Fracture20 740 1.65 0.89 0.04
Fracture21 670 10.5 0.85 0.03
Fracture22 470 12.5 0.5 0.03
Fracture23 650 11.6 0.3 0.03
Fracture24 453 8.56 0.4 0.02
Fracture25 350 7.56 0.5 0.01
Fracture26 620 6.53 0.54 0.1
Fracture27 320 8.53 0.44 0.11
Fracture28 280 5.55 0.4 0.25
Fracture29 356 2.65 0.3 0.11
Fracture30 455 7.52 0.2 0.32
Fracture31 456 1.45 0.93 0.06
Fracture32 655 1.75 0.98 0.05
Fracture33 725 1.65 0.89 0.04
Fracture34 680 10.5 0.85 0.03
Fracture35 450 12.5 0.5 0.03
Fracture36 680 11.6 0.3 0.03
Fracture37 475 8.56 0.4 0.02
Fracture38 356 7.56 0.5 0.01
Fracture39 653 6.53 0.54 0.1
Fracture40 258 8.53 0.44 0.11
Fracture41 655 5.55 0.4 0.25
Fracture42 455 2.65 0.3 0.11
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