
Citation: Deng, X.; Mo, R.; Wang, P.;

Chen, J.; Nan, D.; Liu, M. Review of

RoCoF Estimation Techniques for

Low-Inertia Power Systems. Energies

2023, 16, 3708. https://doi.org/

10.3390/en16093708

Academic Editor: Abu-Siada Ahmed

Received: 23 February 2023

Revised: 14 April 2023

Accepted: 24 April 2023

Published: 26 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Review

Review of RoCoF Estimation Techniques for Low-Inertia
Power Systems
Xiaoyu Deng 1, Ruo Mo 1, Pengliang Wang 1, Junru Chen 1, Dongliang Nan 2 and Muyang Liu 1,*

1 School of Electrical Engineering, Xinjiang University, Urumqi 830046, China; xyd@stu.xju.edu.cn (X.D.)
2 Electric Power Research Institute, State Grid Xinjiang Electric Power Co., Ltd., Urumqi 830011, China
* Correspondence: muyang.liu@xju.edu.cn; Tel.: +86-13677352908

Abstract: As the traditional generation is gradually replaced by inverter-based resources, a lack of
rotational inertia is now a common issue of modern power systems, which leads to an increasingly
larger rate of change of frequency (RoCoF) following contingencies and may result in frequency
collapse. As a crucial index of the frequency security and stability of power systems, the accurate
estimation of the RoCoF can be a foundation for the development of advanced operations and
control techniques of the future power system. This paper firstly analyzes the role of the RoCoF
in typical blackouts occurring in recent years and discusses the physical and numerical nature of
the RoCoF; then, by introducing the frequency spatial distribution of the power system, the paper
discusses the concept of the “center” RoCoF that can present the frequency security and stability of
the entire system. The estimation and prediction techniques of the maximal power system RoCoF
following a contingency and the existing real-time tracking techniques of the power system RoCoF
are comprehensively reviewed. Finally, the open questions and related research topics of the RoCoF
estimation are discussed.

Keywords: frequency stability; rate of change of frequency (RoCoF); power system stability; phasor
measurement unit (PMU)

1. Introduction
1.1. Motivation and Background

With the goal to decrease carbon emissions, inverter-based resources (IBRs) including
wind and solar generation and energy storage systems play increasingly important roles in
modern power systems around the world [1,2]. With the increasingly high penetration of
IBRs, a lack of rotational inertia gradually becomes a common issue for power systems [3,4].
One of the significant results is the decreasing frequency stability of power systems. The
operating frequency of low-inertia IBR-leading systems is vulnerable to any disturbance; the
rate of change of frequency (RoCoF) will rapidly increase following a contingency, which
leads to large frequency deviations and even the cascading failure of the system [5–7].

Severe blackouts occurring in recent years are typical extreme results for unexpected
large RoCoFs following a contingency, e.g., the “8.9” blackout in Britain in 2019 [8]. In
this context, the maximal RoCoF during the frequency evaluation of a power system has
become a key index to indicate the frequency security of power systems [9,10], which can
be used to evaluate the security margin for the potential risk to trigger the unexpected
frequency protections that can lead to the cascading failure of the system. In modern power
systems, the node frequency is obtained by local measurement; the corresponding RoCoF,
therefore, is also local [11,12]. For an interconnected large power system, the long electrical
distances among the nodes and the uneven inertia distribution lead to complicated spatial
features of dynamic frequency. It means that the local RoCoF can be improper for use as the
index of the frequency security of the entire system, as it can be at a significantly different
level [13]. In this context, it is important to find a “center” RoCoF that can present the
stability and security features of the entire system.
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With a clear definition of the power system RoCoF that indicates the frequency security
of the entire power system, newly developed artificial intelligence (AI) techniques have
been applied to predict the maximal RoCoF following the potential contingencies of a
system based on historical operating datum [14,15].

Meanwhile, faced with increasing frequency security and stability challenges for
power systems, modern control strategies of IBRs have been developed to provide inertia
and frequency support to the grid. To achieve the fast frequency response, RoCoF tends
to be used as one of the input signals for these modern control techniques, e.g., virtual
inertia control [16,17]. Moreover, RoCoF can feed to the newly developed protections, e.g.,
RoCoF relay [18,19]. Therefore, to ensure the smooth operating of the modern controllers
and protections fed by the RoCoF signal, accurate real-time RoCoF tracking is crucial.
Considering the mathematical nature of RoCoF, namely, a rate of change of a time-variant
variable, RoCoF cannot be directly measured but needs to be computed by the internal
algorithm of measuring devices for the real-time variables of AC systems. The most
common measurement device that allows to track the RoCoF is the synchrophasor [20].
The accuracy and robustness against the measurement noise of the obtained RoCoF highly
depend on the estimation techniques. At present, discrete Fourier transform (DFT) is still
the most widely used phasor estimation technique [21–23]. However, the accuracy of this
technique is still questionable, especially when phase jump issues occur [24,25]. To further
increase the accuracy and reliability of RoCoF tracking, correlation phasor algorithms have
been developed in recent years, which can be roughly divided into the following three
categories: DFT-based methods, Kalman filter techniques, and other methods.

1.2. Contribution

This paper aims to provide a comprehensive review of RoCoF estimation techniques
for power systems including related concepts and estimation techniques. The specific
contributions of the paper are the following:

(i) Discussion on the role of the RoCoF in power system cascading failure and under-
standing the power system RoCoF;

(ii) Review the estimation and prediction techniques of the maximal RoCoF following
a contingency;

(iii) Review the different methods of RoCoF real-time tracking techniques with a discus-
sion on the advantages and disadvantages as well as the further development of
existing methods.

1.3. Oriagnization

The rest of this paper is organized as follows. Section 2 discusses the typical blackouts
occurring in recent years, explains the physical and numerical characteristics of power
system RoCoF, and introduces the concept of “center” RoCoF. In Section 3, the estimation
and prediction techniques of the maximal RoCoF following a contingency are reviewed,
and a power system with zero rotational inertia is discussed in depth. Section 4 reviews the
existing RoCoF real-time tracking techniques. The conclusions and related future research
topics are provided in Section 5.

2. Frequency Stability of the Low-Inertia Power System

This section firstly discusses the typical blackouts in recent years that resulted from
a lack of inertia and especially analyzes the features of the RoCoF during the dynamic
evaluation of the blackouts, and then explains the “role” of the inertia and RoCoF in modern
power systems. On this basis, the concept of “center” RoCoF is introduced. Table 1 lists the
nomenclature of parameters in Section 2.



Energies 2023, 16, 3708 3 of 19

Table 1. Section 2 nomenclature.

Variable Description

Heq, HG, HV Equivalent inertia constant of the power system, synchronous generator and IBRs
f 0, fCoI , f Normal frequency, frequency of center of inertia, and inner frequency of the sources

∆PG
The change of the output power from the generations providing the frequency
support to the system

∆PL The unbalanced active power caused by the contingency
D The damping factor of the power system
S The rated power

NG, NV The number of synchronous machines and IBRs
fB The vector consisting of the node frequency of the power system
fG The vector consisting of the equivalent speed of the generation set
A The parameter matrix of the power system
Y The admittance matrix of the power system
h Normalized inertia constants with dimension m × 1

1n×1, Im Identity matrix with dimension n × 1 and unit matrix with dimension m × m

2.1. Typical Blackouts in Low-Inertia Systems

The rotational inertia level of the power system continuously decreases alongside
the adjustment of the energy composition structure of the power grid [3]. In recent years,
frequency collapses caused by a lack of inertia have occurred in many countries, which
largely increases attention to the frequency security and stability of modern power systems.
Figure 1 summarizes the typical blackouts in low-inertia systems from recent years.
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The details for each blackout shown in Figure 1 are the following:
(i) British “8.9” blackout: At around 17:00 local time on 9 August 2019, due to a

lightning strike, a single-phase grounding short-circuit fault occurred on a transmission
line in the British power system and caused the successive disconnection of the Little
Barford gas power station and Hornsea offshore wind plant as their frequency protections
were triggered. The inertia of the British power system at that time was 210 GW·s [8],
for the 30% wind penetration. The RoCoF of the British system was recorded at 500 ms
and 0.135 Hz/s following the contingency [8], which is over the threshold of the RoCoF
protection of the most distributed sources at 0.125 Hz/s [8,26] and thus led to the extra
345 MW power loss due to the cut-off of the distributed sources. As a result, an under-
frequency load shedding (UFLS) of the system was triggered, and finally led to a large-scale
power outage in England and Wales. The load loss was about 3.2% of the whole British
system and about 1 million people were affected. During this incident, the unexpectedly
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large RoCoF resulted in the unexpected trip of the generation units, and therefore, the
occurrence of UFLS.

(ii) South Australia “9.28” blackout: On the afternoon of 28 September 2016, local
time, a severe typhoon and storm hit South Australia and caused the break of six trans-
mission lines. The voltage drop occurred six times within 2 min at the point of common
coupling (PCC) of the wind farm at Davenport, which led to the large-scale cut-off of wind
generations and resulted in the loss of the generation of 445 MW [27]. To maintain the
frequency stability of the state system, there was about 850–900 MW of power imported by
the Heywood tie line that went beyond its maximal capacity at 600 MW [28]. Finally, the
state grid was isolated due to the trip of the Heywood tie line and thus the power supply
of the entire state was interrupted for about 50 h. At the time of the accident, the wind and
solar power penetration of the South Australia system was 48.36%, and the inertia of the
system was 3000 MW·s, the lowest level in history. At the beginning of the accident, the
RoCoF reached 6.1 Hz/s and the frequency nadir was 47 Hz, i.e., −3 Hz below the nominal
value [27–29].

(iii) India “7.30” and “7.31” blackouts: On 30–31 July 2012, the largest power outage
occurred in India since 2000, which affected 20 Indian states and more than 600 million
residents. The normal frequency of the Indian power system is 49.5~50.2 Hz [30], which
allows for relatively large frequency fluctuations compared with the other countries with
strong power systems. On the day the blackout occurred, 47 transmission lines above
400 kV were out of work for maintenance, which further weakened the grid. At the
beginning of this event, the 220 kV transmission line Gwalior–Malanpur I tripped, which led
to a cascading failure including the disconnection between the western and northern India
power systems. The northern India power system collapsed after 25 s of the disconnection.
On the following day, the Rajasthan State generation unit tripped and was followed by the
trip of the 220 kV Badod Modak line [30,31]. After 2 min, the disconnection of the western
and eastern Indian power system occurred, which was followed by the collapse of the
eastern and northern systems. The total installed capacity of the Indian power grid was
202,979 MW, and the renewable energy penetration rate of the system was 33.66% [31,32].
The typical low-inertia features resulted in a large RoCoF following the contingency and
thus led to the above two cascading failures. Frequency deviations over 1.2 Hz were
observed during the blackout [32].

According to the above discussion, a relatively low-inertia level and extremely high
RoCoF was recorded during these events. Therefore, the following subsection discusses
the “role” of inertia and RoCoF for modern power systems.

2.2. The “Role” of Inertia and RoCoF for Modern Power Systems

Power system frequency stability refers to the power system’s ability to maintain a sta-
ble frequency following a large disturbance that leads to the unbalance between the power
supply and load demand [3,33]. The collapse of the frequency stability observed in typical
blackouts is discussed in the above subsection. For a power system that maintains the
frequency stability following a contingency, its frequency evolution trajectory is shown in
Figure 2, which can be divided into four stages [34,35]: inertia response, primary frequency
control (PFC), secondary frequency control (SFC), and tertiary frequency control (TFC).

As we can see in Figure 2, at the first stage of the evolution, the frequency drops
following the contingency. At this stage, the inertial response dominates the frequency
dynamics by converting the kinetic energy into electrical energy to depress the frequency
deviation from the normal value. The larger the inertia, the more the stored kinetic energy
is, and therefore, the smaller the RoCoF is at this stage [2,36,37]. When the frequency is out
of the dead band of the turbine governor (TG), the TG acts and the PFC is triggered. With
the effect of PFC, the frequency starts to recover from the nadir. Note that the stages that are
dominated by the inertial response and the PFC can be partly overlapped [34], as shown
in the yellow area of Figure 2. There usually exists a quasi-steady status with obvious
frequency deviations at the second stage of the frequency evolution due to the limited effect
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of PFC. Since then, in the following SFC and TFC dominant stages, the frequency slowly
recovers to the normal value with the RoCoF approaching zero.
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According to the above discussion, the RoCoF estimation for the initial response and
PFC-dominant stages is interesting. One can introduce the following equation to describe
the relationship between the inertia and RoCoF [34,38]:

2Heq

f 0
d fCoI

dt
= ∆PG(t)− ∆PL − Deq∆ f (1)

where ∆f is the frequency deviation from the normal frequency; Heq can be computed by
Equation (2):

Heq =

NG
∑

i=1
HG,iSi +

NV
∑

j=1
HV,jSj

NG
∑

i=1
Si +

NV
∑

j=1
Sj

(2)

where HG,i is the equivalent inertia constant of the i-th synchronous generator; Si is the
rated power of the i-th synchronous generator; HV,j is the equivalent inertia constant of
the j-th IBRs providing virtual inertia to the grid; Sj is the rated power of the j-th IBRs.
Equation (2) indicates that the inertia of the grid mainly consists of two parts, namely the
rotational inertia from synchronous generator and the virtual inertia from IBRs [34]. It is
worth noting that HV,j is usually unknown and time-varying because it depends on the
operating state and control method of the IBR. The relevant inertia estimation techniques
for power systems with high penetrations of IBRs have therefore been developed in recent
years [34,39,40], which can be the technical foundation to predict the critical value of the
RoCoF of the power system.

With the developing interconnections between regional grids, the modern power
system has an increasingly wider geographical distribution. The inertia level of different
subsystems can be very different due to the uneven distributions of the synchronous
generator with large inertia and the IBR that cannot provide inertia support. In this context,
the frequency event occurring at different places within the power system may be followed
by the frequency evaluation with very different features, including the RoCoF. Therefore,
the distribution of the inertia, to some extent, shapes the temporal and spatial characteristics
of the dynamic frequency.

2.3. Concept of “Center” RoCoF
2.3.1. Frequency of CoI and Its Estimation Method

The real-world power system constantly suffers from the disturbances of the stochas-
tics of renewable power and load and can be attacked by unpredictable events such as a
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tripped critical transmission line and unexpected loss of generation, which leads to the
ever-changing frequency of the system [41]. The dynamic frequency at each node of the
power system is under the impact of many factors [38,42], e.g., the local inertia level and
distances from the disturbances, and therefore, can be different from each other. Professor
F. Milano proposes the following frequency divider formula (FDF) to describe the spatial
distribution of the power system frequency [43]:{

fB = 1 + A(fG − 1)

A = −(Im{YBB + YB0})
−1Im{YBG}

(3)

where YBB is the admittance matrix of power grid; YB0 is a diagonal matrix, which takes
into account the internal impedances of synchronous generators at the generator buses;
YBG is the admittance matrix at the bus.

As FDF implies, the dynamic frequency at each node of the power system is differ-
ent [43,44]. The concept of frequency of center of inertia (CoI) is proposed to present the
“center” frequency (also abbreviated as system frequency in some reports and papers) of
the power system [38,45–48]:

fCoI =

N
∑

i=1
Heq,i fi

N
∑

i=1
Heq,i

(4)

where Heq,i and fi are the inertia constant and the inner frequency of the i-th sources.
Reference [46] proposes the following expression to estimate the frequency of the CoI:

f ∗CoI = ξTfB +α

ξT = −hTIm{Y+
BG}Im{YBB + YB0}

α = 1− ξT1n,1

(5)

where Y+
BG is the left inverse of YBG, i.e., Y+

BGYBG = Im; the i-th element of h is hi = Hi/HT
and HT = ∑m

j=1 Hj.

2.3.2. RoCoF of the Frequency of CoI

With the concept of frequency of CoI, we can deduce the “center” RoCoF that can
present the frequency security feature of the power system as the time derivative of the
frequency of CoI. The threshold to trigger the RoCoF protection of the power system in
some countries, such as Britain [49] and Denmark [49], has been set as a maximal value of
the system RoCoF.

3. Estimation and Prediction of the Maximal RoCoF following a Contingency

According to the above discussion, the maximal RoCoF of the system discussed in
this section is derived from the frequency of CoI following a contingency. This section
discusses the estimation and prediction of the maximal RoCoF following a contingency. It
is worth noting that the maximal RoCoF prediction techniques still need to be improved in
accuracy and interpretability. Relevant solutions are provided in this section, mainly using
the method of slope estimation. The magnitude of the maximal RoCoF highly depends on
the contingency and the inertia level of the system, which is an important index to present
the frequency security of the power system [49–51]. This section discusses the estimation of
the maximal RoCoF following an already-occurred event and the prediction of the maximal
RoCoF following a potential contingency of the system; the specific classification is shown
in Figure 3. Table 2 lists the nomenclature of parameters in Section 3.



Energies 2023, 16, 3708 7 of 19

Energies 2023, 16, x FOR PEER REVIEW 7 of 20 
 

 

some countries, such as Britain [49] and Denmark [49], has been set as a maximal value of 
the system RoCoF. 

3. Estimation and Prediction of the Maximal RoCoF following a Contingency 
According to the above discussion, the maximal RoCoF of the system discussed in 

this section is derived from the frequency of CoI following a contingency. This section 
discusses the estimation and prediction of the maximal RoCoF following a contingency. 
It is worth noting that the maximal RoCoF prediction techniques still need to be improved 
in accuracy and interpretability. Relevant solutions are provided in this section, mainly 
using the method of slope estimation. The magnitude of the maximal RoCoF highly de-
pends on the contingency and the inertia level of the system, which is an important index 
to present the frequency security of the power system [49–51]. This section discusses the 
estimation of the maximal RoCoF following an already-occurred event and the prediction 
of the maximal RoCoF following a potential contingency of the system; the specific classi-
fication is shown in Figure 3. Table 2 lists the nomenclature of parameters in Section 3. 

 
Figure 3. Taxonomy of offline RoCoF estimation techniques for power systems. 

Table 2. Section 3 nomenclature. 

Variable Description 
f  Averaged system frequency 
T A short period following the contingency 

0 0( ), ( )f t f t T+  
The pre-contingency frequency and the frequency of a short period T 
following the contingency 

*RoCoFm  The approximated maximal RoCoF 

3.1. Maximal RoCoF Estimation 
The most commonly used estimation method of the maximal RoCoF is calculating 

the maximal RoCoF from the obtained trajectory of the dynamic frequency following an 
event. This method can provide the most accurate RoCoF to the Transmission System Op-
erators (TSOs). The curve fitting technique used to analyze the maximal power system 
RoCoF is found in reference [52], where a fifth-order polynomial to mimic the frequency 
response of the power system is proposed and the “analytic” RoCoF function as the first-
time derivative of the polynomial can be obtained. One can easily deduce the maximal 
RoCoF according to the obtained RoCoF function. Then, reference [53] assumes a polyno-
mial to describe the dynamic frequency f  of the power system: 

( ) [1 sin( )]tn
rf t k e tςωσ ω φ−= + +  (6) 

where , , , ,n rk σ ς ω ω , and φ  are unknown parameters of f  and t is the time, these pa-
rameters need to be identified according to the dynamic behavior of the system. Following 

Figure 3. Taxonomy of offline RoCoF estimation techniques for power systems.

Table 2. Section 3 nomenclature.

Variable Description

f̃ Averaged system frequency
T A short period following the contingency

f (t0), f (t0 + T) The pre-contingency frequency and the frequency of a short
period T following the contingency

RoCoF∗m The approximated maximal RoCoF

3.1. Maximal RoCoF Estimation

The most commonly used estimation method of the maximal RoCoF is calculating the
maximal RoCoF from the obtained trajectory of the dynamic frequency following an event.
This method can provide the most accurate RoCoF to the Transmission System Operators
(TSOs). The curve fitting technique used to analyze the maximal power system RoCoF is
found in reference [52], where a fifth-order polynomial to mimic the frequency response of
the power system is proposed and the “analytic” RoCoF function as the first-time derivative
of the polynomial can be obtained. One can easily deduce the maximal RoCoF according to
the obtained RoCoF function. Then, reference [53] assumes a polynomial to describe the
dynamic frequency f̃ of the power system:

f̃ (t) = k[1 + σe−ςωnt sin(ωrt + φ)] (6)

where k, σ, ς, ωn, ωr, and φ are unknown parameters of f̃ and t is the time, these parameters
need to be identified according to the dynamic behavior of the system. Following that work,
reference [54] proposes an adaptive polynomial fitting technique to describe the dynamic
frequency and also the RoCoF.

During the frequency evolution following a contingency, however, since the completed
frequency trajectory is not available, the maximal RoCoF “saw” by the control and operation
center (recorded as RoCoF∗m in the remainder of the paper) of the system is usually the
approximated value calculated by the data of the frequency obtained within a very short
period following the contingency [35,52–54]:

RoCoF∗m =
f (t0 + T)− f (t0)

T
(7)

where f (t0) is usually very close to the nominal value. The specific T for different grid
codes is listed in Table 3.
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Table 3. International grid codes for frequency and RoCoF.

Grid Code T Security Threshold (Normal Frequency)

IEEE [55] N.A. 0.4 Hz/s (60 Hz)
Denmark [49,56] 500 ms 2 Hz/s (50 Hz)
Ireland [49,56] 200 ms 1 Hz/s (50 Hz)

UK [56] 500 ms 1 Hz/s (50 Hz)
Germany [49,56] 500 ms 2 Hz/s (50 Hz)

Australia [49] N.A. No standard for RoCoF (50 Hz)
USA [49,57] N.A. No standard for RoCoF (60 Hz)

Table 3 shows the typical approximated maximal RoCoF and their corresponding
security thresholds from different grid codes [49,55–57]. As we can see in Table 3, the
method to define the RoCoF∗m and its security threshold for several European countries has
been issued, while there is no specific rule in the IEEE standards to estimate RoCoF∗m but a
security threshold for the maximal RoCoF is provided. Australian and USA grid codes have
not listed a clear requirement for RoCoF yet, but the related discussions become increasingly
broad with the increasingly high penetration of the IBRs in these national grids.

The security threshold of a system RoCoF has to be small enough to protect the on-grid
devices under extreme scenarios, while it also has to be large enough to avoid triggering
unexpected cascading failures. Therefore, the RoCoF threshold in some countries, e.g., the
UK and Ireland, has been modified with the developed online devices and increasingly
high penetration of IBRs in recent years [49,56]. Ireland increased the RoCoF threshold
from 0.5 Hz/s to 1 Hz/s in 2020 [49]. The new settings for RoCoF may be issued with the
development and application of virtual inertia techniques.

3.2. Maximal RoCoF Prediction

With the rapid development of AI techniques in recent years, the applications of AI on
the stability and security assessment of power systems have become a hot topic [2,14,15].
One of the typical applications of the AI algorithm on power system analysis is predicting
the possible behavior of the system via training the proposed algorithm to learn from the
historical operation datum. In this context, the AI algorithms that can predict the maximal
RoCoF of the potential contingencies of the power system have been proposed.

Reference [14] utilizes a deep learning network based on stacked denoising auto
encoders to predict the indexes of the frequency evolutions following the possible large
disturbances including the maximal frequency deviation, maximal RoCoF, and quasi-
steady-state frequency. Reference [15] proposes an online frequency security assessment
method based on the multi-layer extreme learning machine (ML-ELM). In the process of
unsupervised training, an automatic encoder algorithm and regularization coefficient are
utilized to optimize layer by layer, which can accurately predict the maximal RoCoF with a
relatively small computational burden.

Although AI techniques are supposed to have a wide application for power system
analysis, in the current phase, the lack of interpretability raises a common doubt for their
further development in the power system field [39]. A reliable and accurate maximal RoCoF
prediction AI technique that can actually assist the TSO with satisfied interpretability may
be still on the way.

3.3. Towards the Power System with Zero Rotational Inertia

To date, 100% renewable energy systems have been built and can operate safely and
stably for a long time. For example, many countries have built or are close to building 100%
renewable energy power systems, including hydro, wind, and solar power sources [1,3,58,59].
The hydropower included in renewable energy power systems can provide rotational
inertia to the grid, and at the same time, these kinds of power systems are always equipped
with synchronous compensators to improve the voltage stability of the power system, which
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can also provide rotational inertia [1,3]. Therefore, the 100% renewable energy system can
be regarded as a low-inertia power system rather than a zero rotational inertia system.

At present, Xinjiang, China, as the energy base of China, has built a typical ultra-
high proportion new energy power system, including 100% new energy areas with only
solar, wind power, and energy storage devices, but it has not reached the situation with
zero rotational inertia, because there is still asynchronous motors existing in the load
side, providing a small amount of inertia support. Theoretically speaking, if there is no
asynchronous motor at all on the load side, then the system can be regarded as zero inertia,
and since the load side is also 100% power electronic equipment, then this system no longer
needs to maintain a 50/60 Hz nominal frequency, because all equipment is connected
to the power system via power electronic converters, and even a pure DC system can
be formed. However, this kind of system does not exist at present because most of the
electrical equipment is designed to operate normally at the nominal frequency. Even if the
power supply is 100% power electronization, the system still operates around the nominal
frequency in order to satisfy the requirement of most power consumption devices. In this
context, to avoid damaging the load-side electrical equipment, the frequency security and
stability needs to be ensured by inertial support that depress the frequency fluctuations
and extremely high RoCoF [3].

Based on the above discussion, it is necessary to use virtual inertia techniques to
provide inertia support to suppress the drastic changes in frequency and RoCoF in all the
real-world power systems now and in the near future [60,61]. Considering that virtual
inertia is uncertain compared with the constant rotational inertia, because virtual inertia is
a typical control technique of the power electronic converters, the effect of the control can
be easily affected by the adjustable parameters and the state of the energy sources [60–62].
Therefore, it will become more challenging to set a reasonable RoCoF security threshold
and potential RoCoF prediction techniques in the power system with virtual inertia as
the main inertial support form due to the high uncertainty of the spatial and temporal
distribution of the virtual inertia.

4. Real-Time RoCoF Tracking Techniques

According to the well-known frequency definition of AC power system given in IEEE
Std. IEC/IEEE 60255-118-1 [63], the RoCoF can be presented as

RoCoF =
.
f (t) =

1
2π

..
ϑ(t) =

1
2π

..
θ(t) (8)

where ϑ is the angular position of the signal x(t) = Xm(t) cos(ϑ(t)) [63]; θ is the phase
difference between the angular position ϑ of the signal x(t) and the phase caused by the
reference normal frequency. Equation (8) implies that the measurement device that can
track the dynamic voltage/current phase at a node of the power system, namely the
synchrophasor, can be used to track the real-time local RoCoF with a proper algorithm;
however, RoCoF estimation techniques face great challenges in accuracy and robustness.
This section provides a comprehensive review of the existing real-time RoCoF tracking
algorithms of synchrophasors, which can be divided into three main categories: (i) DFT-
based [64–76], (ii) Kalman filter techniques [77–92], and (iii) other methods [93–100]. The
details for each category are provided in the subsection. The specifics are shown in Figure 4.
Table 4 lists the nomenclature of parameters in Section 4.
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Table 4. Section 4 nomenclature.

Variable Description

Vm The magnitude of the voltage waveforms
f The signal frequency to be estimated

φV The phase angle
Ts The sampling interval
fs The sampling frequency
x The vector of state variables
z The vector of measurements
u The control vector
A The state transition matrix
B The control matrix
H The measurement matrix
w The column vector of process noise
v The column vector of measurement noise
�̂ Estimated values
�− Predicted values
�T Transposition of the matrix
P Covariance matrix
Q Covariance of process noise
K Kalman gain matrix
R Covariance of measurement noise

L, λ, α, κ, β Adjustable parameters of UKF algorithm

f, h Vectors consisting of nonlinear state transition functions and
measurement functions

W(m), W(c) Weights for the mean and covariance, respectively
Kp, Ki, Tf PI filter parameters

4.1. DFT-Based Methods

DFT is the most basic and common signal processing method at present. The DFT
method can be used to calculate the amplitude phase angle, frequency, and RoCoF of the
input signals collected by synchrophasors [64–68]. The voltage/current waveform of the
AC power system measured by the synchrophasor can be described as the following:

V(t) = Vm cos(2π f t + φV) (9)

DFT refers to transforming a discrete time series with finite length into a signal in
frequency domain, by sampling the signal at given intervals. For a periodic signal, N
points are sampled in each T period, namely, T = NTs. The voltage signal in the frequency
domain obtained via DFT is given by

V(k) =
N−1

∑
n=0

V(n)e−j 2π
N nk, k = 0, 1, 2 . . . N − 1 (10)
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where k is the frequency bin index, n is the sample index.
The dynamic frequency of the system can be estimated by finding the frequency bin

index k that corresponds to the largest magnitude in the frequency domain (recorded as
km). The highest frequency bin represents the fundamental waveform of the signal and its
frequency can be the coarse estimation as follows [69]:

fc = km
fs

N
(11)

Because of the spectral leakage and fence effect in sampling, DFT may introduce
obvious errors for the processing of signals with relative rapid variations [69–71]. In this
context, the improved DFT methods with higher accuracy and robustness against the
sampling techniques are developed for real-time RoCoF tracking in the power system.

Reference [71] proposes a windowed DFT which allows the tracking of frequency
deviation under various power system operation conditions and RoCoF and presents the
satisfied accuracy defined by the IEEE standards.

The interpolated DFT (IpDFT) is another well-known technique, which estimates
the synchrophasors by interpolating the DFT spectrum of the signal [72]. The windowed
interpolation techniques are used to suppress the spectral leakage of DFT methods via
introducing an appropriate window function for sampling. The interpolated DFT can be
represented mathematically as follows:

V(k) =
N−1

∑
n=0

V(n)e−j 2π
N n(k+∆k), k = 0, 1, 2 . . . N − 1 (12)

where ∆k is the interpolation factor and the selection of ∆k is related to the window
function. In particular, the IpDFT applying windowing function to reduce the spectral
leakage effects [66,72,73]. References [67,72,74,75] prove that with proper window function,
the IpDFT can largely reduce the errors resulting from the spectral leakage. The Hanning
window is better than the traditional rectangular window, with a reduced leakage and
fluctuation for IpDFT.

Reference [72] proposes an enhanced IpDFT algorithm for synchronous phasor fre-
quency estimation that computes RoCoF as the first-time derivative of the obtained fre-
quency passing by a low-pass filter. The enhanced IpDFT algorithm combines three differ-
ent methods to reduce the influence of errors caused by spectrum interference, including
windowing, DFT interpolation, and iterative solution [76].

4.2. Kalman Filter Techniques

The Kalman filter technique is widely used in the field of the power system state
estimation [77–79]. The real-time RoCoF tracking techniques based on the Kalman fil-
ter can effectively avoid the impact of harmonics and noise of the input signal fed into
the synchrophasor through solving the optimal estimation problem of the continuous
prediction–correction operation [78,80,81]. Kalman filter techniques require the estab-
lishment of appropriate state equations and measurement equations that can be solved
iteratively; the basic formulas of the standard Kalman filter are shown in (13)–(15) [82,83].

The state/measurement equations of the Kalman filter are{
xk = Axk−1 + Buk−1 + wk−1

zk = Hxk + vk
(13)

where the subscript k represents the k-th iteration.
The prediction steps of the equations are{

^
x
−
k = A

^
xk−1 + Buk−1

P−k = APk−1AT + Q
(14)

The update steps of the equations are
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Kk = P−k HT(HP−k HT + R)

−1

^
xk =

^
x
−
k + Kk(zk −H

^
x
−
k )

Pk = (I−KkH)P−k

(15)

Reference [83] proposes a method based on the standard Kalman filter in solving the
frequency and RoCoF as the state variables, the estimation error of the obtained RoCoF is
below 0.1 Hz/s. Reference [84] uses the wavelet-based signal pre-processing technique to
remove the noise of the frequency obtained through the wide-area measurement system
and then estimates the corresponding RoCoF through a Kalman filter technique similar to
the method proposed in [83]. Reference [82] proposes a method based on the Smoothed
Taylor–Kalman filter (STKF) technique to track the RoCoF; this method is a linear system
based on the Taylor series expansion and the Kalman filter. By using the backward filter
based on the smoother, the accuracy of STKF on tracking the frequency and RoCoF is much
improved compared with the classic Kalman filter.

References [24,25] show that phase jumps of the input signal resulting from faults
can lead to an erroneous frequency and RoCoF estimation. To deal with this issue, the
Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) techniques are used
for the frequency and RoCoF estimation of the power system. UKF always shows a
higher accuracy and better numerical stability than EKF by introducing the unscented
transformation (UT) technique to replace the linearization step of EKF [85]. The UKF,
therefore, is the most advanced Kalman filter technique for the power system frequency
and RoCoF estimation at present. The basic steps of the UKF algorithm are presented in
Algorithm 1 [85–87].

From the basic equation of UKF shown in Algorithm 1, it can be found that UKF is
consistent with the basic Kalman filter algorithm, including prediction step and update
step; UKF, based on UT, abandons the traditional method of linearizing nonlinear functions,
and uses UT to deal with the nonlinear transfer of mean and covariance, which becomes
the UKF algorithm. It is worth noting that in the process of selecting sigma points, three
parameters are very important [88,89]: α determines the distribution state of sigma points,
usually 0 ≤ α ≤ 1; the specific value of κ depends on the situation, for the case of Gaus-
sian distribution, when the state variable is univariate, κ = 2 is selected, and when it is
multivariate, κ = 3− L is generally used to determine the value of κ; the parameter to be
adjusted, β, can improve the accuracy of variance. For Gaussian distribution, β = 2 is the
optimal value.

Reference [90] proposes an algorithm of interpolated DFT combined with UKF, which
estimates the frequency and corresponding RoCoF in two steps: firstly, the frequency
through the IDFT with the Hanning window is tracked; and then, the UKF method is used
to observe the system state including RoCoF, and the accuracy meets all IEEE standards
for RoCoF estimation. References [87,91,92] show that the computational complexity of
the UKF increases dramatically with the larger system size and therefore may not suit the
real-world power system.

Several methods to improve the computational efficiency and the numerical stability of
the UKF have been developed, which broaden the applications of UKF on the system with
high dimension and nonlinearity, including the real-world power system. Reference [87]
points out that during the iterations of the UKF algorithm to solve the dynamic states of
the power system, the estimation error covariance P with positive semi-definiteness may
not exist. Therefore, the

√
P in the unscented transformation stage cannot be computed

properly and the iteration would be terminated without an effective result. Reference [87]
compares six different methods to cope with this issue, including the ’schol’ algorithm,
parameter optimization, modifying the covariance matrix (utilized in the step 3 and 6
in Algorithm 1), modifying the predicted covariance matrix (utilized in the step 3 in
Algorithm 1), and using the square-root UKF (SR-UKF) form. The results show that the
effect of the SR-UKF that introduces the guaranteed positive semi-definite estimation error
covariance is the best at avoiding this numerical issue. In the implementation of SR-UKF,
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√
P is considered instead of P to avoid refactorizing P at each step, and therefore, effectively

improves the computational efficiency and numerical stability of the UKF without the loss
of any accuracy.

Algorithm 1: Unscented Kalman Filter

1. Compute the sigma points:

χk−1 = [
^
xk−1,

^
xk−1 + E,

^
xk−1 − E]

where E =
√
(L + λ)Pk−1

χ−k = f(χk−1)
2. Predict the state:
^
x
−
k =

2L
∑

i=0
W(m)

i χ−i,k

3. Predict the covariance:

P−k =
2L
∑

i=0
W(c)

i [χ−i,k −
^
x
−
k ][χ−i,k −

^
x
−
k ]

T
+ Q

where


W(m)

0 = λ/(L + λ)

W(c)
0 = λ/(L + λ) + (1− α2 + β)

W(m)
i = W(c)

i = 1/2(L + λ)
4. The propagated sigma points with measurement function:
Z−k = h(χk−1)
5. The predicted measurement:
^
z
−
k =

2L
∑

i=0
W(m)

i Z−i,k
6. Compute measurement covariance:

Pzkzk =
2L
∑

i=0
W(c)

i [Z−i,k −
^
z
−
k ][Z−i,k −

^
z
−
k ]

T
+ R

7. Compute cross-covariance:

Pxkzk =
2L
∑

i=0
W(c)

i [χ−i,k-
^
x
−
k ][Z−i,k −

^
z
−
k ]

T

8. The Kalman Gain:
Kk = Pxkzk P-1

zkzk

9. Update the state:
^
xk =

^
xk + Kk(zk −

^
z
−
k )

10. Update the covariance:
Pk = P−k −KkPzkzk KT

k

4.3. Other Methods

Reference [93] proposes an orthogonal phase-locked method for frequency estimation
that is combined with gradient descent algorithm to model the system. This method tracks
the rate of change of angular frequency through Equation (16):

.
ω= −ρ2 A2 sin(2ψ) + 2ρ2 A2u(t) cos(2ψ) (16)

where {
A =

√
A2

s + A2
c

ψ = φ + tan−1( Ac
As
)

(17)

where ρ is the coefficient that the advised value is 0.5; u(t) is the input signal; Ac and As
obtain the optimal parameters through gradient descent algorithm. This orthogonal phase-
locked method can accurately track the dynamic frequency and the corresponding RoCoF
with high robustness against the measurement noise and harmonics. In reference [94], the
power system frequency and RoCoF are obtained by computing the space vector (SV) in a
reference frame that rotates at the rated angular frequency. Based on [94], reference [95] pro-
poses a digital phase-locked loop to improve the accuracy of the SV-based RoCoF estimation
algorithm, by constructing the instantaneous position of a rotating reference frame.

Reference [96] proposes a least square method based on polynomial curve fitting to
improve the robustness of RoCoF calculation. Reference [97] designs an accurate RoCoF
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estimation algorithm combining DFT and least squares method, which solves the inevitable
RoCoF estimation error caused by noise and disturbance in the real frequency measurement
through ingenious design. In addition, before using the algorithm, a median filter is
designed and applied, and the window size of the algorithm is determined by analyzing
the historical event data. Simulation results show that the accuracy of this method in
frequency estimation is far less than that of the IEEE standard (the maximum frequency
error is 0.005 Hz), and the online/offline RoCoF estimation is compared and analyzed
with a time window of 0.3 s, with high accuracy. Reference [98] proposes the generalized
Taylor weighted least squares (GTWLS) method to track the power system RoCoF. GTWLS
is an extension of the classical Taylor weighted least squares method, which deduces the
real-time RoCoF as a function of the real-time frequency deviation. To further improve the
accuracy of the RoCoF estimation, reference [98] also suggests to combine the GTWLS with
the IpDFT algorithm.

Reference [99] proposes an inflection point detector technique, which only uses the
locally measured frequency to estimate the CoI RoCoF and does not mandate PMUs at
all generator terminals. This method skillfully uses the second derivative of frequency
to change the characteristics of its symbol. The local frequency curve intersects the CoI
frequency curve around the inflection points of the former. By connecting the inflection
points, we can obtain the approximate estimated value of the CoI frequency, so that the CoI
RoCoF can be obtained, accordingly. Reference [100] proposes that the CoI frequency and
RoCoF of the power system can be calculated more accurately by PMU data from multiple
locations. Firstly, the equivalent inertia constant is obtained by the least squares method,
and then the CoI frequency is calculated according to Equation (4), and the RoCoF is the
first-time derivative of CoI frequency; the simulation results show that the error can be
effectively reduced.

Reference [34] proposes a universal and lightweight PI filter technique; through the
output RoCoP of the units, the internal angular frequency of the power supply can be
estimated only by the deviation between the bus angular frequency measured by PMU
and the rated angular frequency. Then, RoCoF can be obtained by using the first derivative
of the internal angular frequency of the power supply output by the PI filter. The control
block diagram of the PI filter is shown in Figure 5, and reference [34] suggests that the PI
filter with parameters Kp = 50, Ki = 1, and Tf = 0.0001 can effectively track the local RoCoF
for inertia estimation.
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4.4. Discussions

Generally speaking, DFT is the most common signal processing method for the exist-
ing synchrophasors utilized in power systems. However, the accuracy of real-time RoCoF
tracking with DFT can be very sensitive to the noise and sampling techniques. Improved
DFT methods, e.g., IpDFT, can improve the accuracy of the frequency and RoCoF esti-
mation. Kalman filter techniques are of great interest for the future development of the
power system RoCoF estimation due to its high accuracy and robustness against noise and
harmonics. Especially, the improved UKF technique has been proven to be feasible and
reliable for the power system state estimation. The heavy computational burden, however,
still limits the application of Kalman filter techniques on the real-time RoCoF tracking of the
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real-world power system. The RoCoF estimation combining the DFT with the Kalman filter
can further improve computational efficiency and accuracy. In addition to the above two
kinds of techniques, new methods for phase lock, e.g., orthogonal phase-locked method
and digital phase-locked loop, have also been developed to track power system frequency
and RoCoF. In addition, new methods of combining the least squares method with other
estimation techniques, such as the combination of DFT and least squares method, and
GTWLS techniques, have made good progress in RoCoF estimation, are also considered
to further improve the accuracy and robustness of the RoCoF estimation. In addition, the
inflection point detector techniques and PI filter are also new methods that have been
developed in recent years; the former skillfully uses the second derivative of frequency to
change the characteristics of its symbol and realize the accurate estimation of RoCoF, while
the latter can also realize the accurate estimation by choosing appropriate parameters.

5. Conclusions

In low-inertia power systems, the magnitude of the RoCoF can be a crucial index to
present the frequency security and stability of the system. Meanwhile, real-time RoCoF
tracking can be a key foundation for the development of advanced control and protection
techniques in the low-inertia system. This paper discusses the basic concept and estimation
techniques of power system RoCoFs. A comprehensive review on the estimation and
prediction methods of maximal RoCoF following a contingency and the real-time RoCoF
tracking techniques is provided. The review indicates that with the lack of inertia gradually
becoming a common and increasingly more severe issue for power systems around the
world, the research related to the analysis and estimation of the power system RoCoF
can be increasingly more important. Several potential research topics in related fields are
provided; the conclusions are as follows:

(i) Grid codes and standards for RoCoF: With the increasingly high penetration of IBRs
and the diversified inertia support in the future power system including both the rotational
and virtual inertia, the setting of security threshold for the RoCoF will be further studied in
order to protect the in-grid devices and avoid potential cascading failure.

(ii) AI techniques for the RoCoF prediction of the power system: The wide application
of synchrophasors that can record the dynamic frequency and corresponding RoCoF
ensures the rich source of training datum for AI techniques to assess the frequency security
and stability of power systems. According to the review, several studies have already
been concerned with predicting the maximal RoCoF following the potential contingency
of the system, and further research on AI techniques is needed in the future to solve the
problem of poor robustness and interpretability of AI techniques. We can expect further
development on this topic with the rapid development of AI techniques.

(iii) Real-time RoCoF tracking algorithm with increased accuracy and reliability: Al-
though the existing real-time RoCoF tracking algorithms embedded into the synchrophasor
perform a relatively satisfied accuracy, the errors can be induced due to reasons such as the
phase jump following a fault. These errors may result in an unexcepted fatal issue for the
power system if the obtained RoCoF is fed to the control or protection. Therefore, further
research on RoCoF estimation is needed in the future, so as to further improve the accuracy
and robustness of RoCoF estimation through the fusion of multiple algorithms.
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