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Abstract: Accurate and efficient short-term forecasting of multiple loads is of great significance to
the operation control and scheduling of integrated energy distribution systems. In order to improve
the effect of load forecasting, a mogrifier-quantum weighted memory enhancement long short-term
memory (Mogrifier-QWMELSTM) neural network forecasting model is proposed. Compared with the
conventional LSTM neural network model, the model proposed in this paper has three improvements
in model structure and model composition. First, the mogrifier is added to make the data fully
interact with each other. This addition can help enhance the correlation between the front and
rear data and improve generalization, which is the main disadvantage of LSTM neural network.
Second, the memory enhancement mechanism is added on the forget gate to realize the extraction
and recovery of forgotten information. The addition can help improve the gradient transmission
ability in the learning process of the neural network, make the neural network remain sensitive
to distant data information, and enhance the memory ability. Third, the model is composed of
quantum weighted neurons. Compared with conventional neurons, quantum weighted neurons have
significant advantages in nonlinear data processing and parallel computing, which help to improve
the accuracy of load forecasting. The simulation results show that the weighted mean accuracy of
the proposed model can reach more than 97.5% in summer and winter. Moreover, the proposed
model has good forecasting effect on seven typical days in winter, which shows that the model has
good stability.

Keywords: integrated energy distribution system; multiple load forecasting; mogrifier; memory
enhancement mechanism; quantum weighted neuron

1. Introduction

In recent years, the problem of environmental pollution and ecological destruction
has become increasingly serious. It is imperative to vigorously develop new energy and
promote the transformation and upgrading of the energy industry [1]. The integrated
energy distribution system (IEDS) takes typical energy supply networks such as distri-
bution network, gas distribution network and regional thermal network as the backbone
grid. Taking energy hubs as typical energy coupling links, it is an integrated system of
production, supply and marketing realized after coordinating and optimizing the pro-
duction, distribution, conversion and consumption of multiple energy sources. It has the
characteristics of a complex energy structure, diverse energy consumption characteristics,
intensive energy interaction and strong coupling of physical information. IEDS plays an
important role in the transformation and upgrading of the energy industry, which is of
great significance for improving the environmental quality and energy utilization rate [2].
The construction of IEDS helps to solve a series of challenges and problems faced by the
development of the energy industry.

Accurate and efficient short-term forecasting of multiple loads is of great significance
to the operation control and scheduling of IEDS [3]. Firstly, according to the results of
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multiple load forecasting, various energy sources are rationally allocated to improve the
energy utilization efficiency and the economy of IEDS operation [4]. Secondly, according to
the results of multiple load forecasting, the demand side analysis and the response plan
are made more reasonably, which can help improve the reliability of IEDS operation [5].
Finally, based on the results of multiple load forecasting, the maintenance department sets
maintenance time and makes a maintenance plan reasonably to avoid the peak period
of energy consumption and reduce the influence on the user side of the system [6]. In
recent years, various types of neural networks have been widely used in multiple load
short-term forecasting and achieved good forecasting results [7]. Luo et al. [8] constructed
a load forecasting model by combining a convolution neural network with support vector
machine. Li et al. [9] applied wavelet neural network to short-term load forecasting. They
used an improved particle swarm optimization algorithm to optimize the wavelet neural
network. Zhu et al. [10] comprehensively considered the autocorrelation of various loads in
time series and the cross-correlation in various frequency bands, and constructed a wavelet
packet decomposition-recurrent neural network forecasting model. Zhang et al. [11] pro-
posed a short-term load forecasting method based on a deep belief network and multi-task
regression, which considers energy conversion and consumption modes. Zhou et al. [12]
proposed a multiple load short-term forecasting method based on user hierarchical cluster-
ing and deep belief network. They clustered user groups into different clusters which can
help improve forecasting performance.

Long short-term memory (LSTM) neural network is an improved variant of recurrent
neural network (RNN). Compared with RNN, LSTM neural network redesigns the memory
cell on the basis of maintaining the basic structure and sets up three control gates, namely
forget gate, input gate and output gate. The three control gates are used to select the
correction parameters of the error function of memory feedback which descends with the
gradient, and to optimize the weight of the self-loop, so as to keep the dynamic change
of the weight [13]. LSTM neural network has good nonlinear data fitting ability, so it is
applied to multiple load forecasting of IEDS, which is a nonlinear time series forecasting
problem. Tian et al. [14] applied a conventional LSTM neural network to multiple load short-
term forecasting. Sun et al. [15] established a shared layer of multi-task learning through
LSTM neural network to realize multiple load forecasting. However, the conventional
LSTM neural network has poor stability and its ability to extract input features from high-
dimensional and long-order data is insufficient. Its generalization ability and forecasting
accuracy need to be improved. Tian et al. [16] added an attention mechanism and dropout
layer to the LSTM neural network to build forecasting model. These two improvements
can help to reduce training time, enhance stability and improve the forecasting effect.
Zheng et al. [17] combined Copula theory with deep bidirectional LSTM neural network to
build a forecasting model. The advantage of bidirectional learning is helpful to improve the
accuracy of load forecasting. However, Tian et al. [16] and Zheng et al. [17] did not verify
the generalization ability and stability of the proposed models. In recent years, many new
research results have been put forward about the structural improvement of LSTM neural
network. Melis et al. [18] constructed a mogrifier LSTM neural network to improve the
generalization ability of the neural network. Wu et al. [19] added the memory enhancement
mechanism to LSTM neural network to realize the extraction and recovery of forgotten
information. This addition can help improve the gradient conduction ability and memory
ability of the neural network.

Combining quantum computing theory with neural networks is considered to be an
effective way to improve the performance of neural networks, and has become a hot topic
in neural network research [20]. Compared with conventional neural networks, quantum
neural networks have more advantages in parallel computing and have stronger nonlinear
data processing capabilities. Li et al. [21] applied a quantum neural network combined with
depth self-coding network to snow-covered flashover voltage prediction. Wang et al. [22]
constructed a gas outburst risk grade prediction model based on an optimized quantum
gated-node neural network. In recent years, the quantum weighted neural network, which
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is a common form of quantum neural networks, has been applied in the field of multiple
load short-term forecasting [23].

Based on the existing research results, aiming at the defects and deficiencies of LSTM
neural network model, a forecasting model based on mogrifier-quantum weighted memory
enhancement long short-term memory neural network is proposed in this paper. The
model is improved from two aspects: model structure and model composition. In terms of
model structure, the mogrifier and memory enhancement mechanism are added to improve
the generalization ability and the input feature extraction ability of high-dimensional and
long-order data, which are disadvantages of the LSTM neural network. In terms of model
composition, the model is composed of quantum weighted neurons. The advantages of
quantum weighted neurons in nonlinear data processing and parallel computing are fully
utilized to improve the forecasting accuracy and stability. The simulation results show that
these three improvements are effective.

The structure of this paper is as follows. Section 2 introduces the theory of the
quantum weighted neuron and the model proposed in this paper, including its structure,
improvements and operation process. Section 3 includes the selection of input characteristic
variables, the setting of model parameters, the forecasting effect of the proposed model and
the comparison with other models. Section 4 shows the research conclusions of this paper.

2. Multiple Load Short-Term Forecasting Model of Based on Mogrifier-Quantum
Weighted MELSTM
2.1. Quantum Weighted Neuron

In quantum computing system, the expression of a quantum state is as follows [24]:

|φ〉 = a|0〉+ b|1〉 = [a, b]T (1)

where | 〉 is the Dirac symbol, |0〉 = [1, 0]T , |1〉 = [0, 1]T , a and b are a pair of complex
numbers, which represent the probability amplitude of quantum state, |a|2 + |b|2 = 1.

In quantum weighted neurons, transmitter transfer from cell to cell is simulated by
four steps, which are weighting, aggregation, activation and excitation [25]. Weighting is
the simulation of the binding strength between synapses in nerve cells. Aggregation is the
simulation of stimuli collected by dendrites. Activation is the simulation of the change of
membrane potential and the interaction between membrane potential and current activity
value. Excitation is the simulation of the nonlinear characteristics of neurons such as
inhibition, fatigue and threshold. The structure of quantum weighted neurons is shown in
Figure 1. Weight values and activity values are expressed by quantum states respectively,
and activation is realized by the inner product operator.
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In Figure 1, |φm〉, |ϕ〉, ∑, F and f represent the quantum state of weight value, the
quantum state of activity value, the aggregation operator, the activation function and the
excitation function, respectively, |φm〉 = [cos αm, sin αm]

T , |ϕ〉 = [cos β, sin β]T , αm is the
phase of |φm〉, and β is the phase of |ϕ〉.
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The input is x = [x1, x2, · · · , xm]
T , the output is y, the input and output expression of

a quantum weighted neuron is as follows:

y = f
(

F
(
xT |φ〉, |ϕ〉

))
= f

(
m
∑

i=1
xi〈φi| ϕ〉

)
= f

(
m
∑

i=1
xi cos(αi − β)

) (2)

where |φ〉 = [|φ1〉, |φ2〉, · · · |φm〉]T denotes the quantum state vector of weight value, |φi〉 =
[cos αi, sin αi]

T and |ϕ〉 = [cos β, sin β]T denote the quantum state of weight value and the
quantum state of activity value, respectively, αi is the phase of |φi〉, and β is the phase of
|ϕ〉. Updating αi and β can update |φi〉 and |ϕ〉.

2.2. Mogrifier-QWMELSTM Neural Network Forecasting Model

The structure of Mogrifer-QWMELSTM neural network forecasting model constructed
in this paper is shown in Figure 2. Compared with the conventional LSTM neural network,
the basic structures such as the forget gate and input gate remain unchanged. The model
is improved in two aspects: model structure and model composition. In terms of model
structure, there are two improvements. First, the mogrifier is added to make xt and ht−1
complete interaction and update before making relevant calculations. This addition can
help enhance the correlation between the front and rear data, and improve generalization
ability of neural network. Second, the memory enhancement mechanism is added on the
forget gate to realize the extraction and recovery of forgotten information. This addition can
help improve the gradient transmission ability in the learning process of the neural network,
make the neural network remain sensitive to distant data information, and enhance the
memory ability. In terms of model composition, the model is composed of quantum
weighted neurons. Compared with conventional neurons, they have significant advantages
in nonlinear data processing and parallel computing, which is helpful to enhance the
generalization ability and nonlinear approximation ability of neural network.
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The input of the model at the current moment x0
t and the output of the hidden layer at

the moment t − 1 h0
t−1 are interacted and updated by weighting and excitation.

xt = xa
t = 2σ(Q·ha−1

t−1 )× xa−1
t (3)

ht−1 = ha
t−1 = 2σ(R·xa−1

t )× ha−1
t−1 (4)
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In the formula, Q is the weight matrix connected with ht, R is the weight matrix
connected with xt, σ is the sigmoid function, and a is the number of updates of the mogrifer.

After interaction and updating, xt and ht−1 are weighted, aggregated and activated,
and then excited by sigmoid function and tanh function to obtain ft, it, c̃t, and ot.

f j
t = σ(U f ·ht−1 + W f ·xt + b f )

j

= σ(F(hT
t−1

∣∣∣φu f (j)
〉

,
∣∣∣(ϕu f )j

〉
) + F(xT

t

∣∣∣φw f (j)
〉

,
∣∣∣(ϕw f )j

〉
) + bj

f )

= σ(
s
∑

l=1
hl

t−1 cos((αu f )l j − (βu f )j) +
p
∑

n=1
xn

t cos((αw f )nj − (βw f )j) + bj
f )

(5)

ij
t = σ(Ui·ht−1 + Wi·xt + bi)

j

= σ(F(hT
t−1|φui(j)〉,

∣∣∣(ϕui)j

〉
) + F(xT

t |φwi(j)〉,
∣∣∣(ϕwi)j

〉
) + bj

i)

= σ(
s
∑

l=1
hl

t−1 cos((αui)l j − (βui)j) +
p
∑

n=1
xi

t cos((αwi)nj − (βwi)j) + bj
i)

(6)

c̃j
t = tanh(Uc̃·ht−1 + Wc̃·xt + bc̃)

j

= tanh(F(hT
t−1|φuc̃(j)〉,

∣∣∣(ϕuc̃)j

〉
) + F(xT

t |φwc̃(j)〉,
∣∣∣(ϕwc̃)j

〉
) + bj

c̃)

= tanh(
s
∑

l=1
hl

t−1 cos((αuc̃)l j − (βuc̃)j) +
p
∑

n=1
xi

t cos((αwc̃)nj − (βwc̃)j) + bj
c̃)

(7)

oj
t = σ(Uo·ht−1 + Wo·xt + bo)

j

= σ(F(hT
t−1|φuo(j)〉,

∣∣∣(ϕuo)j

〉
) + F(xT

t |φwo(j)〉,
∣∣∣(ϕwo)j

〉
) + bj

o)

= σ(
s
∑

l=1
hl

t−1 cos((αuo)l j − (βuo)j) +
p
∑

n=1
xi

t cos((αwo)nj − (βwo)j) + bj
o)

(8)

In the formula, U f , Ui, Uc̃, and Uo are the weight matrices connected with ht−1, W f , Wi,
Wc̃, and Wo are the weight matrices connected with xt, b f , bi, bc̃, and bo are bias vectors, φu f
and ϕu f denote the quantum state of weight value and the quantum state of activity value
constituting U f , respectively, αu f is the phase of φu f , and βu f is the phase of ϕu f . Similarly,
φw f , φui, φwi, φuc̃, φwc̃, φuo, and φwo denote the quantum states of weight value constituting
corresponding weight matrices, ϕw f , ϕui, ϕwi, ϕuc̃, ϕwc̃, ϕuo, and ϕwo denote the quantum
states of activity value constituting corresponding weight matrices and αw f , αui, αwi, αuc̃,
αwc̃, αuo, αwo, βw f , βui, βwi, βuc̃, βwc̃, βuo, and βwo are the phases of corresponding quantum
states. p is the number of units in the input layer, and s is the number of units in the hidden
layer. n = 1, 2, · · · , p, j = 1, 2, · · · , s and l = 1, 2, · · · , s. σ is the sigmoid excitation function
and tanh is the tanh excitation function.

The memory cell state at the current moment ct is calculated from the memory cell
state at the moment t − 1 ct−1, the forgetting information ct−1( f ), ft and c̃t. ht is calculated
from ct excited by the tanh excitation function and ot.

cj
t−1( f ) = (1− f j

t )× cj
t−1 (9)

cj
t = f j

t × cj
t−1 + Wcj

t−1( f ) + ij
t × c̃j

t (10)

hj
t = oj

t × tanh(cj
t) (11)

In the formula, W is the selection ratio of forgetting information.
The output of the hidden layer ht is weighted and excited by sigmoid excitation

function to obtain the output of the model yt.

yk
t = σ(Wyht)

k (12)
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In the formula, Wy is the weight matrix connected with ht, q is the number of units in
the output layer, k = 1, 2, · · · , q.

3. Example Simulation
3.1. Example Setting and Parameter Setting

In this paper, DeST simulation software [26–28] is used to obtain the data of the
integrated energy distribution system in northern China for one year. The IEDS is of
commercial type and runs from 8:00 to 21:00. The obtained data include electrical load,
cooling load, heating load and weather influencing factors. The electrical load and cooling
load are mainly considered in summer, and the electrical load and heating load are mainly
considered in winter. Temperature is the key factor affecting the electrical load, cooling
load and heating load in IEDS. Solar radiation is closely related to the temperature and
has a direct impact on the temperature change. Moisture content is related to human
body temperature, which has an indirect effect on the changes of three loads. Therefore,
temperature, moisture content and solar radiation are selected as three weather-influencing
factors to participate in the correlation analysis. In this paper, the grey relational analysis
method is used for correlation analysis. The results are shown in Tables 1 and 2. EL, HL
and CL represent electrical load, heating load and cooling load, respectively. T, M and R
represent temperature, moisture content and solar radiation, respectively.

Table 1. Correlation between loads and influencing factors in summer.

Load Type
Correlation Degree

EL CL T M R

EL 1.00 0.87 0.63 0.59 0.75
CL 0.87 1.00 0.65 0.63 0.78

Table 2. Correlation between loads and influencing factors in winter.

Load Type
Correlation Degree

EL HL T M R

EL 1.00 0.76 0.63 0.64 0.76
HL 0.75 1.00 0.64 0.68 0.78

From the results, there is a strong coupling among cooling load, heating load and
electrical load. The three weather factors of temperature, moisture content and solar
radiation are closely related to the electrical load, cooling load and heating load of IEDS,
which have an important impact on them.

Characteristic quantities of the input are shown in Figure 3, divided into weather data
and historical data. The weather data include three kinds of weather factors at the moments
t − 1, t and t + 1 on the forecast day. The historical data include the historical loads at the
moment t−1 on the forecast day and at the moments t − 1, t, t + 1 on the day before the
forecast day. All input data need to be normalized.

The number of units in the hidden layer is 95, the number of updates of the mogrifer
is 3, and the selection ratio of forgotten information is set to 0.2. The model is optimized
by Adam algorithm. The initial learning rate is set to 0.01 and the number of iterations
is set to 6000. The hardware configuration of this experiment is Intel Core i7-12700H
CPU. The memory is 16 G. The software platforms adopted are Python language and
Pytorch framework.
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3.2. Evaluating Indictor

The mean absolute percentage error (MAPE) and the weighted mean accuracy (WMA)
are used as evaluation indexes to evaluate the performance and forecasting effect of the
forecasting model [29]. The calculation formulas are as follows:

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ai − bi
ai

∣∣∣∣× 100% (13)

MA = 1−MAPE (14)

WMA = α1MA1 + α2MA2 + · · ·+ αkMAk (15)

where ai and bi are the actual value and forecasting value of load at the moment i, respec-
tively, n is the number of load forecasting points, αk is the weight of load of class k and
MAk is the mean accuracy of load of class k.

Considering the difference of importance of different energy sources in IEDS [30], the
weights of electrical load and cooling load are set to 0.6 and 0.4, respectively, in the joint
forecasting of electric load and cooling load in summer. The weights given to the joint
forecasting of electrical load and heating load in winter are the same as above.

3.3. Load Forecasting Process

The multiple load forecasting process based on Mogrifier-QWMELSTM is shown in
Figure 4.

3.4. Comparison of Forecasting Effects

In order to verify the effectiveness of the model proposed in this paper, typical days are
selected for forecasting and analysis. Considering the difference of load between working
days and rest days, a typical working day and a typical rest day are selected in summer
and winter, respectively. Conventional LSTM neural network forecasting model (Model 1),
mogrifer-LSTM neural network forecasting model (Model 2), memory enhancement LSTM
neural network forecasting model (Model 3) and mogrifer-memory enhancement LSTM
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neural network forecasting model (Model 4) are selected as comparison models. The above
four models are simulated together with the model proposed in this paper (Model 5).
The structure of Model 4 is the same as that of Model 5, and the neurons of Model 4 are
conventional neurons.
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Figure 4. Flow chart of load forecasting.

Figures 5 and 6 show the forecasting curves of electrical load and cooling load of five
forecasting models on working day and rest day in summer. It can be seen that the fitting
degree between the load forecasting curve of Model 5 and the true value curve is better
than that of the other four forecasting models. The forecasting errors of the five forecasting
models are large near the peak of electrical load curve and cooling load curve. The reason
for this is that the changeable weather conditions in summer lead to great fluctuations at
the peak of load curve, which increases the difficulty of load forecasting.

The forecasting effect of the five models are shown in Figure 7, Tables 3 and 4. In the
load forecasting of four typical days, the WMA of Model 2 is increased by 0.748%, 0.712%,
0.714% and 0.648%, respectively, compared with Model 1, which shows that the mogrifier
is added to make the data fully interact with each other, enhance the correlation between
the front and rear data and help to improve the model performance. The WMA of Model 3
is increased by 0.562%, 0.49%, 0.432% and 0.438%, respectively, compared with Model 1,
which shows that the memory enhancement mechanism is added to improve the gradient
transmission ability in the learning process of the neural network, enhance the memory
ability and improve the accuracy of load forecasting. The WMA of Model 4 reached more
than 97% on four typical days, and the forecasting effect of Model 4 is better than that of
Model 2 and Model 3, indicating that the mogrifier and memory enhancement mechanism
can work together to further improve the forecasting accuracy. The WMA of Model 5 is
increased by 0.722%, 0.842%, 0.626% and 0.638%, respectively, compared with Model 4,
which shows that modeling with quantum weighted neurons can improve the learning
ability of neural network, and improve the forecasting effect.
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Figure 6. Comparison of cooling load forecasting curves of five models in summer. (a) Cooling load
forecasting curves of five models on working day in summer; (b) Cooling load forecasting curves of
five models on rest day in summer.

In order to verify the stability of the model proposed in this paper, seven typical days
in winter are selected for forecasting. The results are shown in Table 5. The WMA of the
proposed model in these seven days is over 97.5%.

To sum up, adding mogrifier and memory enhancement mechanism to conventional
LSTM neural network and modeling with quantum weighted neurons can effectively
improve the performance of the neural network and improve the forecasting effect of the
model. The model proposed in this paper has a good forecasting effect in both summer
and winter, and the stability of the model is also very good.
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Table 3. Comparison of forecasting effect of five models in summer.

Working Day Rest Day

Electrical
Load

Cooling
Load

Electrical
Load

Cooling
Load

MAPE/%

Model 1 4.19 3.68 4.28 3.61
Model 2 3.45 2.92 3.52 2.97
Model 3 3.58 3.19 3.75 3.18
Model 4 3.13 2.56 3.28 2.55
Model 5 2.54 1.64 2.33 1.87

WMA/%

Model 1 96.014 95.988
Model 2 96.762 96.700
Model 3 96.576 96.478
Model 4 97.098 97.012
Model 5 97.820 97.854

Table 4. Comparison of forecasting effect of five models in winter.

Working Day Rest Day

Electrical
Load

Heating
Load

Electrical
Load

Heating
Load

MAPE/%

Model 1 3.77 3.98 3.82 3.94
Model 2 3.04 3.29 3.17 3.30
Model 3 3.33 3.56 3.37 3.52
Model 4 2.76 3.05 2.77 3.00
Model 5 2.01 2.61 2.04 2.50

WMA/%

Model 1 96.146 96.132
Model 2 96.860 96.778
Model 3 96.578 96.570
Model 4 97.124 97.138
Model 5 97.750 97.776
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Table 5. Forecasting effect of the model in seven typical days.

MAPE/%

WMA/%Electrical
Load

Heating
Load

Day 1 2.37 2.38 97.626
Day 2 2.19 2.26 97.782
Day 3 2.06 2.27 97.856
Day 4 2.22 2.29 97.752
Day 5 2.01 2.61 97.750
Day 6 2.04 2.50 97.776
Day 7 2.37 2.47 97.590

4. Conclusions

IEDS plays an important role in the transformation and upgrading of the energy
industry, which is of great significance to improve the environmental quality and energy
utilization rate. Accurate and efficient short-term forecasting of multiple loads is of great
significance to the operation control and scheduling of IEDS and can provide a reference
for the dispatching department and maintenance department. In this paper, a multiple
load short-term forecasting model of IEDS based on Mogrifier-QWMELSTM is proposed.
In order to verify the forecasting effect of the model, a large number of simulation exper-
iments are carried out. The simulation results show that the proposed model has good
forecasting accuracy and stability. Compared with the conventional LSTM neural network
forecasting model, the model has made the following improvements in model structure
and model composition:

(1) The mogrifier is added to make the data fully interact with each other. This addition
can help enhance the correlation between the front and rear data and improve the
model’s generalization ability, which is the disadvantage of LSTM neural network.

(2) The memory enhancement mechanism is added on the forget gate to realize the
extraction and recovery of forgotten information. This addition can help improve the
gradient transmission ability in the learning process of the neural network, make the
neural network remain sensitive to distant data information and enhance the model’s
memory ability.

(3) The model is composed of quantum weighted neurons. Compared with conven-
tional neurons, quantum weighted neurons have significant advantages in nonlinear
data processing and parallel computing, which can help improve the accuracy of
load forecasting.

In the future, the structure of IEDS will be more complex and energy access will
be more diverse. Therefore, the requirement of forecasting accuracy will become higher.
In the following research, the applicability of the forecasting model will be considered
emphatically, and the forecasting model will be applied to various types of IEDS load
forecasting for verification and analysis. At the same time, the model structure will continue
to be optimized to improve the load forecasting accuracy.

Author Contributions: Writing—original draft preparation, P.S.; writing—review and editing, Z.Z.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China, grant num-
ber 52077108.

Data Availability Statement: Not applicable.

Acknowledgments: The work was supported by National Natural Science Foundation of China (52077108).

Conflicts of Interest: The authors declare no conflict of interest.



Energies 2023, 16, 3697 12 of 13

References
1. Hasan, M.M.; Wu, C. Estimating energy-related CO2 emission growth in Bangladesh: The LMDI decomposition method approach.

Energy Strategy Rev. 2020, 32, 100565. [CrossRef]
2. Tan, Z.; De, G.; Li, M.; Lin, H.; Yang, S.; Huang, L.; Tan, Q. Combined electricity-heat-cooling-gas load forecasting model for

integrated energy system based on multi-task learning and least square support vector machine. J. Clean. Prod. 2019, 248, 119252.
[CrossRef]

3. Wang, X.; Wang, S.; Zhao, Q.; Wang, S.; Fu, L. A multi-energy load prediction model based on deep multi-task learning and
ensemble approach for regional integrated energy systems. Int. J. Electr. Power Energy Syst. 2021, 126, 106583.

4. Wu, C.; Yao, J.; Xue, G.; Wang, J.; Wu, Y.; He, K. Load forecasting of integrated energy system based on MMOE multi-task learning
and LSTM. Electr. Power Autom. Eq. 2022, 42, 33–39.

5. Talaat, M.; Farahat, M.A.; Mansour, N.; Hatata, A.Y. Load forecasting based on grasshopper optimization and a multilayer
feed-forward neural network using regressive approach. Energy 2020, 196, 117087. [CrossRef]

6. Zhang, X. Research on Multi-Load Short-Term Forecasting of Regional Integrated Energy System. Master’s Thesis, North China
Electric Power University, Beijing, China, 2022.

7. Zhu, J.; Dong, H.; Li, S.; Chen, Z.; Luo, T. Review of Data-driven Load Forecasting for Integrated Energy System. Proc. CSEE 2021,
41, 7905–7924.

8. Luo, F.; Zhang, X.; Yang, X.; Yao, Z.; Zhu, L.; Qian, M. Load analysis and prediction of integrated energy distribution system
based on deep learning. High Volt. Eng. 2021, 47, 23–32.

9. Li, S.; Qi, J.; Bai, X.; Ge, L.; Li, T. A short-term load prediction of integrated energy system based on IPSO-WNN. Electr. Meas.
Instrum. 2020, 57, 103–109.

10. Zhu, L.; Wang, X.; Ma, J.; Chen, Q.; Qi, X. Short-term load forecast of integrated energy system based on wavelet packet
decomposition and recurrent neural network. Electr. Power Constr. 2020, 41, 131–138.

11. Zhang, L.; Shi, J.; Wang, L.; Xu, C. Electricity, Heat, and Gas Load Forecasting Based on Deep Multitask Learning in Industrial-Park
Integrated Energy System. Entropy 2020, 22, 1355. [CrossRef]

12. Zhou, B.; Meng, Y.; Huang, W.; Wang, H.; Deng, L.; Huang, S.; Wei, J. Multi-energy net load forecasting for integrated local energy
systems with heterogeneous prosumers. Int. J. Electr. Power Energy Syst. 2021, 126, 106542. [CrossRef]

13. Wang, S.; Takyi-Aninakwa, P.; Jin, S.; Yu, C.; Fernandez, C.; Stroe, D. An improved feedforward-long short-term memory modeling
method for the whole-life-cycle state of charge prediction of lithium-ion batteries considering current-voltage-temperature
variation. Energy 2022, 254, 124224. [CrossRef]

14. Tian, H.; Han, A.; Yu, L.; Zhang, Z. Research on multi-load short-term forecasting model of regional integrated energy system
based on GRA-LSTM neural network. Guangdong Electr. Power 2020, 33, 44–51.

15. Sun, Q.; Wang, X.; Zhang, Y.; Zhang, F.; Zhang, P.; Gao, W. Multiple load prediction of integrated energy system based on long
short-term memory and multi-task learning. Autom. Electr. Power Syst. 2021, 45, 63–70.

16. Tian, H.; Zhang, Z.; Yu, D. Research on multi-load short-term forecasting of regional integrated energy system based on improved
LSTM. Proc. CSU-EPSA 2021, 33, 130–137.

17. Zheng, J.; Zhang, L.; Chen, J.; Wu, G.; Ni, S.; Hu, Z.; Weng, C.; Chen, Z. Multiple-Load Forecasting for Integrated Energy System
Based on Copula-DBiLSTM. Energies 2021, 14, 2188. [CrossRef]

18. Melis, G.; Kocishy, T.; Blunsom, P. Mogrifier LSTM. In Proceedings of the International Conference on Learning Representations,
Addis Ababa, Ethiopia, 30 April 2020.

19. Wu, M.; Hou, L.; Wang, C. Improved Mechanism of Prediction-Oriented Long Short-Term Memory Neural Network. Comput.
Eng. Appl. 2021, 57, 109–115.

20. Ding, L. Research on Quantum Neural Network Model and Its Algorithm. Master’s Thesis, Northwest University, Xi’an,
China, 2009.

21. Li, Y.; Teng, Y.; Yuan, S.; Leng, O. Study on snow covered insulator flashover characteristics and its improved QNN prediction
model. Power Syst. Technol. 2018, 42, 2725–2732.

22. Wang, Y.; Sun, F.; Fu, H.; Xu, Y. Prediction of Coal and Gas Outburst Based on Optimized Quantum Gated Neural Networks.
Inf. Contrl. 2020, 49, 249–256.

23. Wang, S.; Zhang, Z. Short-Term Multiple Load Forecasting Model of Regional Integrated Energy System Based on QWGRU-MTL.
Energies 2021, 14, 6555. [CrossRef]

24. Zhu, Y. Research on Quantum Neural Network Model of Structure and Algorithm. Master’s Thesis, Northeast University,
Shenyang, China, 2012.

25. Xiang, W.; Li, F.; Wang, J.; Tang, B. Quantum Weighted Gated Recurrent Unit Neural Network and Its Application in Performance
Degradation Trend Prediction of Rotating Machinery. Neurocomputing 2018, 313, 85–95. [CrossRef]

26. Sun, F.; Li, N.; Chen, S.; Xie, Y. Comparison Analysis Between Simulation and Practice Measurement of Energy Consumption
Based on DEST-H Software in Urban Residence. Power Gener. Technol. 2007, 118, 43–46.

27. Dong, X. Research on Multi-Featured Heating Load Prediction Based on LSTM Neural Network. Master’s Thesis, North China
Electric Power University, Beijing, China, 2022.

28. Zhu, S.; Yu, X. Economic Benefits of Energy-saving Reconstruction of Existing Farm Houses in Tianjin Based on DeST. J. BEE 2022,
50, 121–125+143.

https://doi.org/10.1016/j.esr.2020.100565
https://doi.org/10.1016/j.jclepro.2019.119252
https://doi.org/10.1016/j.energy.2020.117087
https://doi.org/10.3390/e22121355
https://doi.org/10.1016/j.ijepes.2020.106542
https://doi.org/10.1016/j.energy.2022.124224
https://doi.org/10.3390/en14082188
https://doi.org/10.3390/en14206555
https://doi.org/10.1016/j.neucom.2018.06.012


Energies 2023, 16, 3697 13 of 13

29. Wang, S.; Ren, P.; Takyi-Aninakwa, P.; Jin, S.; Fernandez, C. A Critical Review of Improved Deep Convolutional Neural Network
for Multi-Timescale State Prediction of Lithium-Ion Batteries. Energies 2022, 15, 5053. [CrossRef]

30. Shi, J.; Tan, T.; Guo, J.; Liu, Y.; Zhang, J. Multi-task learning based on deep architecture for various types of load forecasting in
regional energy system integration. Power Syst. Technol. 2018, 42, 698–707.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/en15145053

	Introduction 
	Multiple Load Short-Term Forecasting Model of Based on Mogrifier-Quantum Weighted MELSTM 
	Quantum Weighted Neuron 
	Mogrifier-QWMELSTM Neural Network Forecasting Model 

	Example Simulation 
	Example Setting and Parameter Setting 
	Evaluating Indictor 
	Load Forecasting Process 
	Comparison of Forecasting Effects 

	Conclusions 
	References

