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Abstract: The volatility and intermittency of wind energy result in highly unpredictable wind power
output, which poses challenges to the stability of the intact power system when integrating large-scale
wind power. The accuracy of wind power prediction is critical for maximizing the utilization of wind
energy, improving the quality of power supply, and maintaining the stable operation of the power
grid. To address this challenge, this paper proposes a novel hybrid forecasting model, referred to
as Hybrid WT–PSO–NARMAX, which combines wavelet transform, randomness operator-based
particle swarm optimization (ROPSO), and non-linear autoregressive moving average with external
inputs (NARMAX). The model is specifically designed for power generation forecasting in wind
energy systems, and it incorporates the interactions between the wind system’s supervisory control
and data acquisition’s (SCADA) actual power record and numerical weather prediction (NWP)
meteorological data for one year. In the proposed model, wavelet transform is utilized to significantly
improve the quality of the chaotic meteorological and SCADA data. The NARMAX techniques are
used to map the non-linear relationship between the NWP meteorological variables and SCADA
wind power. ROPSO is then employed to optimize the parameters of NARMAX to achieve higher
forecasting accuracy. The performance of the proposed model is compared with other forecasting
strategies, and it outperforms in terms of forecasting accuracy improvement. Additionally, the
proposed Prediction Error-Based Power Forecasting (PEBF) approach is introduced, which retrains
the model to update the results whenever the difference between forecasted and actual wind powers
exceeds a certain limit. The efficiency of the developed scheme is evaluated through a real case study
involving a 180 MW grid-connected wind energy system located in Shenyang, China. The proposed
model’s forecasting accuracy is evaluated using various assessment metrics, including mean absolute
error (MAE) and root mean square error (RMSE), with the average values of MAE and RMSE being
0.27% and 0.30%, respectively. The simulation and numerical results demonstrated that the proposed
model accurately predicts wind output power.

Keywords: wind power generation; short-term forecasting; artificial neural network (ANN); power
forecasting; Shenyang offshore wind power

1. Introduction

Since renewable energy sources like solar and wind are pure and sustainable energy
sources, they are becoming more crucial because of the continued depletion of fossil fuels
over the past few decades [1]. However, it is well known that the stochastic nature of wind
power generation creates significant uncertainties, challenges, and difficulties in electrical
power networks. The quality and stability of the power system may be compromised by
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variations in wind power, and it may also have an impact on market participants who must
bear financial losses if the contracted quantity of energy cannot be produced [2]. Hence,
numerous tools are required due to a massive want for techniques that can precisely predict
wind power production and diminish unwanted impacts of integrating wind energy into an
electric power grid. A large number of techniques have been discussed and elaborated on
in the literature for wind power forecasting [3]. Many of the methods have been discussed
in the literature, and an artificial intelligence-based method is one of them, such as a neural
network utilized for forecasting due to high precision in performance. The ANN technique
is suitable for the prediction of wind power, and some researchers [4,5] have also proven
that it has better forecasting precision.

A recurrent neural network-based method was proposed in [6] for predicting wind
power, emphasizing the forecasted system performance; however, the dependency is based
on choosing the proper input features, which is a critical choice. Correspondingly, a bound-
less feature selection is suggested in the study to consider the input feature and use power
data and wind speed from the national renewable energy laboratory (NREL). In [7], the
time resolution affects the predicted precision with an adaptive time resolution technique
that was suggested for the revival of the errors, so that errors in wind power prediction
systems using Artificial Neural Networks (ANNs) can be exterminated. The input data was
prepared with the perspectives of associating the Harmonic Research Time Series (HANTS),
Discrete Wavelet Transform (DWT), and improvised K-means techniques [8].

The primary research content for short-term prediction typically consists of a wind
power forecast for the next 72 h. Physical, statistical, and hybrid prediction techniques
are the three categories into which prediction technology is divided [9]. Ref. [10] presents
a sequence-to-sequence learning-based univariate short-time series technique. While
statistical methods excel at short-term prediction, physical methods have exceptional
advantages in long-term forecasting [11]. Physical methods must consider the particular
geographic surroundings of the wind farm (including data on the terrain, geomorphology,
and roughness) [12]. Firstly, numerical simulations are used to forecast future weather
conditions using meteorological factors such as air pressure, speed and direction of the
wind, temperature obtained through numerical-based weather prediction, and a large
amount of meteorological data. The appropriate wind power can be acquired based on
the wind power characteristic curve of a wind farm [13,14]. The study in [15] successfully
predicted the wind speed 36 h ahead by using the regional data based on numerical
prediction of the weather and then transforming the predicted results into power values
by using the wind turbine’s output power characteristic curve. In a study referenced
in [16], a wind power forecasting model was developed using physical techniques that
indirectly estimated wind power by predicting wind speed under predetermined boundary
conditions. The model then obtained a spatial correlation matrix by examining the internal
correlation between the output power of the wind turbine and wind speed. Finally, using
the wind speed power curve, the wind speed was fitted to the corresponding power.
Although this physical method has a longer prediction period and requires a large amount
of historical data to conduct multiple calculations, the prediction error is still significant,
making it less common in practice.

First, the calculation method is based on a statistical analysis of historical data on
wind speed, output power, and wind farms, and the return is determined by the internal
road [17], counting Sun and Moon, Markov, Bayes, Pole Learning Machine, Neural Network
Autoregressive, and SVM [18,19].

In [20], the authors developed a set of polynomial autoregressive models to forecast
wind speed one day in advance, and the findings demonstrated that the PAR model
outperformed non-linear models such as artificial neural networks and adaptive neuro-
fuzzy reasoning systems. In [21], the authors combined convolutional neural networks and
Wavelet Transform to forecast the probability distribution of wind energy and successfully
taught the data on wind power’s uncertainty through their experiments. Additionally, a
novel hybrid logistic regression and deep learning method were proposed in [22] for the
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classification of hyperspectral data, which demonstrated outstanding performance. Hybrid
models are being studied more frequently because single models often lack sufficient
generalization capacity or stable performance in predicting wind generation.

Hybrid models combine various prediction models and algorithms, utilizing their
strengths while overcoming their weaknesses to produce findings that are more accu-
rate [23]. For instance, to find similar wind speed days with the same trends as the
predicted days, a hybrid clustering technique [24] was used. The data from these similar
days were then used to train a neural network optimized by Particle Swarm Optimization
(PSO) to produce accurate results. Another illustration is a whale algorithm model [25]
that was created to improve the Extreme Learning Machine for the aging assessment of
Insulated Gate Bipolar Transistor modules to assess the stability of the device’s operation.
Support Vector Machine (SVM) and Gravitational Search Algorithm (GSA) were combined
in [26] to create a classifier that was more accurate, and chaotic search was used to improve
the GSA’s feature subsets. Additionally, a least-square Support Vector Machine-based
hybrid prediction method was put forth in [27]. The optimization of internal parameters
was achieved through the Cloud Evolution Algorithm. The wind power data was pre-
processed using a two-way comparison for increasing the prediction accuracy. Because of
their straightforward structure, strong generalization capabilities, and simplicity in obtain-
ing the global optimum, neural networks are extensively used in prediction models [28].
However, for accurate NN predictions, parameters of non-linear models must be optimized
during training, and this can be achieved by utilizing intelligent optimization algorithms.

In [29], a hybrid optimization approach was demonstrated using the backward opti-
mization bat algorithm to optimize the support vector machine (SVM) for predicting wind
speed and output power. Simulation results from actual data sets showed that the proposed
hybrid model was more effective than using a single SVM. Another study [30] utilized a
PSO-optimized SVM model to forecast the total power generation of a microgrid system
one day in advance. Although neural network models have been proposed, training their
non-linear parameters remains a significant challenge. Meta-heuristic algorithms (MAs)
have emerged as powerful optimization tools to overcome this issue. Genetic Algorithm
(GA), Particle Swarm Optimization (PSO), Gray Wolf Optimizer, Biogeography-Based
Optimization (BBO), Monarch Butterfly Optimization (MBO), and Whale Optimization
Problem (WOA) have been used to optimize the nonlinear parameters of neural networks to
approximate the nonlinear number. However, when the number of hidden nodes increases,
although the advanced MA, multi-learning parameters are also a challenge. Common
optimization algorithms, such as PSO, CSO, GWO, and WOA, suffer from local minima
and slow convergence issues. Recently, the randomness operator-based particle swarm
optimization (ROPSO) algorithm was proposed to overcome these issues. Therefore, this
paper proposes a novel ROPSO-optimized nonlinear autoregressive moving average with
external inputs (NARMAX) model to solve the wind forecasting problem.

To address the challenges of intermittent and fluctuating wind power in forecasting,
researchers have proposed the initial signal sequence by dividing it into several compo-
nents with distinct prediction guidelines. This approach helps to mitigate interference in
different time slots resulting in improvement in the nearly accurate prediction [31]. Various
time domain methods, such as empirical mode decomposition, Fourier series analysis,
and Wavelet decomposition (WD), have been employed for this purpose [32]. In [33],
researchers utilized an artificial bee colony algorithm to optimize the support vector ma-
chine (SVM) and applied empirical mode decomposition to minimize errors resulting
from significant fluctuations in power output. They developed distinct prediction models
for each component and obtained the predicted wind output power. Another study [34]
proposed a hybrid model using a combination of empirical mode decomposition and
backpropagation to forecast ultra-short-term wind speeds. Additionally, in [35], wavelet
denoising was used to decrease the wind speed uncertainty caused by data noise. In theory,
the weather is due to the rate of change of wind speed correlates as the fitness function of
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wind speed. The results show that the number of wind speeds can be refined to damage
the difference of random noise and the predictability of sublime numbers.

In this study, a new hybrid model is introduced that utilizes a randomness operator-
based particle swarm optimization (ROPSO) algorithm to optimize a neural network-based
NARMAX model. Moreover, the Wavelet Decomposition (WD) technique is utilized to
preprocess the initial wind power data, address the aforementioned challenges, and attain
more precise wind power prediction outcomes. The ROPSO algorithm is advantageous in
that it can avoid local optimum locations early on and detect the global optimal solution,
which can enhance optimization accuracy and decrease algorithm convergence time. WD
decomposes the initial data into more consistent and steady signals, which can enhance the
predictability of the data. The experimental results on actual wind farm data demonstrate
that the proposed hybrid model possesses better predictive capability in comparison with
other existing models. The main contributions of this research include:

1. The fundamental objective of this study is to offer a new and resilient hybrid strategy
for wind power forecasting that takes into account the statistical data inputs, such as
historical wind power records related to SCADA, and physical data inputs, including
historical and future NWP meteorological variables such as wind direction, wind
speed, temperature, humidity, and pressure;

2. This paper presents a power level-based prediction scheme designed to address the
errors generated by time-based forecasting methods. The approach being described
involves using an adaptive neural network for weather forecasting. This allows the
network to update its parameters based on current meteorological conditions, which
can improve the accuracy of its predictions. The model is trained on historical data
but its parameters are continuously adjusted based on new input data. When the
error between predicted and actual values exceeds a set limit, the algorithm updates
the model’s parameters to improve accuracy. This approach is particularly useful
for weather forecasting because weather patterns can change rapidly, and current
conditions play an important role in predicting future weather;

3. To demonstrate the effectiveness of the proposed prediction scheme, a case study was
conducted on a 180 MW wind energy system located in Shenyang city, Shandong
Province, China.

The remaining paper is ordered as follows: Section 1. includes the problem statement,
data collection WT, NARMAX, ROPSO, implementations of the proposed study and the
simulation and numerical results. Section 2 explains the conclusion and future work.

1.1. Problem Statement

For the power prediction of wind energy system time-based predictions schemes,
RNN [17,18], CNN [19–21], RBFNN [22–24], and GRNN [21,22] are presented in the previ-
ous literature. The issue with the forecast scheme based on timing is that the forecast model
is not able to fulfill the forecast error in order to change in climate between the starting
time and ending time of the forecast boundary and overcome or manipulate this problem
power level-based prediction scheme for wind energy system proposed in this study.

Whenever any discrepancy between predicted and authentic values exceeds a specific
limit, the proposed scheme will revise its dynamics based on the prevailing climate change
in this power forecasting scheme. This will make the forecasting model more adaptable
to the prevailing conditions of the weather. Because the wind power plant is a real-time
system, variation in power output can appear immediately in meteorological parameters.

1.2. Data Collection and Normalization

Data collection
The wind power generation data of this survey is from a wind power generation

facility in Shenyang City, Shandong Province, China, and it was reported every 5 min,
covering 94,270 samples in the 12-month period from 15:05:00 on 9 April 2019 to 23:55:00
on 4 March 2020.
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Two datasets were created to develop wind power forecasting models. Dataset 1
contained 86,206 instances and was utilized for model development, while dataset 2,
consisting of 8064 instances, served as the four weeks’ test data, randomly selected to
represent the four seasons in a year: the first week of November (fall), third week of May
(spring), third week of August (summer), and fourth week of February (winter).

Data normalization
The data collected in this study contains noise arising from various sources, including

maintenance problems, sensor malfunction, and environmental factors such as dirt and
ice. To ensure precise forecasting, it is necessary to eliminate the effects of this noise by
applying a filtering technique. The collected data is experimental data from the accrual
operation data of the Shenyang power plant in China; thus, the chosen data consist of
meteorological variables such as wind speed, humidity, temperature, wind direction, and
power output value. Five parameters were used as inputs and power was used as an output
parameter. The sample training and convergence speed of the model were accelerated and
the prediction outcomes were achieved in less time to create the proposed model, which
can adapt to the rules of wind power output and can be changed and deduct the impacts of
abnormal data on prediction outcomes. The input data are managed to more simple forms
before the WT decomposition and NARMAX training.

The data, which includes output of wind power, speed, and direction of wind, are all
normalized by the map min: max: function.

pnor,i =
pi − pmin

pmax − pmin
(1)

where pnor,i is the normalized output power value, pi is the output power value, and pmax
and pmin are the maximum and minimum values of the wind power, respectively.

1.3. Proposed Architecture for WT–ROPSO–NARMAX
1.3.1. Wavelet Transforms (WTs)

The Wavelet Transform (WT) technique is utilized to putrefy the meteorological vari-
able series from Numerical Weather Prediction (NWP) and the Photovoltaic (PV) power
series from the SCADA system into respective subseries. This subseries is found to have
superior performance characteristics as compared to the original NWP meteorological vari-
ables series and SCADA solar power series, enabling more accurate PV power forecasting.
The enhanced performance quality of the subseries is attributed to the filtering capability of
the WT technique. Continuous wavelets transform (CWT) and Discrete Wavelet Transform
(DWT) are the two types of WTs. With regard to a mother wavelet (x), the CWT W(a, b) of a
signal f (x) is defined as follows:

W(a, b) =
1
√a

∫ +∞

−∞
f (x)∅

(
x− b

a

)
dx (2)

where the scaling parameter ‘a’ manages the distribution of the wavelet and the translation
parameter b is responsible for the central position of the wavelet. The DWT W(m, n) is as
accurate as the CWT but more efficient and given by:

W(m, n) = 2−
m
2

T−1

∑
t=0

f (t)ϕ(
t− n2m

2m ) (3)

where T represents the dimension of the signal, f (t). The scaling and translation parameters
are defined in terms of the integer parameters, m and n (i.e., a = 2m, b = n2m), and t is the
discrete time sampling index.

Mallat [36] developed an efficient DWT algorithm that relies on four fundamental
filters: the decomposition low-pass, reconstruction low-pass, decomposition high-pass, and
reconstruction high-pass filters. This algorithm allows for the quick decomposition and



Energies 2023, 16, 3295 6 of 15

reconstruction of signals. The multiresolution process using Mallat’s algorithm involves
obtaining “approximations” and “details” from the signal by performing successive de-
compositions. This results in a hierarchical decomposition procedure with multiple stages,
where the original signal is broken down into smaller resolution components.

The mother wavelet ψ(t) used in this study is a Daubechies wavelet of order 4, also
known as Db4. This particular wavelet is chosen because it strikes a good balance between
smoothness and wavelength, making it well-suited for short-term solar power prediction.
Similar wavelets have been employed in prior research for tasks such as load demand
forecasting [37,38] and electricity price forecasting [39]. Additionally, this study employs
three levels of decomposition, as conducted in Ref. [39], to systematically and reasonably
capture the NWP meteorological variables and SCADA PV power series.

1.3.2. Randomness Operator-based Particle Swarm Optimization (ROPSO)

The major drawbacks of PSO are trapping into local minima and slow rate of conver-
gence. The trapping into local minima is more dangerous when it comes to the optimization
of neural network models. This study presents a randomness operator-based particle
swarm optimization (ROPSO) that can handle the slow convergence and local optima of
PSO. There is one of the primary concepts too, which relocates the swarm particles in each
and every search direction, such as particles that were previously restricted to local optima
being dispersed throughout the search gap.

The swarm particle reposition strategy suggested here becomes different from the
earlier variants of PSO elaborated in the literature because randomization is applied on
each and every search dimension of each particle autonomously.

The proposed swarm particle reposition strategy presented in this paper differs from
previous PSO variants described in the literature because it applies randomization inde-
pendently to each search dimension of each particle. This helps address optimization flaws
that are relevant to neural network training. In a comparative performance evaluation
presented in [35], ROPSO was compared with PSO and other algorithms. In this study,
ROPSO is applied to train a neural network based on the NARMAX model. The ROPSO
is initialized with the following basic parameters: a total population of 50, an inertial
parameter of ω = 0.75, acceleration constants of c_1 = c_2 = 2.15, and a maximum of 50
iterations. These parameters are used for NN training with ROPSO. The detailed process of
the proposed ROPSO–NARMAX modeling is presented in Figure 1.
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Figure 1. ROPSO-based NARMAX model.

1.3.3. NARMAX Model for Nonlinear System

The non-linear autoregressive moving average with external inputs (NARMAX)
method delivers a generalized structure for the mathematical modeling of a non-linear
system. The NARMAX method utilizes the prevailing and previous input, and the previous
output and error commonly express the association between the input and the output of a
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non-linear, which is dynamic system. The general equation of NARMAX model is given as:

yt = F(yt−1, yt−2, yt−3, . . . ., ut, ut−1, ut−2, ut−3, . . . ..) + εt (4)

There are numerous attributes of the behavior of the wind energy system which are
elaborated on in the NARMAX model, and this is used for the behavior of the wind energy
system which has received the input of prevailing time and the output of the system as well;
yt is the output of the system and ut is the system input at prevailing time ‘t’. εt is the error
between the prevailing forecast outputs because the wind energy system is a genuinely
non-linear time system; the behavior of the system is well-predicted by the NARMAX.
The following section shows that the neural network consisting of the identification of the
NARMAX model for the wind power system is considered in this study.

1.3.4. Neural Network-Based NARMAX Model for Wind Energy System

For the modelling of the wind plant, the NARMAX model is developed on the bases of
the wind energy system’s measured parameters. The proposed neural network NARMAX
model on the bases of the measured parameters of the wind power plant can be defined as:

y(t) = F(ws, wd, T, y(t− 1)) (5)

where F is the mapping between wind speed, wind direction, and temperature. The corre-
sponding NN model based upon the above inputs can be described by uniform expression:

y(t) =
n
∑

j−1
vo

j σ(
l

∑
j=1

vijθj)

θj = 1, 2, 3 . . . . . . n
(6)

where
θ1(t) = ws(t)
θ2(t) = wd(t)
θ3(t) = T(t)

θ4(t) = y(t− 1)

where vj and vij are the weights of input and hidden layers and θi is the input of neural
network, where i = 1,2 . . . , n. The activation function for the parameters ws, wd, and T are
as follows:

sws(x) =
1

1 + e−ws
(7)

swd(x) =
1

1 + e−wd
(8)

sT(x) =
1

1 + e−T (9)

The training process of the proposed method is given as

Jmin =
[
y(t)− y/(t)

][
y(t)− y/(t)

]T
(10)

where y(t) is the output of the system and y/(t) is the output of the measured data. J is the
Jacobean matrix used to train the LM method. The model will retrain itself whenever the
difference between the predicted and measure value is greater than ten percent, i.e.,

|y(t− 1)− y(t)| > 10% (11)

The neural network based NARMAX model is presented in Figure 2. In this work, the
ROPSO optimization approach is used to optimize the parameters of the NARMAX model.
The NARMAX parameters are converted to ROPSO parameters and the objective function
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is given in (10) and is employed as the ROPSO cost function. The goal of the proposed
technique is to attain a minimal cost function value. This procedure is repeated until the
predicted error achieves the required level. For a particular configuration of the NARMAX
structure, the ROPSO optimization method offers the benefit of computational simplicity.

Figure 2. NN-based NARMAX Model.

1.3.5. Proposed Hybrid Forecasting Model

The explanation of dataset decomposition for NARMAX model is illustrated in
Figure 3. The proposed wind energy forecasting technique is implemented using a step-by-
step algorithm, as shown in Figure 4. The algorithm uses the wavelet approach for signal
decomposition and reconstruction, with the DWT decomposing the preprocessed series
into multiple wavelet coefficient signals and one approximation signal.

As illustrated in Figure 4, the preprocessed series is decomposed into six subseries
(wind speed, wind direction, temperature, cloud cover, humidity, and pressure) using the
DWT. This subseries is then utilized to train the ROPSO–NARMAX model by employing
regional NWP meteorological data. This trained NARMAX model can forecast the wind
system power output. In the final step, the decomposed future NWP meteorological
variables subseries is applied to the trained ROPSO–NARMAX model to forecast the future
output power subseries of the wind system. The predicted wind power series of the PV
system is then produced by recombining the future power subseries signals.

Figure 3. Explanation of dataset for NARMAX model for wind prediction.
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Figure 4. Flow chart of the proposed prediction scheme.

1.4. Wind Power Forecasting Accuracy Measures

The accuracy of the wind power prediction is evaluated by the mean absolute er-
ror (MAE), and the root mean square error (RMSE) is used. The magnitude of error is
conceptualized with the help of data units obtained by MAE. The MAE is expressed
as follows:

MAE =
1
N

N

∑
i=1
|Ai − fi| (12)

where N is the number of samples, Ai is the actual data, and fi is the predicted data. RMSE
is a commonly used measured of accuracy of time series values. It shows the scattering
level produced by the model. The RMSE is expressed as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(Ai − fi)ˆ2 (13)
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N is the number of samples, Ai is the actual data, and fi is the predicted data. De-
creased values of MAE, RMSE, and WMAE indicated that the proposed model has good
forecasting accuracy.

1.5. Case Study and Results

For the evaluation of the suggested prediction project, the forecasting model was
applied and used on the Shenyang wind power plant in China, which has a single wind
turbine with a capacity of 3000 KW. The power time series and wind speed of Shenyang
wind farms were taken from 1 January 2020 to 31 December 2020. Figures 5–8 show the
comparison of the genuine wind turbine output power with those of the projected output
power for wind turbine system for each and every four seasons. The proposed prediction
model will retain itself to revive projection standards every time the error between the projected
and the genuine power crosses ±10%, carrying out the process of the proposed method.

It is shown in the outcomes, which are elaborated by the suggested scheme adjacent
to the line of authentic wind output power, that these all-simulation outcomes have shown
that the forecast of the Shenyang wind power plant output nearly corresponds with the
authentic recorded wind power, which specifies the effective performance of the elaborated
wind power predictor model that has been consummated in the paper.

Moreover, the comparison of the proposed machine learning model is presented in
Tables 1 and 2 with respect to different performance metrics. The proposed model is
compared with the machine learning methods and other methods that do not use machine
learning models.

Figure 5. Actual and forecasted output power of wind plant for a winter day.

Figure 6. Actual and forecasted output power of wind plant for a spring day.
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Figure 7. Actual and forecasted output power of wind plant for a summer day.

Figure 8. Actual and Forecasted output power of wind plant for a fall day.

Table 1. Comparison of proposed model for wind prediction with other methods with rest to MAE.

Forecasting
Method Winter Spring Summer Fall

Proposed Model 0.619 0.713 0.912 0.652
BPNN 0.8567 1.232 1.458 1.0784
RNN 0.901 1.374 1.611 1.210

Persistence 3.162 4.023 2.581 3.798
Markov chain 4.227 4.417 5.192 4.767

Table 2. Comparison of proposed model for wind prediction with other methods with rest to RMSE.

Forecasting
Method Winter Spring Summer Fall

Proposed Model 1.563 2.101 2.576 1.987
RBF-NN 2.567 3.098 3.540 2.0784
BP-NN 3.061 3.413 3.781 2.910

Persistence 5.249 5.740 6.113 5.917
Markov chain 5.431 6.192 6.461 6.106

Table 1 displays the accuracy of the proposed wind power forecasting scheme using
the MAE metric. The results indicate that the proposed method exhibits lower error values
than other existing prediction methods, as shown in the table.

Similarly, Table 2 provides a comparison of the proposed approach and other methods
based on the RMSE metric. Both tables demonstrate that the proposed scheme outperforms
other methods in terms of prediction accuracy. The small values of MAE and RMSE
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obtained in the study confirm the effectiveness of the proposed method for wind power
forecasting. Therefore, the results support the significance of the proposed approach for
the accurate forecasting of wind power.

2. Conclusions and Future Work

In this paper, a new approach for short-term wind power prediction is proposed
that combines NARMAX, ROPSO, and WT. The proposed strategy is demonstrated to be
effective in predicting wind power output and represents a novel approach to renewable
energy forecasting. The use of ROPSO in the training process of NN is shown to be more
effective than traditional PSO and GOA due to its ability to solve real-time optimization
problems with multiple local optima. A case study on a 100 MW wind energy system in
China shows that the proposed hybrid model accurately predicts wind power output, as
demonstrated by evaluation metrics MAE and RMSE.

Future work could incorporate model selection methods to further improve the pro-
posed NARMAX–ROPSO–WT model. Additionally, this model has the potential to be used
for forecasting power demand, solar generation, and other types of stochastic non-linear
forecasting tasks. Overall, this proposed strategy has the potential to make a significant
contribution towards shaping a low-carbon energy future.
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Abbreviations

ROPSO Randomness operator-based particle swarm optimization
NARMAX Non-linear autoregressive moving average with external inputs
WT Wavelet Transform
PEBF Prediction error-based power forecasting
ANN Artificial neural networks
MAE Mean absolute error
MSE Mean square error
HANTS Harmonic Research Time Series
DWT Discrete Wavelet Transform
SVM Support vector machine
Mas Meta-heuristic algorithms
GA Genetic algorithm
PSO Particle swarm optimization
GWO Grey wolf optimizer
BBO Biogeography-based optimization
MBO Monarch butterfly optimization
SCADA Supervisory Control and Data Acquisition
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