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Abstract: Wind turbine energy generators operate in a variety of environments and often under
harsh operational conditions, which can result in the mechanical failure of wind turbines. In order to
ensure the efficient operation of wind turbines, the detection of any abnormality in the mechanics
is particularly important. In this paper, a method for detecting abnormalities in the bearings of
wind turbine energy generators, based on the cascade deep learning model, is proposed. First, data
on the mechanics of wind turbine generators were collected, and the correlation between the data
was studied in order to select the parameters related to the bearing temperature. Then, the logical
relationship between the observation parameters and the target parameters was established based
on a one-dimensional convolutional neural network (CNN) and a long short-term memory (LSTM)
network, and the difference between the predicted temperature and the actual temperature was
assessed using the root mean square error evaluation model. Finally, a numerical example was used
to verify the operational data from a wind farm unit in northwest China. The results show that the
CNN-LSTM model proposed in this paper can detect abnormalities earlier in the state of the main
bearing than the LSTM model, and the CNN-LSTM model can detect abnormalities in the main
bearing that the LSTM network cannot find.

Keywords: wind turbine; deep learning; bearing; failure early warning

1. Introduction

Wind energy is an important source of clean and renewable energy, and there has
been substantial development in this field in recent years [1]. With the development
of wind turbine technology, wind farm owners have increasingly high requirements for
the efficiency of wind turbines [2,3]. It is, therefore, necessary for the manufacturer to
implement higher reliability standards when designing and manufacturing the turbine
and for the operator to avoid manual shutdowns while operating the fan to increase the
unit’s efficiency. Therefore, the study of the predictive maintenance of wind turbines has
recently increased in scope, resulting in improvements in the efficiency of wind farms and
a reduction in manual shutdowns.

The main bearing of the wind turbine generator unit is prone to overheating due
to main bearing seal ring damage, deterioration of the lubricating grease, foreign matter
pollution in the lubricating grease, etc., which can affect the normal power generation of
the unit. In order to accurately assess the cooling and lubrication status of the main bearing,
as well as arrange the operation and maintenance tasks in advance, and avoid a shutdown
in windy weather, it is necessary to study the bearing anomaly detection method.
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As the main technical means of unit monitoring and management, the wind turbine
SCADA system collects a large number of variables related to the unit’s operating state.
However, it is difficult to determine the operating state of the unit or unit components
through the straightforward assessment of single variables; therefore, it is necessary to
extract the hidden fault features from many parameters in order to assess the operating
state of the unit [4]. In reference [5], the focus was on the modeling and analysis of
several important components of wind turbines, such as the tower and transmission chain,
by analyzing vibration signals. A tower vibration model was established, and principal
component analysis (PCA) technology was used for analysis. In order to ensure adaptability
to the environmental factors, adaptive principal component analysis was introduced, and
the model was updated through sliding windows. In reference [6], a bearing health
deterioration model based on temperature characteristic variables was proposed. The non-
stationary degradation tendency was divided into steady components using an enhanced
ensemble empirical mode decomposition (EEMD). Each component was predicted using
time series neural network models, and the predicted components were superimposed.
The results showed that this approach increased the fitting degree and improved prediction
accuracy. In reference [7], a bearing health sample set was selected under various operating
conditions using the relative evaluation criterion. The data were fitted with the least squares
method in order to establish a bearing-temperature health status assessment model. The
degradation degree concept was introduced by combining the upper and lower threshold
values of the actual operating status. The time series neural network was used to establish
a degradation trend prediction model for wind turbine bearings. Both models exhibited
good predictive accuracy.

In recent years, deep learning has received increasing attention in the field of bearing
fault diagnosis due to its advantages in nonlinear fitting ability. In the literature by [8],
a bidirectional recurrent neural network was used to establish a wind turbine operation
prediction model based on the wind turbine operational data and produced an early fault
warning system based on the residual effect between the actual and measured values of
the sliding window. In reference [9], an improved convolution neural network (CNN)
model was proposed to resolve multiple conditions in the operation of bearings. The
model was adjusted by adding the weight of feature channels. In reference [10], a multi-
channel convolutional neural network (Bagging-MCNN) based on the Bagging concept was
proposed in order to address the problem of low accuracy and generalization in the fault
diagnosis of imbalanced samples. The method was validated on a publicly available bearing
dataset and achieved improved diagnostic accuracy in both balanced and imbalanced
scenarios. Furthermore, it improved the convergence speed and diagnostic stability of the
model. In reference [11], a hierarchical CNN model was proposed for the smart diagnosis
of bearing faults by stacking multiple layers of convolutional neural networks in order
to allow for better feature extraction and fault classification. The results showed that the
hierarchical CNN model achieved high accuracy and improved the diagnostic performance
of bearing faults. In reference [12], an improved quantum bee colony algorithm and
BP neural network were used to develop a rolling bearing fault diagnosis model. The
findings showed that the model achieved high accuracy in identifying various bearing
fault types and demonstrated greater generalization and robustness compared to the more
conventional approaches. In reference [13], a bearing fault diagnosis method based on
multi-layer denoising technology and an improved convolution neural network (ICNN)
was proposed to address the difficulty of effectively diagnosing weak faults in rolling
bearings under loud noise conditions. Through simulation experiments, the proposed
method achieved a more accurate bearing fault diagnosis in loud, noisy environments.
In reference [14], a diagnosis method combining an improved Hilbert–Huang transform
(IHHT) algorithm and convolution neural network (CNN) was proposed in order to address
the problems of feature extraction and intelligent diagnosis of complex faults in rolling
bearings in agricultural machinery equipment. This method achieved an end-to-end
intelligent diagnosis of complex rolling bearing faults under varying working conditions
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and showed good generalization ability and robustness. In reference [15], a novel DSCNN-
GRU network was proposed for fault diagnosis, which fused the light and fast feature
of depth separable convolution and added a gate mechanism in order to analyze and
memorize the signal features of fault points and the signal relationships within the cycle.
The research showed that the algorithm could achieve an average fault recognition rate of
greater than 94%, improving classification generalization ability. Finally, in reference [16],
an improved transfer diagnostic model was proposed to address the problem of significant
lowering of the bearing fault diagnosis accuracy due to changes in the machine operating
conditions. This model comprehensively used the maximum mean difference and distance
variance to measure the differences between the different distributions and used entropy
loss to improve the separability of features in the shared subspace. The results demonstrate
that this method shows high transfer diagnostic performance under varying loads and can
effectively cope with interference caused by varying noise levels. Overall, these studies
demonstrate the potential of deep learning techniques for the fault diagnosis of bearings,
with the various methods achieving high accuracy and improved diagnostic performance in
varying scenarios. The methods proposed in these studies also have a good generalization
ability and robustness and, thus, show great potential for practical applications.

However, some models in the above literature use too few variables to fully character-
ize the state of the unit, which can affect the fault detection performance of the prediction
model. In this paper, a method for detecting abnormalities in the state of the bearings of
wind turbine generators, based on the cascade deep learning model, is proposed. First,
data on the mechanical function of wind turbine generators were collected, and the correla-
tions between the data were used to select the parameters related to bearing temperature.
Then, the logical relationship between the observation and target parameters based on
the one-dimensional CNN and long short-term memory (LSTM) network was established.
The difference between the predicted and actual temperatures was assessed using the root
mean square error evaluation model. Finally, using the operational data from a wind farm
in northwest China, the model used in this paper is compared with a separate LSTM model
to verify its effectiveness.

2. Prediction Model for Bearing Conditions of Wind Turbines
2.1. Convolutional Neural Network

The convolutional neural network (CNN) is a deep feedforward network, which
is often used to process multiple array data, such as time series, images, and audio fre-
quency spectrograms [17]. The CNN network comprises a convolution layer and a pooling
layer [18]. Different layers have different functions: the convolution layer conducts convo-
lution operation on the input vector through the convolution kernel to generate multiple
feature vectors [19]; the pooling layer executes maximum pooling and mean pooling. The
pooling layer can reduce the dimensions of feature vectors, reduce model parameters,
reduce training time and memory requirements, and manage any overfitting.

The CNN extracts feature vectors from a large number of input data by constructing
multiple feature extractors. As shown in Figure 1, the input data extracts the hidden
features in the data through multiple one-dimensional convolution kernels. The same
convolution kernel then scans the data from left to right to form a feature vector. Multiple
convolution kernels scan the same data to obtain multiple feature vectors. The final feature
vector or feature map is obtained through multiple convolution layers [20].
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Figure 1. Schematic diagram of the convolution operation.

2.2. LSTM

The RNN (recurrent neural network) is an exceptional type of neural network that is
specifically designed to handle time series data. The RNN can introduce the concept of
“time” into the model, allowing it to memorize information from the past and better under-
stand and predict time series data. However, traditional RNN networks have vanishing
or exploding gradient problems, which can lead to the loss of long-term dependencies. In
order to address these issues, LSTM (long short-term memory) networks were proposed.
LSTM networks introduce three gate controllers that control the flow of information, ef-
fectively solving the problem of vanishing or exploding gradients. The three gates of an
LSTM network include the forget gate, the input gate, and the output gate. These gates can
control the flow of information based on the input data and effectively capture long-term
dependencies in time series data.

For the network with a time memory function, it is only necessary to replace the
network unit in the ordinary network during implementation. The LSTM block is shown
in Figure 2.

Figure 2. LSTM block.

The forward propagation of information in the LSTM blocks can be expressed as:

c(t) = i(t)·a(t) + f(t)·c(t − 1) (1)

i(t) = σ(Wix(t) + Uih(t − 1) + Vic(t − 1) + bi) (2)

o(t) = σ(Wox(t) + Uoh(t − 1) + Voc(t) + bo) (3)

f(t) = σ(Wfx(t) + Ufh(t − 1) + Vfc(t − 1) + bf) (4)

a(t) = f(Wax(t) + Uah(t − 1) + ba) (5)
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h(t) = o(t)·g((t)) (6)

where c(t) is a memory unit; i(t), o(t), and f(t) are input gates, output gates, and forgetting
gates, respectively, representing the weight matrix and offset (* represents i, o, f, and a);
a(t) represents the input after the activation function; h(t) represents the output of the
hidden layer; h(t − 1) represents the output of the hidden layer in the past period; and f, g
represents the activation function.

After data preprocessing, the input network layer of the model performs forward
calculations to obtain the output value of each unit and the output value of the model.
The model output value is compared with the input data tag value, the error is calculated,
and the unit parameters of each layer are adjusted according to the gradient to complete
the training.

3. Abnormality Detection Method for Wind Turbine Bearings Based on CNN-LSTM

The main bearing of a wind turbine generator unit supports the weight of the rotating
blades and is one of the most important components in the entire transmission chain. Once
a main bearing failure occurs, it can cause a decrease in the unit’s power generation and
availability, which can have a severely negative effect on the economic benefits of wind
power generation. Furthermore, replacing the main bearing is a high-cost maintenance
task requiring professional skills and equipment. The replacement work is particularly
challenging, as wind turbines are often installed in harsh environments, such as offshore
locations. Therefore, the stable operation and maintenance of the main bearing are critical
to the sustainable development of the wind power industry.

This paper presents a method based on a CNN and LSTM, which uses SCADA data to
monitor the condition of the main bearings of the wind turbine. Firstly, we used the CNN
one-dimensional convolution network layer to extract the unit operation features from
SCADA data in the time direction and obtained multiple feature vectors of input data. The
length of the input data is equal to the number of convolution kernels. Then, these multiple
eigenvectors are sent into the LSTM network, and the information passing through the
multiple LSTM network layers is transferred to the output layer, as shown in Figure 3.

Figure 3. Schematic diagram of model network.
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The variables that have a high correlation with the main bearing temperature are
selected as the input to establish the model through correlation analysis, and the prediction
model is established with the bearing temperature as the target. The specific steps are
as follows:

Step 1: Select a normally operating unit as the source of the training data, eliminate
the null value and other abnormal data, and normalize the data;

Step 2: Establish a prediction model. In the model, the convolution layer is a one-
dimensional CNN, the number of layers is one, the number of cores is ten, and the LSTM
block is four layers. Select the average absolute error as the loss function. The optimizer selects
Adam, which can use the adaptive learning rate to accelerate the model training convergence;

Step 3: Train the model, and use the preprocessed data to conduct multiple itera-
tive training;

Step 4: Input the unit data to be tested into the trained model to detect the bearing
status of the unit.

4. Example Analysis
4.1. Data Preprocessing and Parameter Selection

The 2018 SCADA data of a wind farm in northwest China were used for the model
training. The SCADA data contain many Boolean-type status variables that record whether
each system of the unit is enabled, as well as the operational status of the unit, unit fault
alarm, etc. The units in normal operation are selected through these Boolean variables, and
the data related to the main bearings are selected for the model training.

The correlation coefficient between the selected floating-point field and the tempera-
ture of the front bearing of the main shaft was calculated (the results are shown in Table 1),
and variables, such as the temperature of the rear bearing of the main shaft, the tempera-
ture of the engine room, and the ambient temperature, were selected as the input of the
model. The data were filtered according to the value range of the selected field, and the
abnormal data caused by a sensor anomaly, communication anomaly, and other factors
were eliminated.

Table 1. The correlation coefficient between the front bearing temperature of the main shaft and
other data.

Variable Correlation Coefficient

Main shaft rear bearing temperature 0.9562

Engine room temperature 0.9113

Ambient temperature 0.8720

Gearbox cooling water temperature 0.6239

In order to more accurately predict the current bearing temperature value of the unit
by the model, the temperature data from the front bearing of the main shaft is used as
the input of the model, such as the temperature of the rear bearing of the main shaft, the
temperature of the engine room, the ambient temperature, and other measuring points that
reflect the temperature at the current time of measurement, and the temperature of the front
bearing of the main shaft is the temperature at a certain time in the previous period of time
by way of the input of the model. The comprehensive working condition of the unit at the
current moment is evaluated by the parameters, such as the temperature of the rear bearing
of the main shaft, the temperature of the engine room, and the ambient temperature. The
theoretical temperature of the front bearing of the main shaft under the current working
conditions is jointly predicted by taking the temperature of the front bearing of the main
shaft in the previous period as the initial value of the prediction value.
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4.2. Anomaly Detection Method

Anomaly detection is carried out by finding abnormal units in the test sample dataset,
calculating the theoretical temperature of the unit bearing through the prediction model
proposed in this paper, and comparing the difference between the theoretical temperature
and the actual temperature in order to detect the abnormality. The root mean square
error of the real and predicted values is used to evaluate the difference between the actual
and theoretical temperatures. The calculation formula of the root mean square error is
as follows:

RMSE =

√
1
N ∑N

i=1(ti − yi)
2 (7)

where ti is the real temperature, yi is the predicted temperature (theoretical temperature),
and N is the number of samples.

4.3. Anomaly Detection Method

SCADA data of multiple normal units were selected as training data for 10 batches of
training. The data of normal units in the test set were inputted into the model in order to ob-
tain the predicted temperature and compare it with the actual temperature. Figures 4 and 5
show the fitting of the separate LSTM model and the CNN-LSTM model for normal units.
For the normal units, the predicted temperatures of the two models can follow the changes
in the actual temperature. The RMSE between the predicted values of the CNN-LSTM
model and the actual values is 0.8460, and the RMSE between the predicted values of the
CNN-LSTM model and the actual values is 0.4235. In the temperature prediction of normal
units, the RMSE of the LSTM model is slightly lower than that of the CNN-LSTM model;
however, the RMSE of both models is low overall.

Figure 4. Comparison diagram of operation results of different models of normal units. (a) LSTM
model. (b) CNN-LSTM model.

Figure 5. Comparison diagram of operation residual errors of different models of normal units.
(a) LSTM model. (b) CNN-LSTM model.

4.4. Analysis of Indicators under Abnormal Conditions

The data of each unit in the test set were inputted into the model after preprocessing,
the predicted temperature of the unit bearing was obtained and compared with the actual
temperature, and a model warning was sent when the actual temperature was significantly
higher than the predicted temperature (theoretical temperature).
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By examining the onsite operation and maintenance records, it was found that the
main bearings of unit A and unit B were abnormal: the main shaft bearing cages of the
bearings of unit A were all broken, and the bearings were scraped; the lubricating grease
inside the bearings of unit B had hardened and formed plates, particles had entered the
bearings, and the bearings were moderately worn. In unit A, the CNN-LSTM model detects
unit faults at 6800 sample points in advance. The operation results of units A and B in
the LSTM model and the CNN-LSTM model proposed in this paper are shown in the
figure below.

Figures 6 and 7 show the comparison between the LSTM model of unit A and the CNN-
LSTM model proposed in this paper for the same time period. It can be seen that the model
proposed in this paper can separate the actual temperature from the predicted temperature
earlier, and to a greater extent, it can detect the abnormality of the main bearings earlier.
At the same time, the RMSE of the theoretical temperature and actual temperature of the
model proposed in this paper was 11.2637, and the RMSE of the theoretical temperature
and actual temperature of the LSTM model was 3.760.

Figure 6. Comparison diagram of the operation results of different models of unit A. (a) LSTM model.
(b) CNN-LSTM model.

Figure 7. Comparison diagram of the operation residuals of different models of unit A. (a) LSTM
model. (b) CNN-LSTM model.

Figures 8 and 9 show the comparison of the model operation results of the LSTM
model of unit B and the CNN-LSTM model of unit B proposed in this paper for the same
time period. It can be seen from the figure that there is no obvious separation between the
predicted temperature and the actual temperature in the LSTM model, while the model
proposed in this paper shows obvious separation, which demonstrates that the model
proposed in this paper can find the fault characteristics of the bearing that the LSTM model
cannot find. The RMSE of the theoretical temperature and actual temperature of the model
proposed in this paper was 4.1494, and the RMSE of the theoretical temperature and actual
temperature of the LSTM model was 0.7598.
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Figure 8. Comparison diagram of the operation results of different models of unit B. (a) LSTM model.
(b) CNN-LSTM model.

Figure 9. Comparison diagram of the operation residual errors of different models of unit B.
(a) LSTM model. (b) CNN-LSTM model.

Table 2 shows the RMSE statistic results for the comparative experiment’s normal
and fault units. It can be seen that the RMSE of the CNN-LSTM model shows a greater
difference between the normal units and fault units. The RMSE of the LSTM model has
a greater degree of differentiation between some faulted units and normal units, while
others have a lesser degree between the faulted units and normal units. On average, the
RMSE of the CNN-LSTM model of the failed units is larger than that of the LSTM model.
To sum up, the CNN-LSTM model is more effective in fault predictions of the wind turbine
main bearing.

Table 2. Comparison of different models.

Unit
Model

LSTM Model CNN-LSTM Model

Unit A 3.760 11.2637

Unit B 0.7598 4.1494

Normal unit 0.4235 0.8460

5. Conclusions

The method proposed in this paper can effectively detect main bearing seal ring
damage, grease deterioration, grease foreign matter pollution, and other faults in the wind
turbine generator. Using the operation data of a wind farm unit in northwest China, the
CNN-LSTM model used in this paper was compared with the separate LSTM model. The
results show that the CNN-LSTM model can detect the abnormal state of the main bearing
earlier, and the CNN-LSTM model can detect the abnormal state of the main bearing that
LSTM cannot.

Compared with the LSTM model, it was found that the RMSE of the LSTM model
alone is slightly lower than that of the CNN-LSTM model predicted by the main bearing
temperature of the normal unit. However, the CNN-LSTM model will find the abnormal
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state of the main bearing earlier in the faulty unit, and the CNN-LSTM model can find the
abnormal state of the main bearing that the LSTM model cannot find.

The data used in this paper is mainly minute-level data collected by the temperature
sensor in the wind turbine SCADA system. The data sampling frequency is still low, and the
bearing failure prediction accuracy is not sensitive to temperature changes. For subsequent
research, introducing the high-frequency data collected by the vibration sensor into the
model to predict and warn of more faults will be considered.
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