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Abstract: In the search for efficient non-permanent magnet variable-speed wind generator solutions,
this paper proposes a maximum power point tracking (MPPT) current-control method for a wound
rotor synchronous wind generator. The focus is on direct-drive, medium-speed wind generators.
In the proposed method, the currents of the wound rotor synchronous generator (WRSG) are optimally
adjusted according to the generator speed to ensure maximum power generation from the wind
turbine without needing information on wind speed. The design, modeling, and simulation of the
MPPT current controllers are done in Matlab/Simulink with the WRSG in the synchronous reference
frame. The controller is put to the test using different wind speed profiles between cut-in and rated
speeds. The simulation results indicate that the proposed current control method is simple, effective,
and robust, suggesting its practical implementation. To validate the simulation results, experimental
work on a 4.2 kW WRSG prototype system is presented to demonstrate the stability and robustness
of the MPPT current control method in operating the turbine at or near the maximum power point.

Keywords: current control; maximum power point tracking (MPPT); synchronous wind generator;
wound rotor

1. Introduction

As a solution to the effects of global warming caused by the extensive use of fossil fuels
to generate electricity, the world is shifting its focus to renewable energy sources, such as
hydro, wind, solar, biomass, geothermal, and tidal. Hydropower remains the most widely
used type of modern renewable energy source worldwide, but the wind energy sector is
expanding rapidly [1]. Wind generators are important parts of wind turbine systems to
capture wind energy because they transform the mechanical power of the rotor blades into
electrical power. In the wind energy industry, the most prominent generator technologies
are the permanent magnet synchronous generator (PMSG), electrically excited synchronous
generator (EESG), doubly-fed induction generator (DFIG), and the squirrel cage induction
generator (SCIG) [2]. Wind generator technologies that use a non-overlapping winding
structure have become attractive because they offer advantages such as requiring less
copper, cheaper manufacturing costs, reduced torque ripple, and higher torque density [3]
compared to a traditional overlapping winding structure. Recent research studies show
that permanent magnet (PM) generators with non-overlapping windings are an important
part of the modern wind energy industry because they are very efficient, have a high power
factor, and are compact. However, research on competitive rare-earth (RE) free-element
wind generators is still important because of how volatile the market is for RE PMs and
how sensitive they are to geopolitics (most of the supply chain is in China).

The SCIG and DFIG are non-PM generators used in wind turbine systems due to their
mature technology, their simple and robust structure, as well as their economy of mainte-
nance [4]. Their application in wind turbines is disadvantaged because they are rarely built
with a high number of pole pairs and, hence, require three-stage gearboxes. Other non-PM
generator solutions for wind energy systems include wound rotor synchronous generators
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(WRSGs), such as an EESG. Reluctance synchronous generators (RSGs) are also emerg-
ing as attractive non-PM wind generator solutions [5]. The WRSG and RSG, such as the
PMSG, can be built with a large number of poles and still achieve high efficiency. However,
due to their inherent design, RSGs have a poor power factor and hence require relatively
high-rated and expensive power converters [6], which makes them rarely used in wind
turbines. On the other hand, WRSGs offer excitation windings on the rotor, which provide
a controlled excitation flux. As a result of this ability, the WRSG can achieve a near-unity
power factor [7], demonstrating its capabilities in wind turbines. In addition, the flux
variation capability of WRSG makes it an attractive application for variable-speed wind
generation systems because the rotor field current can be varied for maximum power point
tracking (MPPT). In the modern wind industry, variable-speed wind turbines are dominant,
and their control design for MPPT is very important for extracting maximum power from
the wind, and hence maximizing the efficiency of the wind turbine.

In the literature, the fundamental MPPT operation for wind turbine systems that deliv-
ers maximum efficiency is primarily comprised of a number of MPPT search techniques that
attempt to find the maximum operating point (MPP). The MPPT search methods typically
fall into two categories, i.e., direct power control (DPC), which controls the electrical output
power of the wind turbine by obtaining the most mechanical power from the wind, and
indirect power control (IPC), which directly maximize the output electrical power of the
wind turbine [8]. The IPC includes control techniques, such as tip-speed ratio (TSR), power
signal feedback (PSF), and optimal torque (OT). The DPC includes methods such as perturb
and observe (P&O)/hill climb search (HCS) and incremental conductance (INC). The DPC
methods are generally used in wind turbine systems due to their simple design and ease
of implementation, specifically the P&O MPPT algorithms. It observes the deviation in
turbine power and adjusts the turbine speed to keep track of the maximum power point [9].
This method, however, deviates while tracing the optimal power point, especially during a
wind gust. The TSR IPC technique adjusts the generator speed by using both wind and tur-
bine speeds to keep the TSR at its optimum while tracking the maximum power point [10].
The benefit of this technology is that the control scheme is simple; however, the requirement
for real-time measurements of wind and generator speed increases costs. The other two IPC
methods, PSF and OT, do not require real-time wind speed measurements, but relatively
precise wind speed parameters based on experiments are needed.

The design of the controller, which sends switching signals to the power converters
to make sure that a wind turbine works at MPP [11], is another fundamental part of the
MPPT operation of wind turbine systems. Traditionally, PID-type MPPT controllers have
always been the most popular type of MPPT controllers because of their simple design
and implementation. The major drawback of PID controllers is that they are not the
most effective controllers across a wide range of operating conditions [12]. So, they often
exhibit poor performance when used with nonlinear systems, such as variable-speed wind
turbines. For that reason, researchers have looked at the effectiveness of many MPPT
algorithms for wind turbines, such as those based on fuzzy logic control [13,14], artificial
neural networks [15], the sensorless MPPT algorithm [16,17], and sliding mode control
(SMC) [11,18]. The SMC received the most attention of these methods because of its good
dynamic response, simple implementation, and robustness against external disturbances
and parameter variations [19]. The SMC uses a discontinuous switching law that ensures
that the system’s state variables will move toward equilibrium from any starting point [20].
The main problem with SMC is that the discontinuous switching in the control law causes
a problem called “chattering”, which has some bad effects on the steady-state error.

Sensorless MPPT control for wind turbines is an interesting approach because it
eliminates the need for mechanical sensors as well as some wind turbine parameters.
An optimal sensorless current vector control method for MPPT in variable-speed wind
generation based on an interior permanent-magnet synchronous generator was investigated
in [16]. In this wind energy system, MPPT is achieved by determining the optimal stator d- and
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q-axis current references using only the generator speed, without the need for a wind speed
sensor. The experimental results of this work confirmed the effectiveness of the controller.

The main objective of this study is to investigate a simple and robust MPPT current-
control method similar to that of [16], but for a WRSG variable-speed wind turbine system.
The main contribution of this paper is to investigate the effectiveness of this MPPT technique
when used with WRSG-based wind turbines. This is important because most literature
studies are focused on PM- and IG-based wind turbine systems. The proposed controller
ensures MPPT by determining appropriate generator field current and generator stator
output q-axis current reference values as functions of the turbine speed. The d-axis current
reference value is kept at zero because the WRSG generates maximum torque when the
d-axis current is zero. The focus of the study was on a small-scale, 4.2 kW, medium-speed
(between 100 and 500 r/min), direct-drive WRSG-based wind turbine system. The Mat-
lab/Simulink package was used for the simulation of the MPPT current controller wind
turbine drive system, while an in-house-designed Pentium control system running Linux
was used for experimental validation.

The remainder of this article is organized as follows: Section 2 provides a detailed
description of the wind turbine system configuration. Section 3 presents the design and
specifications of the WRSG. In Section 4, the WRSG’s dynamic modeling is described along
with the technique used to determine its simulation parameters. The MPPT method and
the proposed current-controller design for maximum power extraction are presented in
Section 5. Moreover, the simulation and practical results are provided in Sections 6 and 7,
respectively. Lastly, in Section 8, the conclusions are drawn.

2. Description of Wind Turbine System
2.1. Composition of Wind Turbine System

The schematic diagram of the small-scale variable wind speed turbine investigated in
this paper is shown in Figure 1. The wind turbine is directly connected to the shaft of a
16-pole WRSG. The WRSG converts the mechanical power of the wind turbine into the
alternating current electrical power, which is then actively rectified to the direct current
electrical power via a three-phase power converter. The DC link voltage is used to produce
the required excitation voltage for the field windings via a DC–DC converter. The remaining
power is supplied to a DC grid and can also be connected to an AC grid converter. At the
heart of this research work are the two functions, Ff (ωg) and Fq(ωg), which output the
generator current references, i f and iq (id is always zero), in a manner that ensures that the
WRSG and the wind turbine are always operating at maximum efficiency and power.
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Figure 1. Block diagram of the variable-speed WRSG-based direct-drive wind turbine system.
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2.2. Characteristics of the Wind Turbine

The aerodynamic design of the wind turbine determines the amount of power that
can be captured from the wind. The available mechanical power of the wind turbine is
defined as [18]

Pm =
1
2

ρAsvw
3, (1)

where ρ is the air density, kg/m3, and vw is the wind speed, [m/s]. As is the sweep area
[m2] of the wind turbine blades across which a wind stream moves. The amount of power
that a wind turbine can capture is practically limited by Betz’s law, which states that the
maximum theoretical efficiency of the kinetic wind energy that a turbine can capture is
59.3% [21], but modern turbines achieve efficiencies of 45% to 50% [22]. The efficiency is
governed by the wind turbine power coefficient, Cp. The Cp of a fixed-pitch wind turbine
is given as a function of the tip-speed ratio, Λ, and is defined as

Λ =
ωtR
vw

, (2)

where ωt is the turbine speed and R is the radius of the blades. Because the air density
ρ and swept area As are constant, the maximum turbine power for a certain wind speed
occurs at a point where Cp and Λ are maximum [23]. The mechanical turbine power is,
therefore, given by

Pm =
1
2

ρAsvw
3Cp(Λ). (3)

Figure 2 illustrates the relationship between the turbine power and turbine speed,
where the wind speed is a parameter and the MPP curve considered in this study is shown.
The cut-in speed at which the turbine starts to rotate and generate power is 100 r/min at a
wind speed of 3 m/s. The rated turbine speed is 320 r/min, corresponding to a wind speed
of 12 m/s and a generated rated turbine power of 4.2 kW, which corresponds to a rated
turbine torque of 126.5 Nm.
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Figure 2. Turbine power versus turbine speed, with the wind speed as a parameter.

3. Design of the WRSG
3.1. WRSG Specifications

The WRSG considered is based on the rated speed (320 r/min) and power (4.2 kW) of
the wind turbine characteristics discussed in the previous section. The WRSG prototype
from [24] (already available in the lab and, hence, a convenient test object), with a rated
power of 4.2 kW was adopted for the direct-drive, medium-speed wind turbine system
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investigated in this study. The prototype has non-overlapping, double-layer stator winding
coils and a 16/18 pole/slot combination. The rated turbine speed from Figure 2 is used to
determine the synchronous speed of this generator, which is 320 r/min at 43 Hz, putting it
within the medium-speed range of 100 to 500 r/min. The cross-section layout of the finite
element method (FEM) for the WRSG prototype is shown in Figure 3, and the specifications
are listed in Table 1.

A
B
C

Figure 3. Two-dimensional model of the double-layer 16/18 pole/slot WRSG and coil arrangement,
with light (positive) and dark (negative) colors.

Table 1. Specifications of the 16/18 WRSG.

Parameter Value

Rated power 4.2 kW
Rated speed 320 r/min

Rated frequency 42.7 Hz
Rated torque 126.5 Nm

Stator outer diameter 260 mm
Rotor outer diameter 203.6 mm
Rotor inner diameter 60 mm

Stack length 125 mm
Air gap 0.45 mm

Stator turns per coil 67
Rotor turns per coil 150

3.2. Minimizing the Torque Ripple for WRSG

The 4.2 kW WRSG used in this study had an unfavorable torque ripple of 15.5%,
which is not acceptable for small-scale wind turbines. There are various techniques to
reduce torque ripple, such as skewing, pole shifting, and adding auxiliary slots to the stator
teeth [25]. However, if the generator’s torque ripple is very sensitive to manufacturing
tolerances, then using any of the aforementioned methods might drastically affect the
machine’s performance and complicate the manufacturing process. The WRSG rotor used
in this study was optimized to reduce the torque ripple using a precise but computationally
less expensive coordinate descent method [26]. The coordinate descent technique, which is
basically the first step in Powell’s non-gradient method [27], is discussed and implemented
in [26] to minimize the cogging torque of two PM wind generators for small-scale wind
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energy systems. In this study, the stator of [24] was kept the same, but the rotor was
optimized to minimize the torque ripple, and the optimal rotor was manufactured.

The coordinated descent approach optimizes the design for minimum torque output
ripple by using a single parameter variation across all relevant dimensions. The relevant
rotor dimensions that affect the torque ripple of the WRSG are

X = [rBs0 rHs0 rHs1]T , (4)

where rBs0 (rotor slot opening), rHs0 (rotor slot shoe 0), and rHs1 (rotor slot shoe 1)
represent optimized rotor slot dimensions. These optimized dimensions are shown in
Figure 4. Table 2 compares the optimized dimensions and the torque ripple of the WRSG
after two iterations. The torque ripple versus mechanical rotor position waveforms for
the base and optimized rotor WRSG using the coordinated descent method are shown in
Figure 5. As shown in Table 2, the torque ripple is reduced from 11.5% to 7.77%, with the
same turbine power.
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4. WRSG Modeling and Parameters

The dynamic modeling of the WRSG is described in this section. This section also
shows how the WRSG parameters were determined using static finite element analysis
(FEA) and the frozen permeability (FP) method.
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4.1. Dynamic Model of WRSG

The dynamic WRSG model in the synchronous reference frame without damper
windings (in order to simplify the model) is described in the generator operation (positive
current out) as [28]

vd = −Rsid +
dλd
dt

− ωeλq, (5)

vq = −Rsiq +
dλq

dt
+ ωeλd, (6)

v f = R f i f +
dλ f

dt
, (7)

λd = −Ldid + λd f i f , (8)

λq = −Lqiq, (9)

λ f =
3
2

Ld f id + L f f i f , (10)

Tg =
3
4

p(λdiq − λqid), (11)

Ps =
3
2
(vdid + vqiq), (12)

where vd,q are the dq-axis stator voltages, v f is the excitation voltage, id,q are the dq-axis
stator currents, i f is the excitation current, Rs is the stator resistance, and R f is the rotor
resistance. The quantities Ld,q are the dq-axis stator inductances, L f f is the field-winding
self-inductance, and Ld f is the d-axis-to-rotor mutual inductance. λd,q are the dq-axis stator
flux linkages and λ f is the field flux linkage. p is the number of poles and ωe =

p
2 ωg is the

rotor’s electrical angular speed. The generator electromagnetic torque is Tg and Ps is the
dq-axis stator power.

4.2. Generator Parameters Using Frozen Permeabilities

The WRSG achieves its maximum torque and efficiency over its entire range of op-
erating points when the d-axis current is set to zero and only the field current and q-axis
current are active. Therefore, the d-axis inductance of the stator will always be infinite
when using (8). In this particular study, the FP method was used to calculate the value of
this parameter so that it could be used in the Matlab/Simulink simulations. On a wound
rotor synchronous machine, the FP technique was implemented for the first time in [29].
In today’s modern world, the FP technique is widely recognized for its use in the methods
of designing and controlling electrical machines [30,31].

In this study, the FP approach was implemented in the following steps:

1. A static non-linear FEA solution of the WRSG was simulated at the rated speed and
current vector [id, iq, i f ]

T . From this solution, the non-linear permeabilities of the
WRSG were calculated.

2. The FEA permeabilities of all the WRSG mesh elements from the first step above were
saved and frozen.

3. With these frozen permeabilities from step 2, three linear static solutions were simu-
lated to determine the inductance parameters, Ld, Lq, Ld f , and L f f , based on (8) to (10).
The three linear static FEA solutions are defined as follows:

Ld =
λd
id

∣∣∣
i f =iq=0

, (13)
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Lq =
λq

iq

∣∣∣
i f =id=0

, (14)

Ld f =
λd
i f

∣∣∣
id=iq=0

, and L f f =
λ f

i f

∣∣∣
id=iq=0

. (15)

The parameters determined using the FP method were then used to simulate the
Matlab/Simulink model; they are shown in Table A1 along with the other parameters.

5. Wind Turbine System Control

Matlab/Simulink was used to evaluate the performance of the proposed MPPT current
control for the WRSG-based wind turbine system. The overall control system that was
developed is shown in Figure 6. It consists of the wind turbine model, which uses a look-up
table to determine turbine torque based on wind speed and feedback of the turbine speed
(Figure 7), two functions that determine the generator reference field current and q-axis
current based on the turbine speed, a dq-axis current controller to output dq-axis voltages,
a field current controller to output the field voltage, and lastly, the WRSG model in the
synchronous reference frame.

Energies 2023, 1, 0 8 of 21

Lq =
λq

iq

∣∣∣
i f =id=0

, (14)

Ld f =
λd
i f

∣∣∣
id=iq=0

, and L f f =
λ f

i f

∣∣∣
id=iq=0

. (15)

The parameters determined using the FP method were then used to simulate the
Matlab/Simulink model; they are shown in Table A1 along with the other parameters.

5. Wind Turbine System Control

Matlab/Simulink was used to evaluate the performance of the proposed MPPT current
control for the WRSG-based wind turbine system. The overall control system that was
developed is shown in Figure 6. It consists of the wind turbine model, which uses a look-up
table to determine turbine torque based on wind speed and feedback of the turbine speed
(Figure 7), two functions that determine the generator reference field current and q-axis
current based on the turbine speed, a dq-axis current controller to output dq-axis voltages,
a field current controller to output the field voltage, and lastly, the WRSG model in the
synchronous reference frame.

vw

ωt

vw

Turbine

Ff (ωt)

0
i∗d

Fq(ωt)

dq-axis current
control

Field current
control

WRSG
model

i f

λ f

τg
τg

iq

id

v f v f

ωeωe

vd vd

vq vq

λ f

ωe

i∗qi∗q

i∗d

iq
id

ωtωt

ωt

ωt i f ∗ i f ∗
i f

Figure 6. Matlab/Simulink block diagram of a variable-speed WRSG-based wind turbine system.

T(vw, ωt)
vw

ωt

−
−+

τt

τg

1
Jt+Jg

1
s

ωt

1
Bt+Bg

Figure 7. Matlab/Simulink diagram modeling the turbine dynamics.

5.1. Turbine Control

The Matlab/Simulink turbine control is shown in Figure 7. The dynamic model of the
wind turbine is defined by

τt − τg = (Jt + Jg)
dωt

dt
+ (Bt + Bg)ωt, (16)

Figure 6. Matlab/Simulink block diagram of a variable-speed WRSG-based wind turbine system.

Energies 2023, 1, 0 8 of 21

Lq =
λq

iq

∣∣∣
i f =id=0

, (14)

Ld f =
λd
i f

∣∣∣
id=iq=0

, and L f f =
λ f

i f

∣∣∣
id=iq=0

. (15)

The parameters determined using the FP method were then used to simulate the
Matlab/Simulink model; they are shown in Table A1 along with the other parameters.

5. Wind Turbine System Control

Matlab/Simulink was used to evaluate the performance of the proposed MPPT current
control for the WRSG-based wind turbine system. The overall control system that was
developed is shown in Figure 6. It consists of the wind turbine model, which uses a look-up
table to determine turbine torque based on wind speed and feedback of the turbine speed
(Figure 7), two functions that determine the generator reference field current and q-axis
current based on the turbine speed, a dq-axis current controller to output dq-axis voltages,
a field current controller to output the field voltage, and lastly, the WRSG model in the
synchronous reference frame.
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5.1. Turbine Control

The Matlab/Simulink turbine control is shown in Figure 7. The dynamic model of the
wind turbine is defined by

τt − τg = (Jt + Jg)
dωt

dt
+ (Bt + Bg)ωt, (16)
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where τt is the turbine’s electromechanical torque. ωt is the turbine speed, which is equal
to the generator speed, ωg. Jt and Jg are the turbine and generator inertia, respectively.
Bt and Bg are the turbine and generator viscous friction coefficients, respectively.

5.2. Generator MPPT Current Control

An offline method was adapted from the author’s previous work [32] in order to
determine the optimal rotor field current and q-axis current while achieving MPPT with
minimized copper losses by the WRSG. This unique method determines optimal WRSG
currents as functions of the turbine speed based on steady-state FEA to achieve a second-
degree polynomial fit of the MPP curve shown in Figure 2. Figure 8a,b show the opti-
mal generator currents and the MPP curve as functions of generator speed, respectively.
The generator currents are taken as reference currents, iq

∗ (the command signal id
∗ is always

kept at zero) and i f
∗, for the Matlab/Simulink simulations. The dq-axis current controller

designed in Matlab/Simulink is shown in Figure 9a. Figure 9b shows the Matlab/Simulink
field current controller design. The various current controllers use a classical PI regulator.
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5.3. Transfer Function Derivation

To evaluate the robustness of the control system under dynamic conditions, the
transfer function between the generator torque and turbine torque using Matlab/Simulink
linearization functionality was found to be

τg(s)
τt(s)

=
963s5 + 3 × 106s4 + 8 × 108s3 + 6 × 1010s2 + 5 × 1011s + 4 × 109

s7 + 6391s6 + 107s5 + 109s4 + 1011s3 + 9 × 1011s2 + 5 × 1011s + 4 × 109 . (17)
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However, (17) can be represented by (18), which has the same characteristics as the
original model of (17) but with minimal order, as shown in the Bode plot diagram in
Figure 10a.

τg(s)
τt(s)

≈ 0.5726
s + 0.5726

. (18)

Figure 10a shows that the low-pass filter-transfer function of (17) has a −3 dB cut-off
frequency of 0.1 Hz, which is very low. This implies that the system is stable, as all higher
wind-speed frequencies are filtered out. To explain this low-pass filter characteristic, the
mechanical transfer function between the turbine speed and turbine torque was obtained
using the Matlab/Simulink linearization functionality:

ωt(s)
τt(s)

=
0.05s6 + 304s5 + 5 × 105s4 + 5 × 107s3 + 5 × 107s2 + 4 × 1010s + 3 × 108

s7 + 6391s6 + 107s5 + 109s4 + 1011s3 + 9 × 1011s2 + 5 × 1011s + 4 × 109 . (19)

Using the Matlab minimal realization functionality for pole-zero cancellation, (19)
is reduced to a first-order dominant transfer function given by (20). The bode plot
of (19) and (20) shown in Figure 10b verifies that the wind turbine acts as a low-pass
filter with a −3 dB (because the DC sits at the −24 dB gain) cut-off frequency of 0.1 Hz,
which is very low. This confirms that it is the large mechanical time constant of the wind
turbine that is causing this low cut-off frequency.

ωt(s)
τt(s)

≈ 0.04755
s + 0.5726

(20)

-20

-10

0

M
ag

ni
tu

de
 (

dB
)

Bode plot of (17)
Bode plot of (18)

10-3 10-2 10-1 100
-90

-45

0

Ph
as

e 
(d

eg
)

Frequency  (Hz)

(a)

-40

-30

-20

M
ag

ni
tu

de
 (

dB
)

Bode plot of (19)
Bode plot of (20)

10-3 10-2 10-1 100
-90

-45

0

Ph
as

e 
(d

eg
)

Frequency  (Hz)

(b)
Figure 10. Bode plot of the transfer function for (a) the complete (mechanical and electrical) and
(b) the mechanical part of the wind turbine system.

6. Simulation Results

This section presents the simulation results of the wind turbine system configuration
presented in Figure 6. The system was tested using different wind speed profiles between
and within the cut-in speed of 3 m/s and the rated speed of 12 m/s; the performance of the
MPPT controller is analyzed in depth.

6.1. Step Change in the Wind Speed

The wind turbine system was subjected to a wind speed profile ranging from 3 m/s
to 12 m/s and changing by 1 m/s every 100 s, as shown in Figure 11a. Figure 11b shows
the turbine (generator) speed response. The maximum power point operation is shown in
Figure 12, where Figure 12a shows the turbine power response and Figure 12b shows the
turbine torque response. Figure 13a shows the actual and reference dq-axis current response,
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while Figure 13b shows the actual and reference field current response. The results show
that the MPPT current controller tracks the target current references.
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Figure 11. (a) Wind speed variation and (b) generator speed response versus time.
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Figure 12. (a) Turbine speed and (b) turbine torque responses for wind speed variation versus time.
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Figure 13. (a) dq-axis and (b) field current responses for wind speed variation versus time.

6.2. Wind Speed with a Frequency of 0.1 Hz

The wind turbine was subjected to a 0.1 Hz sinusoidal wind speed profile with an
average speed of 10 m/s, as shown in Figure 14a. The turbine (generator) speed response is
shown in Figure 14b. The actual and reference dq-axis current and field current responses
are shown in Figure 15, and they track each other accurately.
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Figure 14. (a) Wind speed input of 0.1 Hz and (b) turbine speed response versus time.
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Figure 15. (a) dq-axis and (b) field currents for wind speed input of 0.1 Hz versus time.

6.2.1. Wind Speed with a Frequency of 1 Hz

The wind turbine was subjected to a 1 Hz sinusoidal wind speed profile with an
average speed of 10 m/s, as shown in Figure 16a, and the low pass filter characteristic of
the turbine system is seen in the turbine speed response shown in Figure 16b. The actual
and reference dq-axis currents and field current responses are shown in Figure 17, and it
can be seen that the actual and reference currents track each other accurately for a wind
speed input of 1 Hz.
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Figure 16. (a) Wind speed input of 1 Hz and (b) turbine (generator) speed response versus time.
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Figure 17. (a) dq-axis and (b) field currents for wind speed input of 1 Hz versus time.

6.2.2. Wind Speed with a Frequency of 10 Hz

A 10 Hz sinusoidal wind speed profile with an average speed of 10 m/s was applied
to the wind turbine, as shown in Figure 18a. The turbine (generator) speed response is
shown in Figure 18b. The actual and reference dq-axis current and field current responses
are shown in Figure 19. It can be seen that the actual and reference currents track each other
accurately for a wind speed input of 10 Hz.
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Figure 18. (a) Wind speed input of 10 Hz and (b) turbine (generator) speed response versus time.
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Figure 19. (a) dq-axis and (b) field currents for wind speed input of 10 Hz versus time.

7. Experimental Results
7.1. Experiment Setup

The experimental test bench setup is shown in Figure 20. A 22-kW four-pole induction
machine (IM) coupled to a 1:2.6 reduction gearbox was used to emulate the wind turbine.
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A flywheel was added to the IM to increase the mechanical inertia and emulate the wind
turbine’s inertia more accurately. A custom-built Pentium control system (Figure 21a) was
used to control both the IM and WRSG through two back-to-back connected voltage source
converters (VSCs). The input torque was measured using a USB torque sensor DR-3000
(Figure 21b) mounted between the IM and the WRSG. The torque sensor has a sensitivity
of 0.1% and a rated torque range of 0.1 to 500 Nm. The rotor speed was measured using
a 1024 pulse per revolution incremental encoder, which was connected to the Pentium
control system through a digital-to-analog converter board. A 60 A/80 V DC power supply
(Figure 21c) provided current to the field windings via brushes and slip rings.

The Pentium control system is built on Linux and includes an installed real-time
application interface kernel module. It runs on a 1.5 GHz Pentium CPU that interfaces with
a custom-built field programmable gate array (FPGA). This FPGA is in charge of sending
control signals to the VSC boards. The VSC boards provide channels for measuring the
currents of the IM and the WRSG, as well as the DC bus voltage. Because the VSCs are
connected back to back, the Pentium control system, with its six pulse-width modulation
output ports, can simultaneously control the IM and the WRSG. The VSCs used in this
project were supplied by SEW-EURODRIVE, specifically for the Electrical Machines Lab-
oratory at Stellenbosch University, and they are linked directly to the Pentium control
system. They offer automatic current protection as well as appropriate dead-time switching.
The resistors provide additional current protection in the event that the VSCs need to
discharge energy through their breaking circuits.

 

Induction machine 

Torque sensor 

Pentium control system 

WRSG 

DC power  

supply 

Back to back VSCs 

Resistors 

Flywheel 

Figure 20. Practical system setup.

(a) (b) (c)
Figure 21. Photos of the (a) Pentium control system, (b) 80 V/60 A DC power supply, and (c)
torque sensor.

7.2. WRSG Prototype

A new rotor was manufactured that was optimized using the coordinate descent
method to reduce the torque ripple of [24]. The stack assembly and winding of this rotor
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are depicted in Figure 22a,b, respectively. The manufactured stator was kept the same
based on [24], and the complete winding within its frame is shown in Figure 22c.

(a) (b) (c)
Figure 22. Photos of the manufactured prototype of the 4.2 kW 16/18 pole/slot WRSG. (a) Optimized
rotor stack assembly, (b) optimized rotor winding, and (c) complete stator winding in its frame.

7.3. Steady-State Performance

The experimental steady-state results for the proposed wind generation system, as a
function of turbine (generator) speed, are shown in Figure 23. The generator speed was
estimated by a shaft encoder, and this value was used to determine the generator’s current
references, iq (id = 0), and i f . A signal from the Pentium control system was used to control
the field current via remote control of the DC power supply. The field and q-axis currents
are suitably controlled, as shown in Figure 23a, and have the same function as the optimal
current references shown in Figure 7. The resulting turbine power versus generator speed
tested with the MPPT generator currents is shown in Figure 23b; it can be seen that the
FEA-predicted and -measured turbine power follow each other relatively well. Figure 23c
shows the input (turbine) power and the generator output power versus the generator
speed, and the efficiency performance is shown in Figure 23d. The generator efficiency
from the mechanical input power to electrical output power varies from 95% to 75% at
low speeds (100 to 220 r/min), which is effective for wind power generation because wind
turbines operate in this region for more than 80% of the year.
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Figure 23. Experimental steady-state performance of the proposed MPPT wind generator current
control as a function of speed. (a) Generator output current (Iq)(Id = 0) and field current, (b) FEA-
predicted and -measured MPP turbine power, (c) mechanical turbine input power, Pm and electrical
generator stator output power, Ps, and (d) efficiency.

7.4. Dynamic Performance

An important aspect of any wind energy system, including the proposed system, is its
stability under dynamic conditions. The experimental dynamic results for the proposed
wind generation system are shown in Figures 24 and 25. The results in Figure 24 are for
when the turbine speed is changing from 100 r/min to 320 r/min in steps of 20 r/min, and
depict the turbine speed and power responses in Figures 24a and 24b, respectively.

The results shown in Figure 25 illustrate the behavior of the system when the turbine
speed changes from 100 r/min to 320 r/min and back to 100 r/min. The turbine speed
and power responses are depicted in Figures 24a,b, respectively. Figures 25a,b show the
generator phase current and generator field current responses, respectively. These results,
shown in Figures 24 and 25, demonstrate the effectiveness of the MPPT current-control
method under dynamic conditions, highlighting the stability of the transition between
different generator speeds, and hence wind speeds. The results also demonstrate the
effectiveness of using simple speed functions to determine the optimal WRSG currents to
achieve MPPT.
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Figure 24. Measured (a) various turbine speeds and (b) turbine power responses versus time.

Figure 23. Experimental steady-state performance of the proposed MPPT wind generator current
control as a function of speed. (a) Generator output current (Iq)(Id = 0) and field current, (b) FEA-
predicted and -measured MPP turbine power, (c) mechanical turbine input power, Pm and electrical
generator stator output power, Ps, and (d) efficiency.

7.4. Dynamic Performance

An important aspect of any wind energy system, including the proposed system, is its
stability under dynamic conditions. The experimental dynamic results for the proposed
wind generation system are shown in Figures 24 and 25. The results in Figure 24 are for
when the turbine speed is changing from 100 r/min to 320 r/min in steps of 20 r/min, and
depict the turbine speed and power responses in Figure 24a,b, respectively.

The results shown in Figure 25 illustrate the behavior of the system when the turbine
speed changes from 100 r/min to 320 r/min and back to 100 r/min. The turbine speed
and power responses are depicted in Figures 24a,b, respectively. Figure 25a,b show the
generator phase current and generator field current responses, respectively. These results,
shown in Figures 24 and 25, demonstrate the effectiveness of the MPPT current-control
method under dynamic conditions, highlighting the stability of the transition between
different generator speeds, and hence wind speeds. The results also demonstrate the
effectiveness of using simple speed functions to determine the optimal WRSG currents to
achieve MPPT.
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Figure 24. Measured (a) various turbine speeds and (b) turbine power responses versus time.
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Figure 25. Measured step responses (a) turbine speed, (b) turbine power, (c) generator phase current,
and (d) generator field current versus time.

7.5. Speed Profile with Different Frequencies

In this section, in order to further evaluate the robustness of the proposed MPPT
current-control wind generation system, the performance of the system for speed references
with different frequencies is presented. The different speed profiles, with average speed
references of 260 r/min at 0.1 Hz, 1 Hz, and 10 Hz, are shown in Figures 26a, 27a and 28a,
respectively. The turbine power responses for the speed profiles at 0.1 Hz, 1 Hz, and 10 Hz
are shown in Figures 26b, 27b and 28b, respectively. Figure 27 shows that it is still following
at 1 Hz. The reason for this is that the cut-off frequency of the practical lab system is much
higher than that of the real system (the inertia is not as high). Figure 28 shows that, at
10 Hz, the system acts as a low-pass filter. However such high frequencies do not occur in
real life. These measured results support the simulation results. They show that the system
is stable and works well when the wind speed changes at different frequencies. They also
show that the system acts as a low-pass filter at a high wind-speed frequency.



Energies 2023, 16, 3290 18 of 21

0 10 20 30 40 50 60
Time [s]

0

50

100

150

200

250

T
ur

bi
ne

 s
pe

ed
 [

r/
m

in
]

0 10 20 30 40 50 60
Time [s]

0

0.5

1

1.5

2

2.5

T
ur

bi
ne

 p
ow

er
 [

kW
]

(a) (b)
Figure 26. Measured (a) turbine speed with a frequency of 0.1 Hz and (b) the turbine power response.
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Figure 27. Measured (a) turbine speed with a frequency of 1 Hz and (b) the turbine power response.
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Figure 28. Measured (a) turbine speed with a frequency of 10 Hz and (b) the turbine power response.

8. Conclusions

In this study, a simple and robust MPPT current-control method for WRSG-based
wind generation systems was investigated. Two simple turbine speed functions were used
to determine the q-axis current (the d-axis current was always set to zero) and field current
reference values to achieve MPPT of a WRSG-based wind turbine system. The simplicity of
this method sets it apart from classical perturb and proportional-integral-derivative (PID)
MPPT control methods.
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The Matlab/Simulink simulation results under variable wind speeds demonstrate the
robustness and effectiveness of the proposed MPPT current-control method for WRSG-
based wind generation systems. The results obtained by choosing a sinusoidal-oscillating
wind speed profile with three different frequencies demonstrate that the wind turbine
system is stable and acts as a low-pass filter, mainly due to the large mechanical time
constant of the wind turbine.

The proposed MPPT current-control method for WRSG-based wind turbines is vali-
dated by the experimental results. The experimental setup used a Pentium control system
that was built in-house to demonstrate the system’s simplicity and robustness by deter-
mining the MPPT generator’s field and q-axis current references using two simple speed
functions. In addition, the experimental results demonstrate that the proposed MPPT
current-controlled wind energy system is robust against variations in wind speed and acts
as a classical low-pass filter.
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Appendix A

Table A1. Matlab/Simulink simulation parameters.

Wind Turbine Value

Turbine inertia (Jt) 21 kg·m2

Turbine friction (Bt) 0.007 N·m/s/rad

Wound rotor synchronous generator

Stator resistance (Rs) 1.10 Ω

Rotor resistance (R f ) 2.63 Ω

d-axis inductance (Ld) 51.6 mH
q-axis inductance (Lq) 57.3 mH

Stator-to-rotor mutual inductance (Ld f ) 88.4 mH
Field-winding self-inductance (L f f ) 178 mH

Generator inertia (Jg) 0.002831 kg.m2

Generator friction (Bg) 0.0001 N·m/s/rad
Pole pairs (p) 8
Rated power 4.20 kW
Rated torque 126.4 Nm
Rated speed 320 r/min
Cut-in speed 100 r/min
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