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Abstract: The Gulf of Mexico is a widely explored and producing region for offshore oil and gas
resources, with significant submarine methane hydrates. Estimates of hydrate saturation and distribution
rely on drilling expeditions and seismic surveys that tend to provide either large-scale estimates or highly
localized well data. In this study, hydrate reserve characterization is done using numerical simulation at
Green Canyon block 955 (GC955). In addition, coupled thermo-hydro-mechanical (THM) simulation
results show that hydrate saturation and geobody distribution are determined by the thermodynamic
conditions as well as reservoir structures, stratigraphic differences, and permeability differences. Hydrate
formation due to upflow of free gas and dissociation due to gas production and oceanic temperature rise
due to climate change are simulated. The abundance of free gas under the hydrate stability zone and
favorable pressure and temperature meant little hydrate was depleted from the reservoir. Furthermore,
the maximum displacement due to warming reached 0.5 m in 100 years and 4.2 m in 180 days based
on a simulation of constant production of methane gas. The displacement direction and magnitude
suggest that there is little possibility of slope failure. Therefore, the GC955 site studied in this paper can
be considered a favorable site for potential hydrate exploitation.
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1. Introduction

Gas hydrates are ice-like compounds with gas molecules trapped in the crystalline
structure. The gas molecule can be methane, ethane, propane, carbon dioxide, or a combina-
tion of two or more gases, although the majority of natural hydrate reserves predominantly
consist of methane gas [1]. They are formed at high pressure and low temperature condi-
tions with sufficient gas and water molecules in submarine sediments and permafrost [1,2].
Submarine gas hydrates are observed around the world, with some locations having large
hydrate saturations that can potentially be used as energy sources [3]. Although the energy
potential is immense, uncertainties in production capacity, limitations in existing technolo-
gies, economic feasibility, and potential geological risks have thwarted the production of
methane gas from hydrates [3,4]. Furthermore, the potential impact of the exploitation of
hydrate resources on climate change needs to be studied. The thermodynamic stability of
methane hydrates is studied to characterize and quantify hydrate reserves [5–7]. Hydrates
are naturally unstable at atmospheric conditions, which pose a challenge for experimental
and field estimation of hydrate resources [8]. The study of subsurface pressure and tempera-
ture, pore water salinity, and the availability of hydrate-forming gas are used to statistically
quantify hydrate reserves [9]. The depths at which hydrate formation is possible according
to the thermodynamic properties of porewater and hydrate-forming gases are known as
the gas hydrate stability zone (GHSZ). Depending on the source of the gas, hydrates can be
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thermogenic (formed by the migration of deep-lying methane gas) or biogenic (formed by
the biological production of methane gas), which is usually determined by the gas content
and age of hydrates [6]. The relative position of rock matrix may or may not be affected
while hydrate crystals spread in pore spaces [4].

The Gulf of Mexico is one of the regions that has been extensively studied for hydrate
occurrence. It is an area that is exploited for hydrocarbon resources such as oil and gas and
has a large presence of research and industry infrastructure dedicated to producing and
transporting hydrocarbon resources. There are 56 permanent platforms and 547 perma-
nent boreholes in the region at water depths greater than 1000 feet [10], and at its peak,
1.6 billion barrels of oil were being produced annually [11]. It is estimated that there are
607 trillion cubic meters of gas hydrates in the Gulf of Mexico [12]. The nature and forma-
tion mechanism of hydrates depends on the region, thermodynamic conditions, and the
availability of hydrate-forming gases. There is evidence of both biogenic and thermogenic
methane hydrates [13–20]. Due to its energy potential and importance, a joint industry
project (JIP) was formed in 2001 with industry partners and the US Mineral Management
Service [21]. Two drilling expeditions from the JIP collected logging-while-drilling (LWD)
data from the northern Gulf of Mexico to evaluate and characterize the hydrate reserve in
the area (Figure 1) [21,22]. The leg I drilling expedition focused on locations at Atwater
Valley and Keathley Canyon to study hydrate occurrence [21]. The leg II expedition drilled
at Alaminos Canyon, Green Canyon, and Walker Ridge [22]. The two expeditions have
formed the basis for other expeditions and research on gas hydrates in the region. In this
study, we focus on the Green Canyon Block 955 that was drilled as part of the JIP leg II
expedition [22,23].
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Figure 1. Joint Industry Project sites in the Northern Gulf of Mexico. Five locations, namely, Alaminos
Canyon (AC21), Keathly Canyon (KC151), Walker Ridge (WR313), Green Canyon (GC955), and
Atwater Valley (AT13/14) were explored for hydrate occurrence and wellbore stability while drilling
through hydrate layers [12].

Green Canyon Block 955 (GC955) in the Gulf of Mexico is a channel levee system that
is known to contain large amounts of hydrates [22,24]. Sandstone reservoirs at GC955 are
known to host a large amount of hydrates at high saturation [24]. The GC955 lease block
is about 235 km south of New Orleans in the Gulf of Mexico [25]. It has been estimated
using logging-while-drilling (LWD) data that the GC955 site contains highly saturated
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hydrates of up to 80% in a sandy zone approximately 30 m thick [23,26,27]. It is part of
the Deepwater Mississippi Delta, which consists of channels and levee systems [24]. The
seafloor dips in a south-east direction at a depth of 1975–2250 m [28]. The site is highly
faulted and compartmentalized, with some faults acting as high-permeability conduits
for gas migration from deeper gas sources to the hydrate stability zone [20,24]. Three
LWD site data sets, namely GC955-H, GC955-Q, and GC955-I, are available from the JIP
expeditions that provide an in-depth estimation of hydrate presence in the area [12]. The
three sites are at depths of 2033 m, 2033 m, and 1986 m from sea level, respectively, and the
base of the hydrate system is observed at an average of about 400 m below the seafloor,
as represented by the three sites [24]. The hydrate distribution is likely heterogeneous
and subdivided into layers of different thickness; however, in the scope of this study, a
lower resolution grid size is used, and we are assuming that the hydrates are continuously
distributed across the depths. At the GC955-H site, it is likely that the hydrates are divided
into three distinct layers, with the thickest layer at around 250 m below the seafloor and
water-saturated sand in between [12,20]. In contrast, the GC955-Q zone is characterized
by a gas layer below the hydrate-bearing zone observed with a distinct bottom simulating
reflector (BSR) [24,25]. It is observed using seismic imaging that the hydrate layer may
not be continuous and may be separated by a large gas chimney running through the two
sites [25]. High-resolution seismic images were interpreted using the full-wave inversion
method [25], and Archie’s method was used to estimate hydrate saturation from the LWD
resistivity data [26]. Haines et al. [24] estimate that a total reservoir volume of 6.6 × 108 m3

of gas is in place in the form of gas hydrates. Recent investigation in the region estimates
a highly saturated hydrate layer at 413–442 m depth, with 79–93% of the porous volume
occupied by gas hydrates in sandy-silty sediments [14]. There are interbedded zones with
lower hydrate saturation (less than 30%) [29]. Furthermore, a different data collection
expedition at the GC955 block found anticlinal structures, a clay-rich seal layer, and fault
zones acting as pathways as well as compartmentalizing structures [20]. They also postulate
that long-distance free gas transport from deeper sources into the hydrate stability zone is
the major driving force in hydrate formation at GC955 [20].

At the GC955 site, a sandy layer lies at the base of the hydrate stability zone (BHSZ) [20,23].
The site is characterized by interbedded sandy and clayey silts with a reservoir interval
of about 26 m. The sandy silts are rich in hydrates, reaching hydrate saturation levels
higher than 80%, with clayey silts containing very little hydrate [20]. Hydrate formation in
submarine sediments may occur due to local biogenesis, local diffusion, methane recycling,
solidification of the gas reservoir, or upward migration of water-soluble and free methane
gas [19]. Transport of methane gas may occur due to diffusion of dissolved gas, advection
of dissolved gas, or advection of free gas [19]. In order to characterize hydrate reserves, we
must understand the formation mechanism of hydrates. Free and dissolved gas migration in
submarine sediments has been studied extensively to hypothesize the formation mechanism
of hydrates [19,30–33]. Different formation mechanisms for hydrates in the region have
been suggested [13,15,16,34–38]. One of the suggested phenomena is the upward migration
of methane gas into the hydrate stability zone to form the hydrate-rich layer [34,39]. The
nature and composition of methane gas collected from the hydrates in the region suggest
that it is biogenic in nature with some contribution from thermogenic sources [18–20,40].
However, the presence of an underlying gas layer with major fault zones acting as highly
permeable pathways suggests that the formation mechanism is upflow over short and long
distances [20,24,34,35,37].

Production simulations with an inclined sandy hydrate-rich layer between shale
layers performed at Nankai Trough, Japan, indicated that paralleling the hydrate layer
increases production efficiency [41]. Yadav et al. [42] used microwave heating to couple
with depressurization to enhance production. Wu et al. [43] employed a coupled thermo-
hydro-chemical (THC) method to perform production simulation by depressurization.
Wei et al. [44] determined the geomechanical properties of hydrate-bearing sediments from
the South China Sea. Similarly, numerical simulation-based resource characterization has
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been previously done to quantify submarine hydrate reserves [19,31,37,40,45–50]. However,
the dynamic nature of the reservoir, considering the formation timeline and structural and
stratigraphic details, has been taken into consideration in this study. It has been established
that geological structures, stratigraphic thickness, and permeability anisotropies impact
hydrate distribution and geobodies [45,46]. In this study, we use field data from past studies
and use a well-established geomechanical model and methodology to simulate hydrate
formation and dissociation using both coupled thermo-hydro (TH) simulation and thermo-
hydro-mechanical (THM) simulation and compare the two methodologies. Multiphysics
simulations have their own inherent higher computational costs and complexity [51].
However, they are more representative of the natural and scientific processes ranging from
geological systems [52–54] to energy system modeling [55,56]. We use high-resolution
seismic data interpretations [24,25] and LWD data from GC955-H and GC955-Q [12,23] to
create a representative reservoir model and simulate the formation of hydrates between the
two sites. The same hydrate-bearing reservoir model is used to simulate the dissociation of
hydrates and quantify gas production and geohazards associated with it. This study adds
to the previous literature on the hydrate reserves in the Gulf of Mexico by incorporating
the formation and dissociation models into a single THM framework.

2. Methodology

This study uses numerical simulation for the characterization of the gas hydrate
reserve at the GC955 site between two wells (GC955-Q and GC955-H) and the exploration
of geohazards due to hydrate dissociation. For the characterization of hydrate resources,
we have used numerical tools (TOUGH + Hydrate [57]) to simulate the formation of gas
hydrates in the region. It is assumed that, at initial conditions, there is a natural gas
deposit below the hydrate stability zone, starting at around 300–500 m depth below the
sea floor [24,25]. Numerous faults run through the hydrate stability zone, and the gas
deposits function as flow conduits. We have attempted to mimic short- and long-distance
migration of methane gas from the deeper gas sources by using previously employed
numerical tools [45–47]. Reservoir characterization is done by using a coupled heat and
mass transport model (TH) in TOUGH + Hydrate [57] and a coupled thermo-hydro-
mechanical (THM) model in TOUGH + Hydrate + FLAC3D [58]. The reservoir model
is based on the seismic images and LWD data collected at the GC955-Q and GC-955-H
sites and the literature available from the Green Canyon block [12,21–25,59]. The model is
two-dimensional, 1.5 km long, and 700 m thick, with a gentle slope of 3% toward the east
(Figure 2). The grid discretization of 20 m × 20 m is used with four major faults of one
grid length and width each. The mesh size sensitivity of the model was performed on a
mesh size of 10–50 m [45–47] with less than 5% deviation between primary variables. The
porosity and lithology distribution are based on the LWD data interpolated using a Python
code between the two sites [60].

Initially, a hydrostatic pressure profile and thermal gradient of 32 ◦C/km are assumed,
with the seafloor temperature assumed to be uniform at 4 ◦C [61,62]. The porosity is
interpolated based on density porosity logs from the two LWD sites [22] and ranges from
0.4 to 0.7 with a decreasing trend with depth as sediments are more consolidated. The
permeability ranges from (3.0 × 10−16 m2) to 9.3 md (9.3 × 10−15 m2) and is interpolated
based on porosity values and lithological classification [63]. The vertical permeability is
increased by two orders of magnitude in the fault zones. Geomechanical stress is initialized
by assuming a vertical stress of 19 MPa/km and a maximum horizontal stress equal to the
vertical stress parallel to the model [64]. The boundaries of the model are assumed to be
no-flow boundaries on all sides except the top of the model. The top of the model slopes
from west to east, with constant pressure and temperature at the seafloor. The seafloor
depths are at 1986 m below seafloor at well GC955-Q and 2033 m below seafloor at well
GC955-H. In addition, the bottom of the model has source terms that mimic the flow of free
gas from deeper gas sources.
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Figure 2. (a) West-East Seismic transect at Green Canyon block 955 [59]. A subset represented by the
red box represents the area used for reservoir simulation. (b) Reservoir model with grid discretization
of 20 m × 20 m (Vertical exaggeration: 1). The green cells represent the four major high permeability
faults that are visible in the hydrate stability zone. Blue lines represent the two LWD sites.

The stable hydrate reserve is subjected to hydrate dissociation scenarios: warming of
the ocean floor and depressurization for gas production. The scenarios are tested using
the TOUGH + Hydrate + FLAC3D THM model [57,58,65] to quantitatively analyze the
production potential and associated geohazards in the region.

The warming scenario assumes that the seafloor temperature rises by up to 1 ◦C
over the next 100 years, and three different cases are simulated with different warming
rates [47,66,67]. Depressurization is performed using a horizontal well at a depth of 450 m,
targeting the highly saturated coarse-grained layer. Production is performed at a constant
rate of 0.1 kg/s from the well, and hydrate dissociation, gas production, and displacement
are observed after 180 days based on realistic production scenarios employed in the South
China Sea [68]. THM modeling is performed using the TOUGH + Hydrate + FLAC3D
methodology [58]. The coupling is done at each timestep to update the porosity and
permeability based on stress calculated from FLAC3D [65], and pore pressure, temperature,
and phase saturations are updated after each TOUGH + Hydrate timestep [58,69].

∇·σ + ρg = 0 (1)

where σ is the effective stress tensor, g is the acceleration due to gravity, and ρ is the average
density of the mass considered.

In this study, we use the structure I type hydrates [2] that are the most common in
submarine sediments and a modified Mohr-Coulomb failure criterion to an elastoplastic
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mechanical model on the host medium, taking the cementing effect of hydrates into ac-
count [58,70]. Rutqvist, J., and G. Moridis [58] presented a linear model relating cohesion,
bulk, and shear moduli with hydrate saturation based on Toyura sand [71]. While it is a
widely used model for predicting the geomechanical strength of hydrate-bearing sands, in
this study, we use predicted moduli based on sonic logs from GC955 [25] (Equations (2)–(4)).
The linear model is extrapolated based on hydrate saturation and sonic velocity at satura-
tions ranging from 0–60%. The change in moduli is assumed to be linearly dependent on
hydrate saturation.

K = 2000 + 6667Sh (2)

G = 1200 + 3000Sh (3)

c = 0.5 + 1.5Sh (4)

where K is the bulk modulus of elasticity, G is the shear modulus of elasticity, and c is the
cohesion (MPa). Sh is the hydrate saturation in fractions (0–1). The frictional angle and dilation
angle are fixed for cementitious hydrate-bearing sediments at 30◦ and 10◦, respectively.

Conservation of mass and energy consists of the mass and heat accumulation term
(MK), flux term (FK), and source/sink term (qK) for component K.

d
dt

∫
Vn

MKdV =
∫

Γn
FK·n̂ dÂ +

∫
Vn

qKdV (5)

The geomechanical part of the simulator is solved by a forward explicit scheme to a
static state at each timestep, while TOUGH + Hydrate uses the Newton-Raphson method
for first-order fully implicit time integration and an integrated finite difference method for
space discretization [52].

The numerical simulation was performed on a Dell Precision T7810 Windows com-
puter (Dell Inc., Round Rock, TX, USA) with 32 GB of RAM and Intel i7 processors with a
2.2 GHz processing speed. The parallel capability of TOUGH + Hydrate [52] was not used
in this study. The runtimes for the simulation ranged from 4 h to 72 h, depending on the
complexity of the simulations and the inclusion of geomechanics.

The THM model is used to model three different simulation cases:

1. Reservoir characterization of the prolific hydrate-bearing region of the Green Canyon
955 site between two wells, GC955-Q and GC955-H.

2. Warming of seafloor temperature by 1 ◦C over the next 100 years, mimicking a rise in
seawater and bottom water temperature due to climate change.

3. Production of methane gas from the hydrate reserve using a horizontal well between
the two previously drilled wells at the hydrate stability zone.

3. Results

Reservoir characterization by numerical simulation is achieved by using a coupled heat
and mass transport model (TH) in TOUGH + Hydrate [57] and a coupled thermo-hydro-
mechanical (THM) model in TOUGH + Hydrate + FLAC3D [57,58,65]. Three different
cases are simulated, where we investigate the importance of inter-well details in reservoir
characterization and the impact of using a coupled THM model.

3.1. Reservoir Characterization of Hydrate Formation

The first case assumes that there are no high-permeability faults acting as pathways. A
slow upward migration of gas occurs to form a hydrate zone above the gas layer (Figure 3).
The migration of gas occurs due to buoyancy, and the absence of faults makes the process
slow. The total hydrate mass reached 3 × 107 kg per unit cross-section depth. It takes about
100 thousand years for the reservoir to reach steady-state conditions, which is much higher
than the estimated formation timeline for hydrates in the region [72]. The model suggests
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that a reservoir model based on well data interpolation alone cannot accurately predict the
complex formation mechanism of submarine hydrates [19,45].
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Figure 3. Hydrate formation after 100 thousand years, assuming slow upward migration due to
buoyancy. (a) The hydrate saturation reaches a maximum of 55% and is uniformly distributed along
the length of the reservoir model. (b) The underlying gas layer is typical in hydrate reservoirs at
Green Canyon.

A second characterization model is simulated using seismic data and includes the
four major high-permeable faults in the reservoir model. The simulation resulted in a more
complex hydrate formation, with hydrates forming around fault zones at a higher concen-
tration and gas migrating upwards through the faults. The major migration mechanism
for the deeper gas source is the permeability difference between the faults combined with
buoyancy. The hydrate reservoir reaches a steady state after about 16,000 years and yields
a total hydrate mass of 5.1 × 107 kg per unit cross-section depth. The maximum hydrate
saturation in the reservoir reached 78% (Figure 4).

A third hydrate formation model is simulated employing the coupled THM model.
The THM model reached steady state earlier, after just less than 15,000 years, and a slightly
higher hydrate saturation (82%) is observed (Figure 5). The total mass of the hydrates
within the reservoir is less than 4.7 × 107 kg per unit cross-sectional depth. The maximum
hydrate saturation corroborates the high saturation values observed by Haines et al. [24].
Since the saturations were estimated based on resistivity logs, both models with fault zones
can be classified as accurate characterizations of the hydrate reserves.

In all three characterization models, the hydrate stability zone is at a depth of 300–450 m
below sea floor. The hydrates are more concentrated along the depths of 400–450 m and
along the fault zones. In all three models, the upward migration of methane gas from the
gas-rich reservoir zone to the hydrate stability zone is the major formation mechanism for
hydrates [34]. In order to accurately implement the dissociation scenarios in the hydrate
reserve, we used the THM model.
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Figure 5. Hydrate formation after fifteen thousand years in the reservoir domain. (a) The hydrate
saturation reaches a maximum of 82% and is distributed along length of the reservoir model, with
peaks along faults and highly permeable regions. (b) The underlying gas layer with notable chimney
structures is observed consistently with field observations at Green Canyon.
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3.2. Dissociation Due to Warming of the Seafloor

The model assumes a steady increase in seafloor temperature of 1 ◦C over the next
100 years based on climate predictions for the region [67]. The boundary conditions are
the same except for the top layer, which increases in temperature. The overall mass of the
hydrate in the reservoir decreases by 2.6 × 105 kg, and the hydrate saturation decreases
by 0.1%, which closely matches with the predicted methane release rate from the Gulf of
Mexico [67]. The hydrate dissociation initiated along the base of the hydrate zone, and the
gas layer along the bottom increased in volume (Figure 6).
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Figure 6. (a) Hydrate saturation after 100 years of steady warming by 1 ◦C. The hydrate mass
decreases by 0.1%, and the maximum saturation is 72%. (b) The total mass and sediment volume of
the gas layer increased as hydrates started dissociating along the base of the stability zone.

The decline in strength due to the hydrate dissociation causes the overall reservoir
to undergo negligible compaction with a maximum displacement of 0.5 m (Figure 7).
Considering the large domain and the time period, the displacement cannot be considered
significant enough to cause concern for geological stability.

3.3. Dissociation Due to Production of Methane Gas

A constant production simulation of 0.1 kg/s from the wells for 180 days was per-
formed using the THM model, with the minimum pressure restrained at 10 MPa. The
abundance of hydrates and the underlying gas layer meant that the total hydrates in the
reservoir did not decrease significantly. However, the low permeability of the domain
meant that hydrate dissociation was more localized, with hydrate saturation decreasing
by ~10% on layers just below the production grids. The steady production rate restrained
the minimum pressure, making the total saturated zone almost identical after 180 days
with a minor decrease in saturation locally (Figure 8). The total methane gas produced
from the reservoir was 1.03 × 106 m3, with 5 × 105 m3 of free gas reforming hydrates as
production occurred. The hydrate depletion from the reservoir was therefore only about
half the total produced hydrate mass, with the other half replenished from the underlying
gas layer.
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Figure 8. (a) The hydrate distribution is not impacted by the steady production of 0.1 kg/s for
180 days in the reservoir using horizontal production well (red dotted line). The maximum hydrate
saturation remains the same along faults, although the total hydrate in the reservoir decreases by
5 × 104 kg. (b) The underlying gas layer contributes to the production as much as the hydrate layer,
and that facilitates upward migration into the hydrate stability zone.

The mechanical displacement of the reservoir due to production is an important aspect
while considering the THM model for hydrate exploitation. The hydrate production for
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180 days did not result in a major displacement in the reservoir domain (Figure 9). The
maximum displacement was less than 5 m. Since there was not a significant reduction in
the saturation of hydrates in the domain, the displacement can be attributed to elevated
effective stress due to depressurization. There is no slope failure observed in the domain.
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4. Discussion

Hydrate reserve characterization using the numerical method has many facets that
need to be explored to accurately predict the potential resource and associated geo-hazards.
Numerical results are only a part of the rigorous study that needs to be done in the reserve
characterization process. The thermo-hydro (TH) model predicted a very similar hydrate
saturation to the thermo-hydro-mechanical (THM) model; however, the THM model gives
extra information on how geohazards could be triggered by dissociation. Past studies using
seismic images and well logging techniques gave us the data needed to create the reservoir
model and compare our results. Previous studies in the region have also concluded that the
fault zones present below the hydrate stability zone may act as flow pathways for free and
dissolved gas. Our numerical simulation confirms those findings. In addition, numerical
modeling gives us the higher resolution hydrate estimate and inter-well details that cannot
be obtained from well logging or seismic images alone. The results are compared with past
estimates because the information collected in the seismic surveys and drilling expeditions
forms the basis for our reservoir model. Therefore, this method can be described as
complementary to the existing methodology for hydrate reservoir characterization.

The numerical model itself is applied to the region in the northern Gulf of Mexico
and may not be equally accurate in other locations. The estimated hydrate reserves are
based on the assumption that the reservoir model was created using simple interpolation
between two wells and the addition of features using seismic images. The numerical simulator
itself assumes that the hydrate-forming gas is pure methane; there is no salt precipitation or
mechanical dispersion; and the mass flow follows Darcy’s law. The field may have anisotropy
and uncertainties not captured in the seismic surveys or the resolution of the reservoir model.
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Other uncertainties in the model may arise from the geomechanical relationships, porosity
and permeability correlations and their evolution, impurities in the hydrate-forming gas, and
heterogeneity in pressure or temperature gradients. It is, however, reasonable to assume that
these uncertainties may only slightly alter the hydrate distribution as the reservoir model has
captured as much information as possible from past literature.

In the Gulf of Mexico, the hydrate reserve in the Green Canyon 955 block is a pro-
lific reserve with exciting potential for methane gas production and minimal geohazards
associated with it. In addition, it can also be considered advantageous that the slope is
gentle at about 3% and the rock is consolidated enough to mitigate any failure due to
hydrate dissociation. However, the north-south slope, which is about 7%, is also pertinent,
and further LWD data needs to be collected to accurately quantify slope stability in that
direction. The low permeability of the hydrate layer may pose a production challenge as
more time and resources may be required to produce gas. However, the natural fractures
in the hydrate-bearing zone are not considered in the scope of this study, which could
potentially be valuable in a production scenario.

5. Conclusions

Hydrate reserves in the Gulf of Mexico Green Canyon 955 block can be characterized
as non-uniform, highly saturated, and concentrated around the four major faults between
the two wells GC955-Q and GC-955-H. The hydrates are distributed with a maximum
saturation of 82% and major chimney-like structures prominent above the hydrate stability
zone. The numerical simulation works as a tool for characterizing hydrate reserves with
details that cannot be captured from well logs or seismic images. It is clear from the three
hydrate formation simulations that the structural and stratigraphic nature of the reservoir
need to be accurately represented to characterize the reserve.

The thermo-hydro-mechanical (THM) simulation of hydrate formation did not yield
a significantly different result than the thermo-hydro (TH) simulation. However, it is
vital to characterize not only the resource potential for the hydrate-bearing reserves but
the geo-hazards associated with them. In this study, we use established geomechanical
relationships for hydrate-bearing sediments and THM methodology to characterize the
hydrate reserve in the Gulf of Mexico.

Additionally, the dissociation scenarios evaluated in this study did not result in a
high displacement of hydrate-bearing sediments. The displacement is concentrated toward
the top of the reservoir in both cases, and little shear failure is seen. The displacement
observed due to ocean warming may simply be due to hydrate layer compaction over
100 years as pore-filling hydrates dissociate. While the production scenario resulted in
higher subsidence, a maximum displacement of 4.2 m is not significant enough to trigger a
large geohazard and can be managed by reducing the depressurization rate. There was no
indication of slope failure in this direction due to the gentle slope of about 3%. It is also
important to quantify slope stability in the north-south direction for production, which
would require further drilling expeditions in that direction. The Gulf of Mexico is not a
seismically active region with large earthquakes, which also reduces the potential for any
slope failure. Therefore, it is evident from this study that the hydrates in Green Canyon
Block 955 can be exploited to produce methane gas. However, since the Gulf of Mexico is
a region with significant subsea infrastructure for oil and gas, any drilling or production
activity must be done taking the region’s geomechanical properties into consideration.
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