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Abstract: There is increased talk about using second-life batteries in applications. In first-life ap-
plications, the batteries start from new, and a range of life cycle estimation techniques are applied.
However, it is not clear how second-life batteries should be monitored compared to first life batteries.
This paper investigated different algorithms from first-life applications for estimating and forecasting
battery cell state of health in conjunction with capacity calculations using second life cells under long
term durability testing. The paper looks at how close these models predict capacity fade based on a
set of second-life batteries that have been undertaking sweat testing over six different applications.
The paper concludes that there are two methods that could be suitable candidates for predicting
lifespan. One of these needed to be modified from the original.

Keywords: energy storage; second-life battery; capacity estimation; capacity fade remaining useful life

1. Introduction

With the increase in electric vehicle registrations, there are increasing numbers of used
batteries going through the recycling and reuse chain. Once a second-life battery has been
graded and sorted, it is possible to reuse it in another application such as stationary storage.
There is a significant body of work on tracking capacity fade in new batteries. However, it
is not straightforward to establish good ways of tracking remaining life or capacity fade of
second-life batteries. This is due to several reasons (details in Table 1):

• Nearly all the published techniques start with a new battery and assume its end of
useful life is 80%, whereas second-life batteries start with an 80% remaining capacity
battery [1–3]. There are, therefore, very few published records of how batteries degrade
below 80% of remaining capacity [4–6].

• The published work uses a variety of different Li-Ion battery chemistries, and what is
suitable for one chemistry may not be suitable for others [1,4,7].

• Nearly all the published data assumed the cycling is from 0% to 100% DOD with no
variations. Second-life batteries will undergo different cycling depending on their
application and, therefore, they will not be following just a 100% charge/discharge
curve. Some of the published methods are adaptable to deal with varying DOD, but it
is by no means clear if the adjustments are valid [2].

In this paper, a literature review on published capacity fade methods for first-life
applications are reviewed as part of Section 2. Many of these are complicated and require
machine learning. Machine learning methods typically require a large amount of training
data. The accuracy of the training data is important for the predicted result. Machine-
learning-based methods are, therefore, not suitable at this time for second-life batteries
where there is a lack of good publicly available data. Section 3, therefore, looks at how the
non-machine-learning-based methods can be applied to second-life batteries under long
term sweat tests. Section 4 compares the results of the capacity fade estimation using these
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methods with measured capacity of a set of six second-life batteries on long term test under
different sets of cycles.

This work is novel because it investigates using measured data how second-life batteries
degrade over time and how this may be estimated using adapted capacity fade techniques.

2. Remaining Useful Life Estimation

Life cycle estimation is difficult and is normally based on either capacity or impedance.
Most literature uses capacity fade as a key indicator for RUL, while a drop in impedance is
typically associated with a power fade.

Batteries undergo a range of different cycles with different rest periods under different
rates of charge and discharge at different temperatures. A second-life battery is even more
complex because it typically has an unknown history. Many manufacturers produce life
cycle curves to act as indicators of the number of cycles that can be expected for a constant
depth of discharge. These are typically backed by life cycle testing. The split between
calendric (battery resting) and cyclic aging is not always considered with cyclic aging
considered more onerous.

This complexity has not stopped the academic community from attempting to come
up with imaginative and complex life cycle estimation (or remaining useful life RUL)
calculations based on a plethora of information [8–10]. It is typical to divide these into
model-based methods and data driven methods. Model-based methods require analysis
of the degradation mechanism of lithium-ion batteries and depend less on historical data.
The electrochemical model or equivalent circuit model are commonly used in current
research. Data-driven methods tend to analyze historical data to excavate potential rules,
and then apply these rules to predict the development of events. It is not necessary to
have a profound knowledge of the degradation mechanism of a battery. The degradation
can be predicted by rules derived from historical data. Some of the methods described
below can be easily adapted to second-life battery remaining useful life calculations. For
example, those that use an empirical formula. Other methods require extensive testing
prior to determining algorithms for remaining life or are complex to understand. These
are typically based on AI techniques. This paper will only use those methods that are
adaptable to second-life batteries without the need for extensive testing.

In many cases, regression is used to adapt constants in empirical equations to track
the capacity fade, as shown Figure 1.

There are a variety of different regression techniques used from the least squares fit to
a curve [11,12] through to Gaussian process regression [5] and particle swarm optimization
regression [3].
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The training data can be a measured capacity with time or a health indicator (HI), e.g.,
time to go from maximum voltage to minimum voltage under a constant current discharge
or the shape of the discharge or charge curve [13].

A number of different curve types have been used in previous literature including
exponential formula [7,14,15], Polynomial formula [11], the power law [12], and some
formulae that are based on empirical examination on test results [1,4].

More complex capacity fade techniques using extensive data training and including AI
have been developed and summarized at high level in Figure 2. It is not straightforward to
pick up the results and equations within the following methods and, therefore, these cannot be
directly used without additional understanding, extensive data set training, and application.
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The methods include the Weiner method [16–18], support vector machine (SVM)
[19,20], which works as shown in Figure 3. The box-cox transformation [6,21], which is a
method looks at correlation of data with health indicators.
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The majority of these methods are based on AI techniques. The process is, therefore,
mostly similar to that described in Figure 2 and does not necessarily rely on battery models
to implement. Neural Networks are very popular [22–25]. There is also a recent skew in
literature away from using impedance and capacity to estimate RUL as these are difficult
to obtain online. There are many different types of machine learning and curve fitting
type methodologies that could be used to solve this problem. Examples include regression
fitting of the capacity curve based on relevance vector machine learning and Gray’s model
(which works on the differential of the time varying test data) [26], and these can be split
into cycle degradation and/or rest time calendric degradation. Other methods use particle
filters with other training methods such as neural networks [27] to predict capacity. AI
techniques were not applied to the data generated in this paper as the sample size is too
small to both train the AI and to generate meaningful results.

The published literature uses a variety of different battery chemistries and sizes to
validate the work, but nearly all the tests are undertaken on small cylindrical cells at about
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1–2 Ah. A high proportion of tests are also undertaken on pre-established data sets from
NASA. Where published, these are included in the review.

Table 1 shows the different chemistries, cycling, or data sets mentioned that have been
used by different authors.

Table 1. Key Validation Parameters.

Ref. Chemistry Cycling

[1] LiFePO4 in cylindrical packaging
Capacity range: 100% to 80% of life
Cycling conditions: Nine batteries with varying
temperature, cycle depth, and number of cycles.

[2] LiFePO4 in cylindrical packaging (2.2
Ah)

Capacity range: 100% to 80% of life
Cycling conditions: Two batteries under each condition
below.
temperature (−30 ◦C, 0 ◦C, 15 ◦C, 25 ◦C, 45 ◦C, 60 ◦C),
DOD (90%, 80%, 50%, 20%, 10%) and charge/discharge
rate (C/2, 2C, 6C, and 10C)

[4] LiMn2O4 in prismatic package (40 Ah
and 80 Ah)

Capacity range: 100% to 30% of life
Cycling conditions: Capacity tests with trickle charge
rest periods, up to 1600 days testing. Cycle
charge/discharge number and process are not clear as
the results are in test days only

[7] LiNiCoMnO2 in a cylindrical package

Capacity range: 95% to 75%
Cycling conditions: Two (small) batteries cycled to 100%
DOD (with over charge and over discharge to aid
degradation) for around 100 cycles. Life estimation based
on curve fitting an equation to the data.

[3,5,6,14,16–18] LiCoO2

Nasa dataset (all or part of) [28]
Capacity range: 100% to 70%
Cycling conditions: Li-ion 18,650 sized rechargeable
batteries were cycled to 100% DOD from new to 70%
capacity (2 Ah to 1.4 Ah). Life estimation based on curve
fitting an equation to the data.

[3,14,16,17] LiCoO2
Maryland data set [29]
Capacity range: 100% to 80% capacity range

[15] LiCoO2 (probably)

Capacity range: 100–50%
Cycling conditions: Two types of small cells with four of
each, full charge and discharge cycle for around 200–800
cycles depending on type.

[11] NiMH
Capacity range: 50–0%
Cycling conditions: Two small cells full charge and
discharge cycle for around 85 cycles.

[30] Li Ion

Oxford university data set [31]
Cycling conditions: Up to 3600 charging cycles, looking
for changes in the incremental capacity data as a function
of probability.

[12] LiFePO4

Cycling conditions: Four small cells, full charge and
discharge cycle for between 363 to 1549 cycles,
undertaken during charging above 70% SOC.

[32] LiCoO2

Capacity range: 100–70%
Cycling conditions: At least seven small cells at
discharge rates of 10% to 90% DOD with up to 4000+
cycles recorded at 50% DOD.

[33] Lithium Ion
Capacity range: 100%-70%
Cycling conditions: Small cells at 0.5C discharge for 1000
cycles.

[18] Li(NiCoMn)1/3O2

Capacity range: 100–80%
Cycling conditions: Six small cells over 840 cycles
undertaken at high temperature to speed aging.

[34] Li(NiCoAl)O2 Panasonic cylindrical

Capacity range: 100% to about 60–70%
Cycling conditions: 18 small cells undertaking 100%
DOD charge and discharge cycles at cycle rates of 0.5C,
1C, and 2C at different temperatures. Up to 800 cycles
recorded.

[22] Lithium Ion
Capacity range: 100–80%
Cycling conditions: Two small groups of cells, between
2500 cycles, one set with mechanical vibration.

[23] Li(NiCoAl)O2 cylindrical batteries

Capacity range: 100–80% (approx.)
Cycling conditions: 0-100% DOD cycles at different
charge rates (1C, 2C and 3.5C) and temperature (25 ◦C
and 40 ◦C) to around 600 cycles.
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For second life applications, it is clear from the data above that many of these methods
are appropriate only for small batteries that have capacity faded to 80%. In addition, it is
not clear how chemistry impacts the results. Therefore, it is not clear how applicable these
methods will be for second life applications.

In addition, many of these methods are complex and require training data that do
not exist when the battery enters its second life. Machine-learning-based methods require
a large dataset, which is not available. A selection of these methods, described below,
have been chosen as possible contenders for determining the capacity fade of a second-life
battery on energy storage applications. They were chosen because they do not use extensive
training data and are straightforward to implement, thus they can be used in real time.

2.1. Method Used by Swierczynski et al.

Swierczynski et al. [1] proposed two different equations for degradation: power fade
and capacity fade. Both power fade and capacity fade are accumulative, and the end of life
is chosen as representing the point where these pass 20% capacity degradation. The power
degradation is claimed to be lower than the capacity degradation in this paper.

The relevant equations for calendric and cycle power fade and capacity fade are as
follows, respectively:

Pf ade =
0.000375SOCst + 0.1363

0.155
× 0.003738te0.06778T (1)

where:

Pf ade is the estimate of power fade (calendric);
SOCst is the state of charge the battery is stored at (%);
T is the temperature of storage in ◦C;
t is the storage time;

C f ade =
(

0.019SOC0.823
st + 0.5195

)
×
(

3.258 × 10−9T5.087 + 0.295
)
× t0.8 (2)

where:

C f ade is the capacity fade (calendric);

Pf ade =
1
3

(
5.78x10−4 × e0.03T + 1.22 × 10−7

)
× 2.918x10−5 × e0.08657cd × nc(0.00434T−0.008cd−0.1504) (3)

where:

Pf ade is the estimate of power fade (cyclic);
cd is the cycle depth (%);
nc is the number of cycles;

C f ade = 0.00024e0.02717T × 0.02982cd0.4904 × nc0.5 (4)

where:

C f ade is the capacity fade (cyclic).

Figure 4 shows the process involved in implementing this methodology.
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Equation (4) relies on cd—the cycle depth (%)—and nc—the number of cycles. The
average cd is calculated over nc and used in the equation with equivalent nc, as the original
equation relies on fixed cycle depths.

2.2. Method Used by Wang et al.

Wang et al. [2] use a method that fits experimental data to a power law.

Qloss = Be(
−Ea
RT )Ahz (5)

where:

Qloss, is the percentage of capacity loss;
B is the pre-exponential factor;
Ea is the activation energy in J mol−1;
R is the gas constant;
T is the temperature in Kelvin;
Ah is the Ah throughput, which is expressed as Ah = (cycle number) × (DOD) × (full cell
capacity), and z is the power law factor.

The experimental data were fitted to give:

Qloss = 30, 330e(
−31,500
8.314T )Ah0.552 (6)

At C/2.
Additionally, generalized to:

Qloss = Be(
−31700+370.3×Crate

RT )Ah0.552 (7)

where Crate is the charge rate, B = 31,630 at C/2, 21,681 at 2C, 12,934 at 6C, and 10,512 at 10C.
The Wang method is an exponential curve based on the variable Ah = (cycle number) ×

(DOD) × (full cell capacity). To deal with degradation at each cycle, the average DOD up
to that cycle number multiplied by the number of cycles is used along with the original
cell capacity. As the DOD changes each cycle, the average DOD changes between each
calculation and it can look as if the battery has recovered between cycles. However, this is
just an artefact of the mathematics and should be treated as low level noise.
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2.3. Method Used by Matsushima et al.

Matsushima et al. [4] look to represent capacity fade by a time factor:

Qloss = K f × t1/2 (8)

where:

K f is the rate constant;
t is time to reach 70% capacity;
K f correlates with temperature and satisfies the relationship for cells between
100–70% degradation;

lnK f = −4.2388 × 1000 × T−1 + 13.78 (9)

where:

K f is the rate constant;
T is temperature in K.

For cells below 70% degradation the following equations can be stated to be used to
estimated capacity drop.

Qloss = −0.9481t
1
2 + 88.338 @ 45

◦
C

Qloss = −1.2906t
1
2 + 89.746 @ 55

◦
C

Qloss = −1.7374t
1
2 + 91.378 @ 60

◦
C

(10)

2.4. Method Used by He et al.

He et al. [15] used an exponential curve fitting method. There are a number of expo-
nential curve fitting methods [4–6], but this one had the parameters used clearly stated.

The relevant curve fitted equations are as follows:

Ck = aebk + cedk (11)

where:

Ck is the capacity at the kth cycle.

The parameters a, b, c, and d are set from experimental data using different numbers
of cycles.

The variables in the equation vary with time but not significantly up to the 60-cycle
test that was used. The method in the paper works by estimating these four parameters and
using these to estimate the capacity until a fixed end of life criteria is reached. As this does
not include depth of discharge as a parameter, it is unlikely to be useful for the second-life
battery application in its current form.

The LiCoO2 batteries used by He et al. [15] start with the following:

A = −0.000222, b = 0.04772, c = 0.89767, and d = −0.00094

These values are then adjusted using regression.
The original data set was based on full charging and discharging cycles. This work

has been modified so that the exponential curve is based on the varying cycle DOD that is
in each cycle multiplied by the scaling factor y2. A starting offset (y1 = 0.76) was added as
well as the impact of variable DOD (three values were tried y2 = 1/10, 1/3.9, and 1/1.5).

Equation (11) has been adapted as shown in Figure 5 to deal with partial SOC cycling
as follows:
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Ck = y1

(
aeby2k + cedy2k

)
(12)
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2.5. Method Used by Dogger et al.

Dogger et al. [32] used test data to establish a parameter called 100% DOD cycle
equivalent (DoDCE), as illustrated in Figure 6. There are a higher number of cycles
available at a lower depth of discharge than would be achieved by looking at the equivalent
energy balance. This can be found from a graphical representation.

If it is assumed, for example, that a first life battery undertakes an average 35% DOD
and an estimated 2000 total cycles over 10 years [35], then this equates from the equation
below to a DoDCE of 0.35 × 2000 = 700 DoDCE cycles. This can be subtracted from the
starting point to give a new starting point for second life applications.

DoDCE = Ncycles × DOD (13)

The process can be continued until DoDCE = 0 using the process in Figure 7:
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3. Cycle Testing

The second life cells that were available for testing were two cells in series with two
cells in parallel and the operating voltage range was given as:

• Min cell voltage 5 V/module
• Nominal cell voltage 7.5 V/module
• Max cell voltage 8.3 V/module
• Capacity at new 66 Ah

Within the test cycle as part of the discharge cycle after a CC-CV charge by integrating
current with time. [36]

Q =
∫

I(t)dt (14)

where:

Q is the charge being estimated in Ah;
I is the discharging current in A;
T is discharging time in hour.

A is the number of these batteries that have been on long term sweat tests. The cycles
are based on six different second life applications [37]. These are as follows:

• A house with four people and a solar panel using the battery to absorb extra energy
when the PV panel is producing more power than is absorbed in the house, releasing
this energy afterwards.

• A house with four people and PV panels on a time-of-use tariff, where the battery is used
to absorb extra energy from the PV panel and release this when the tariff is highest.

• A house with four people and no PV on a time-of-use tariff—where the battery is
charged at low tariff and discharged on high tariff.

• The battery is operating as part of an aggregated static frequency response system
performing on the UK Fast Frequency Response (FFR) market.

• The battery is operating as part of an aggregated dynamic frequency response system
performing on the UK Enhanced Frequency Response (EFR) market.

• The battery is operating as part of an aggregated system looking to compete in the day
ahead market.
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The sweat tests did not include sophisticated demand side management or fast charg-
ing of electric vehicles in these use cases, as these were not market ready when the testing
started. Similarly, microgrid functionality was not included for the same reason. Grid scale
peak load lopping was also not included, as there is no market mechanism for dealing with
this type of energy storage benefit.

There are some additional electricity markets that are open to larger battery systems,
but not yet available as an aggregation of smaller domestic units. However, it is thought
that these may become a realistic proposition with improved regulation. Therefore, the
additional auxiliary market mechanisms were included in the long-term cycle testing.

Sweat test cycles were determined for each month of the year. The total year-long data
set form a “stationary drive cycle” for each of the use cases.

Table 2 below gives a summary of battery energy throughput of all application
scenarios over the year. On the surface, the EFR application shows the lowest energy
throughput—but this belies the tiny micro-cycling that occurs as part of the dynamic fre-
quency response and impacts aging. The energy balance column refers to when the battery
is reset to its starting SOC before the next cycle is run.

By comparing the adaptable RUL methods from the list above on the sweat test data,
an appreciation of how well each method predicts degradation can be analyzed.

The batteries were cycled using a Chroma Model 17011 8 cell cycler, as shown in
Figure 8. Each cell was coded to run a different sweat test interspersed with an occasional
capacity test. The predicted capacity was compared with the capacity test from test data
obtained from a Chroma program to check the accuracy of each method. The Chroma unit
is able to charge and discharge eight battery packs by a pre-set program.
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Table 2. Estimation results comparison.

Scenario Total Charge over a Year (kWh) Energy Balance

Use case 1—PV and
maximizing FIT payment 890

Energy in battery balanced
at the end of each day

Use case 2—PV maximizing
FIT payment and TOU tariff 838

Use case 3—no PV, but
maximizing TOU tariff 609

Use case 4—FFR market
participation 1120

Energy in battery balanced
over the course of a year

Use case 5—EFR market
participation 202

Use case 6—Day ahead
market participation 1404

Table 3 shows the starting data for each battery under sweat testing. Each test had a
different cycle time and, therefore, each test was run for a different number of days. The
cycle tests were run continuously during the week but turned off at weekends.

Table 3. Estimation results comparison.

Scenario Measured Terminal
Voltage before Test (V) Use Remaining Capacity (%) Measured Impedance

before Test (Hioki) mΩ

Use case 1—PV 7.76 68.74 2.10
Use case

2—PV—TOU 7.7 67.25 2.23
Use case 3—TOU 7.9 68.5 2.23
Use case 4—FFR 7.8 67.58 2.1
Use case 5—EFR 7.8 67.44 2.15

Use case
6—Day ahead 7.8 66.84 2.14

4. Life Cycle Modelling

There was an issue with some of the capacity calculations through measurement data
while on the sweat testing. This is because the voltage center point became unbalanced,
and the protection kicked in when charging, as explained below.

The midpoint voltages are recorded on the test. When one of the voltages hits 4.15 V,
the system stops charging and does not enter the CV part of the charge cycle.

The only values that can be trusted, therefore, for capacity measurement are those
where it is clear that the CC charging has run. It is straightforward in the measurement data
to see when the capacity test has not fully run. This limits the data available for comparison.

Other issues with the test data included a break in testing due to an equipment move,
a break during the COVID-19 pandemic, and equipment recalibration, which adjusted
some of the test curves. Only measured data has, therefore, been used in the calculations
(rather than the cycle set up data).

The following graphs Figures 9–14 show the cycle data as a % DOD. The measured
capacity, which is undertaken during testing cycle I, shown by a red diamond, and the
predicted capacity fade with time plotted for each of the methods described above. Periods
of rest and inactivity have been excluded from the graphs. The impact of the Chroma
re-calibration can be clearly seen at around cycle 2000 in Figure 9.
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Energies 2023, 16, x FOR PEER REVIEW 13 of 18 
 

 

Periods of rest and inactivity have been excluded from the graphs. The impact of the 
Chroma re-calibration can be clearly seen at around cycle 2000 in Figure 9. 

 
Figure 9. PV data estimation results [1,2,15,32]. 

 
Figure 10. PV-TOU data estimation results [1,2,15,32]. 

 
Figure 11. TOU data estimation results [1,2,15,32]. 

0 1000 2000 3000 4000 5000 6000
cycle number

0

10

20

30

40

50

0

10

20

30

40

50

DOD
capacity by Dogger
capacity by He(10)
capacity by Matsuhima
capacity by Swierczyniski
capacity by Wang
checked capacity

0 2000 4000 6000 8000
cycle number

0

10

20

30

40

50

0

10

20

30

40

50

DOD
capacity by Dogger
capacity by He(10)
capacity by Matsuhima
capacity by Swierczyniski
capacity by Wang
checked capacity

Figure 10. PV-TOU data estimation results [1,2,15,32].

Energies 2023, 16, x FOR PEER REVIEW 13 of 18 
 

 

Periods of rest and inactivity have been excluded from the graphs. The impact of the 
Chroma re-calibration can be clearly seen at around cycle 2000 in Figure 9. 

 
Figure 9. PV data estimation results [1,2,15,32]. 

 
Figure 10. PV-TOU data estimation results [1,2,15,32]. 

 
Figure 11. TOU data estimation results [1,2,15,32]. 

0 1000 2000 3000 4000 5000 6000
cycle number

0

10

20

30

40

50

0

10

20

30

40

50

DOD
capacity by Dogger
capacity by He(10)
capacity by Matsuhima
capacity by Swierczyniski
capacity by Wang
checked capacity

0 2000 4000 6000 8000
cycle number

0

10

20

30

40

50

0

10

20

30

40

50

DOD
capacity by Dogger
capacity by He(10)
capacity by Matsuhima
capacity by Swierczyniski
capacity by Wang
checked capacity

Figure 11. TOU data estimation results [1,2,15,32].



Energies 2023, 16, 3244 13 of 17
Energies 2023, 16, x FOR PEER REVIEW 14 of 18 
 

 

 
Figure 12. FFR data estimation results [1,2,15,32]. 

 
Figure 13. EFR data estimation results [1,2,15,32]. 

 
Figure 14. Day ahead data estimation results [1,2,15,32]. 

Table 4 shows the remaining life capacity calculated from each of the published meth-
ods compared to the measured remaining capacity on the batteries that have been under-
taking sweat testing over several years. 

The values in Table 4 below show the predicted value of capacity at the end of the 
test. The years of testing refer to the number of “stationary drive cycles” that each test has 

0 2 4 6 8 10 12
cycle number 104

0

10

20

30

40

50

0

10

20

30

40

50

DOD
capacity by Dogger
capacity by He(10)
capacity by Matsuhima
capacity by Swierczyniski
capacity by Wang
checked capacity

0 200 400 600 800
cycle number

0

10

20

30

40

50

0

10

20

30

40

50

DOD
capacity by Dogger
capacity by He(10)
capacity by Matsuhima
capacity by Swierczyniski
capacity by Wang
checked capacity

0 500 1000 1500 2000 2500 3000 3500 4000
cycle number

0

10

20

30

40

50

D
O

D
(%

)

0

10

20

30

40

50

ca
pa

ci
ty

(A
h)

DOD
capacity by Dogger
capacity by He(10)
capacity by Matsuhima
capacity by Swierczyniski
capacity by Wang
checked capacity

Figure 12. FFR data estimation results [1,2,15,32].

Energies 2023, 16, x FOR PEER REVIEW 14 of 18 
 

 

 
Figure 12. FFR data estimation results [1,2,15,32]. 

 
Figure 13. EFR data estimation results [1,2,15,32]. 

 
Figure 14. Day ahead data estimation results [1,2,15,32]. 

Table 4 shows the remaining life capacity calculated from each of the published meth-
ods compared to the measured remaining capacity on the batteries that have been under-
taking sweat testing over several years. 

The values in Table 4 below show the predicted value of capacity at the end of the 
test. The years of testing refer to the number of “stationary drive cycles” that each test has 

0 2 4 6 8 10 12
cycle number 104

0

10

20

30

40

50

0

10

20

30

40

50

DOD
capacity by Dogger
capacity by He(10)
capacity by Matsuhima
capacity by Swierczyniski
capacity by Wang
checked capacity

0 200 400 600 800
cycle number

0

10

20

30

40

50

0

10

20

30

40

50

DOD
capacity by Dogger
capacity by He(10)
capacity by Matsuhima
capacity by Swierczyniski
capacity by Wang
checked capacity

0 500 1000 1500 2000 2500 3000 3500 4000
cycle number

0

10

20

30

40

50

D
O

D
(%

)

0

10

20

30

40

50

ca
pa

ci
ty

(A
h)

DOD
capacity by Dogger
capacity by He(10)
capacity by Matsuhima
capacity by Swierczyniski
capacity by Wang
checked capacity

Figure 13. EFR data estimation results [1,2,15,32].

Energies 2023, 16, x FOR PEER REVIEW 14 of 18 
 

 

 
Figure 12. FFR data estimation results [1,2,15,32]. 

 
Figure 13. EFR data estimation results [1,2,15,32]. 

 
Figure 14. Day ahead data estimation results [1,2,15,32]. 

Table 4 shows the remaining life capacity calculated from each of the published meth-
ods compared to the measured remaining capacity on the batteries that have been under-
taking sweat testing over several years. 

The values in Table 4 below show the predicted value of capacity at the end of the 
test. The years of testing refer to the number of “stationary drive cycles” that each test has 

0 2 4 6 8 10 12
cycle number 104

0

10

20

30

40

50

0

10

20

30

40

50

DOD
capacity by Dogger
capacity by He(10)
capacity by Matsuhima
capacity by Swierczyniski
capacity by Wang
checked capacity

0 200 400 600 800
cycle number

0

10

20

30

40

50

0

10

20

30

40

50

DOD
capacity by Dogger
capacity by He(10)
capacity by Matsuhima
capacity by Swierczyniski
capacity by Wang
checked capacity

0 500 1000 1500 2000 2500 3000 3500 4000
cycle number

0

10

20

30

40

50

D
O

D
(%

)

0

10

20

30

40

50

ca
pa

ci
ty

(A
h)

DOD
capacity by Dogger
capacity by He(10)
capacity by Matsuhima
capacity by Swierczyniski
capacity by Wang
checked capacity

Figure 14. Day ahead data estimation results [1,2,15,32].

Table 4 shows the remaining life capacity calculated from each of the published
methods compared to the measured remaining capacity on the batteries that have been
undertaking sweat testing over several years.

The values in Table 4 below show the predicted value of capacity at the end of the
test. The years of testing refer to the number of “stationary drive cycles” that each test
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has undertaken—not the calendric years of testing, which is close to 4 years, including the
breaks. In some of the methods, the remaining useful life calculation is showing “0”, and
these methods are not suitable. This long-term testing has not suffered from any battery
issues and it offers confidence with proper protections in place, such as with a Powervault
BMS unit. Second-life batteries offer a safe option for use.

Table 4 shows there are two different methods which could be used to help estimate
remaining capacity: Swiercznski and He. These work for five of the cycle types. The other
methods underestimate the remaining life. In particular, the Matsuhima method is based
primarily on time rather than cycle profile and is definitely unsuitable for this application.

Table 4. Comparison of methods against experimental data.

PV PV-TOU TOU FFR EFR Day Ahead

Swiercznski [1] 43 43 43 40 44 40
Wang 2011 [2] 34 33 31 21 40 20

Matsuhima 26 26 23 21 30 22
He: y2 = 1/10 44 44 44 39 44 38
He: y2 = 1/3.9 43 42 40 0 44 0
He: y2 = 1/1.5 16 0 0 0 43 0

Dogger [32] 33 30 27 0 42 0
Experimental 40 Ah 43 Ah 43 Ah 40 Ah 44 Ah 29.5 Ah

Years of testing 3y 1m 3y 7m 5y 6y 6y 4m 7y

5. Conclusions

There are many different methods of estimating RUL and capacity published in
the literature. Some of these require extensive training data, whilst others rely on more
straightforward model-based approaches. The majority of these methods are based on first
life batteries and look to understand how long it takes the battery to degrade to around
80% of its capacity. This paper looked at different published methods of predicting battery
remaining life as a way of investigating how effective they would be for predicting life in
second-life battery applications.

Gaussian regression, similar to Figure 1, is a common method for adjusting parameters
on tests and is recommended as a way of tracking life span based on one of the adaptable
methods on equation form fitting. There are a number of form fittings that could be used.
The double integral curve has the best match shape wise to what is traditionally thought of
as a typical failure curve. Swiercznski [1] and the adapted He method [15] show promise
for calculating remaining capacities. The other methods underestimate the remaining life.
In particular, the Matsuhima method is based primarily on time rather than cycle profile
and is definitely unsuitable for this application. These methods could be used for the types
of cells we have been testing. However, it is not certain how transferable the results for the
Swiercznski [1] and the adapted He method [15] are across different battery chemistries.
These tests were conducted at room temperature, and further work is needed to understand
how extremes of temperature variation could impact the accuracy of the methods. The
models that had been previously developed were mostly based on first-life applications and,
therefore, the degradation and model development for second life turned out to be poor. The
variations in battery chemistry used to produce these models may also be partly the reason
that some of these models were not appropriate for the second life cells used in this paper.

Gaussian regression (i.e., curve fitting) is normally done on battery remaining capacity
so that the change in capacity can be tracked. However, it is by no means clear that a
capacity test is straightforward to undertake. The Powervault battery cells are composed of
four different cells in series/parallel combinations with a midpoint voltage (2s2p). There is
no clear mechanism for charging/discharging half of the cell and, therefore, it is possible
for the half cells to become unbalanced and trip the protection setting before a full capacity
can be calculated. This results in a calculated capacity below what would be obtained in a
laboratory environment where each half cell is charged and discharged separately. This makes
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it difficult to establish the “true” battery capacity. Is this value that the customer would see?
Or the value that the battery is capable of under ideal conditions? Both of these have valid
points. Moving forward, it would seem appropriate to track and forecast remaining useful life,
using a Gaussian regression technique based on the variation in the equation by He because
this offers a straightforward method of adjusting the y2 value to follow historical best fit data.
The data used within this paper have been generated from sweat test cycling. Future work
looks at how this method should be adapted to second-life batteries in the field.
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Abbreviations

Abbreviation Meaning
DOD Depth of discharge
RUL Remaining useful life
EOL End of life
AI Artificial Intelligence
SVM Support vector machine
SOC State of charge
DODCE DoD cycle equivalent
CC-CV Constant current-Constant voltage
PV Photovoltaics
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