Heat Transfer Analysis of Sisko Fluid Flow over a Stretching Sheet in a Conducting Field with Newtonian Heating and Constant Heat Flux
Abstract
:1. Introduction
2. Physical Model and Mathematical Formulation
2.1. Rheological Model
2.2. Governing Equations and Boundary Conditions
2.3. Transformed Problem
2.4. Physical Quantities of Engineering Interest
2.4.1. The Coefficients of Skin Friction
2.4.2. The Local Nusselt Number
3. Solution of the Problem
- By implementing the transformation , the momentum equation order for is reduced and depicts how the actual equation for is displayed.
- Assume that is perceived here from an earlier iteration (directed by ), in order to build a scheme of iteration for in which, at the current iteration stage, assume that only linear terms in are to be estimated (directed by ) and for all other remaining terms that are of use, linear and nonlinear are assumed to be familiar from previous iterations. Furthermore, at the preceding iteration, nonlinear terms in are assessed.
- By implementing the transformation , the momentum equation order for is reduced and depicts how the actual equation for is displayed.
- Assume that is perceived here from an earlier iteration (referred to by ), in order to build a scheme of iteration for in which, at the current iteration stage, assume that only linear terms in are to be estimated (referred by ) and for all other remaining terms that are of use, linear and nonlinear are assumed to be familiar from previous iterations. Furthermore, at the preceding iteration, nonlinear terms in are assessed.
- In a similar manner to find the remaining governing dependent variables, the iteration schemes are developed and now the variable solutions chosen in the earlier equation are used in the updated solutions.
4. Accelerating the Convergence of the SRM
5. Results and Discussion
6. Conclusions
- By increasing the magnetic field strength, the momentum boundary layer thickness decreases, whereas the thermal boundary layer thickness increases.
- The velocity distribution in x1-direction declines, and the opposite phenomenon is observed in x2-direction, while fluid temperature decreases as the stretching ratio parameter increases.
- With the increase of the Sisko fluid parameter, the velocity in axial and transverse directions increases, whereas the fluid temperature reduces.
- As the Biot number increases, the fluid temperature increased.
- It was found that successive over (under) relaxation (SOR) techniques would significantly increase the convergence speed of the SRM scheme.
- In this problem, the successful performance of the SRM can be applied in fluid mechanical applications to other various related boundary layer problems.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Space coordinates | |
Velocity components | |
Kinematic viscosity | |
Strength of magnetic field | |
Coefficient of dynamic viscosity | |
Ambient temperature | |
Fluid density | |
Stretching ratio parameter | |
Electrical conductivity | |
Specific heat at constant pressure | |
Stretching constant | |
Real numbers with respect to stretchable sheet | |
Magnetic field parameter | |
Thermal conductivity | |
Material parameter of Sisko fluid | |
Local Reynolds number | |
Prandtl number | |
Heat transfer parameter | |
Heat flux | |
Biot number due to temperature |
References
- Sakiadis, B.C. Boundary Layer Behavior on Continuous Solid Surfaces: 1. Boundary Layer Equations for Two-Dimensional and Axisymmetric Flow. AIChE J. 1961, 7, 26–28. [Google Scholar] [CrossRef]
- Ishak, A. Thermal boundary layer flow over a stretching sheet in a micropolar fluid with radiation effect. Meccanica 2010, 45, 367–373. [Google Scholar] [CrossRef]
- Vajravelu, K.; Cannon, J.R. Fluid flow over a nonlinearly stretching sheet. Appl. Math. Comput. 2006, 181, 609–618. [Google Scholar] [CrossRef]
- Ariel, P.D. Generalized three-dimensional flow due to a stretching sheet. ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech. Appl. Math. Mech. 2003, 83, 844–852. [Google Scholar] [CrossRef]
- Sisko, A.W. The flow of lubricating greases. Ind. Eng. Chem. 1958, 50, 1789–1792. [Google Scholar] [CrossRef]
- Khan, M.; Shahzad, A. On boundary layer flow of a Sisko fluid over a stretching sheet. Quaest. Math. 2013, 36, 137–151. [Google Scholar] [CrossRef]
- Megahed, A.M. Flow and heat transfer of non-Newtonian Sisko fluid past a nonlinearly stretching sheet with heat generation and viscous dissipation. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 492. [Google Scholar] [CrossRef]
- Upreti, H.; Joshi, N.; Pandey, A.K.; Rawat, S.K. Assessment of convective heat transfer in Sisko fluid flow via stretching surface due to viscous dissipation and suction. Nanosci. Technol. Int. J. 2022, 13, 31–44. [Google Scholar] [CrossRef]
- Daba, M.; Devaraj, P. Unsteady Boundary Layer Flow of a Nanofluid over a Stretching Sheet with Variable Fluid Properties in the Presence of Thermal Radiation. Phys. Aeromechanics 2016, 23, 403–413. [Google Scholar] [CrossRef]
- Khan, M.; Malik, R.; Munir, A.; Khan, W.A. Flow and heat transfer to Sisko nanofluid over a nonlinear stretching sheet. PLoS ONE 2015, 10, e0125683. [Google Scholar] [CrossRef]
- Munir, A.; Shahzad, A.; Khan, M. Forced Convective Heat Transfer in Boundary Layer Flow of Sisko Fluid over a Nonlinear Stretching Sheet. PLoS ONE 2014, 9, e100056. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.J.; B’eg, O.A.; Khan, W.A.; Ismail, A.I. Effect of Newtonian Heating and Thermal Radiation on Heat and Mass Transfer of Nanofluids over a Stretching Sheet in Porous Media. Heat Transf. Asian Res. 2014, 44, 681–695. [Google Scholar] [CrossRef]
- Shen, M.; Wang, F.; Chen, H. MHD Mixed Convection Slip Flow near a Stagnation-Point on a Nonlinearly Vertical Stretching Sheet. Bound. Value Probl. 2015, 2015, 78. [Google Scholar] [CrossRef][Green Version]
- Salleh, M.Z.; Nazar, R.; Pop, I. Boundary Layer Flow and Heat Transfer over a Stretching Sheet with Newtonian Heating. J. Taiwan Inst. Chem. Eng. 2010, 41, 651–655. [Google Scholar] [CrossRef]
- Hussanan, A.; Salleh, M.Z.; Tahar, R.M.; Khan, I. Unsteady Boundary Layer Flow and Heat Transfer of a Casson Fluid past an Oscillating Vertical Plate with Newtonian Heating. PLoS ONE 2014, 9, e108763. [Google Scholar] [CrossRef][Green Version]
- Pavlov, K.B. Magnetohydromagnetic Flow of an Incompressible Viscous Fluid Caused by Deformation of a Surface. Magn. Gidrodin. 1974, 4, 146–147. [Google Scholar]
- Sapunkov, Y.G. Self-Similar Solutions of non-Newtonian Fluid Boundary Layer in MHD. Fluid Dyn. 1967, 2, 77–82. [Google Scholar] [CrossRef]
- Elghabaty, S.S.; Rahman, G.M.A. Magnetohydrodynamic Boundary-Layer Flow for a non-Newtonian Fluid past a Wedge. Astrophys. Space Sci. 1988, 141, 9–19. [Google Scholar] [CrossRef]
- Jayachandra Babu, M.; Sandeep, N. MHD non-Newtonian Fluid Flow over a Slandering Stretching Sheet in the presence of Cross-Diffusion Effects. Alex. Eng. J. 2016, 55, 2193–2201. [Google Scholar] [CrossRef][Green Version]
- Parida, S.K.; Panda, S.; Rout, B.R. MHD Boundary Layer Slip Flow and Radiative non-linear Heat Transfer over a Flat Plate with Variable Fluid Properties and Thermophoresis. Alex. Eng. J. 2015, 54, 941–953. [Google Scholar] [CrossRef][Green Version]
- Prasad, K.V.; Pal, D.; Datti, P.S. MHD Power-Law Fluid Flow and Heat Transfer over a non-Isothermal Stretching Sheet. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 2178–2189. [Google Scholar] [CrossRef][Green Version]
- Datti, P.S.; Prasad, K.V.; Subhas Abel, M.; Joshi, A. MHD Visco-Elastic Fluid Flow over a non-Isothermal Stretching Sheet. Int. J. Eng. Sci. 2004, 42, 935–946. [Google Scholar] [CrossRef]
- Prasad, K.V.; Pal, D.; Umesh, V.; Prasanna Rao, N.S. The Effect of Variable Viscosity on MHD Viscoelastic Fluid Flow and Heat Transfer over a Stretching Sheet. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 331–344. [Google Scholar] [CrossRef]
- Gangadhar, K. Soret and Dufour Effects on Hydro Magnetic Heat and Mass Transfer over a Vertical Plate with a Convective Surface Boundary Condition and Chemical Reaction. J. Appl. Fluid Mech. 2013, 6, 95–105. [Google Scholar]
- Gangadhar, K. Radiation, Heat Generation and Viscous Dissipation Effects on MHD Boundary Layer Flow for the Blasius and Sakiadis Flows with a Convective Surface Boundary Condition. J. Appl. Fluid Mech. 2015, 8, 559–570. [Google Scholar] [CrossRef]
- Ma, Y.; Mohebbi, R.; Rashidi, M.M.; Yang, Z.; Sheremet, M. Numerical study of MHD nanofluid natural convection in a baffled U-shaped enclosure. Int. J. Heat Mass Transf. 2019, 130, 123–134. [Google Scholar] [CrossRef]
- Ma, Y.; Mohebbi, R.; Rashidi, M.M.; Yang, Z. MHD forced convection of MWCNT-Fe2O4/water hybrid nanofluid in a partially heated τ-shaped channel using LBM. J. Therm. Anal. Calorim. 2019, 136, 1723–1735. [Google Scholar] [CrossRef]
- Ma, Y.; Mohebbi, R.; Rashidi, M.M.; Yang, Z. MHD convective heat transfer of Ag-MgO/water hybrid nanofluid in a channel with active heaters and coolers. Int. J. Heat Mass Transf. 2019, 137, 714–726. [Google Scholar] [CrossRef]
- Bhatti, M.M.; Mishra, S.R.; Abbas, T.; Rashidi, M.M. A mathematical model of MHD nanofluid flow having gyrotactic microorganisms with thermal radiation and chemical reaction effects. Nat. Comput. Appl. 2018, 30, 1237–1249. [Google Scholar] [CrossRef]
- Shah, N.A.; Ahmed, N.; Elnaqeeb, T.; Rashidi, M.M. Magnetohydrodynamic free convection flows with thermal memory over a moving vertical plate in porous medium. J. Appl. Comput. Mech. 2019, 5, 150–161. [Google Scholar]
- Abbas, A.; Noreen, A.; Ali, M.A.; Ashraf, M.; Alzahrani, E.; Marzouki, R.; Goodarzi, M. Solar radiation over a roof in the presence of temperature-dependent thermal conductivity of a Casson flow for energy saving in buildings. Sustain. Energy Technol. Assess. 2022, 53, 102606. [Google Scholar] [CrossRef]
- Abbas, A.; Jeelani, M.B.; Alharthi, N.H. Magnetohydrodynamic effects on third-grade fluid flow and heat transfer with darcy–forchheimer law over an inclined exponentially stretching sheet embedded in a porous medium. Magnetochemistry 2022, 8, 61. [Google Scholar] [CrossRef]
- Wu, W.T.; Massoudi, M. Recent advances in mechanics of non-Newtonian fluids. Fluids 2020, 5, 10. [Google Scholar] [CrossRef][Green Version]
- Tao, C.; Wu, W.T.; Massoudi, M. Natural convection in a non-Newtonian fluid: Effects of particle concentration. Fluids 2019, 4, 192. [Google Scholar] [CrossRef][Green Version]
- Baranovskii, E.S.; Domnich, A.A.; Artemov, M.A. Optimal boundary control of non-isothermal viscous fluid flow. Fluids 2019, 4, 133. [Google Scholar] [CrossRef][Green Version]
- Sarkar, S.; Jana, R.N.; Das, S. Activation energy impact on radiated magneto-Sisko nanofluid flow over a stretching and slipping cylinder: Entropy analysis. Multidiscip. Model. Mater. Struct. 2020, 16, 1085–1115. [Google Scholar] [CrossRef]
- Venkata Subba Rao, M.; Gangadhar, K.; Varma, P.L.N. A spectral relaxation method for three-dimensional MHD flow of nanofluid flow over an exponentially stretching sheet due to convective heating: An application to solar energy. Indian J. Phys. 2018, 92, 1577–1588. [Google Scholar] [CrossRef]
- Gangadhar, K.; Keziya, K.; Ibrahim, S.M. Effect of thermal radiation on engine oil nanofluid flow over a permeable wedge under convective heating: Keller box method. Multidiscip. Model. Mater. Struct. 2019, 15, 187–205. [Google Scholar]
- Gangadhar, K.; Kannan, T.; Sakthivel, G.; Dasaradha Ramaiah, K. Unsteady free convective boundary layer flow of a nanofluid past a stretching surface using a spectral relaxation method. Int. J. Ambient. Energy 2020, 41, 609–616. [Google Scholar] [CrossRef]
- Sobhana Babu, P.R.; Venkata Subba Rao, M.; Gangadhar, K. Boundary layer flow of radioactive non-Newtonian nanofluid embedded in a porous medium over a stretched sheet using the spectral relaxation method. Mater. Today Proc. 2019, 19, 2672–2680. [Google Scholar] [CrossRef]
- Gangadhar, K.; Narasimharao, N.S.L.V.; Satyanarayana, B. Thermal diffusion and viscous dissipation effects on magnetohydrodynamic heat and mass filled with TiO2 and Al2O3 water based nanofluids. Comput. Therm. Sci. 2019, 11, 523–539. [Google Scholar] [CrossRef]
- Wang, C.Y. The Three Dimensional Flow due to a Stretching Flat Surface. Phys. Fluids 1984, 27, 1915–1917. [Google Scholar] [CrossRef]
- Munir, A.; Shahzad, A.; Khan, M. Convective Flow of Sisko Fluid over a Bidirectional Stretching Surface. PLoS ONE 2015, 10, e0130342. [Google Scholar] [CrossRef] [PubMed]
- Motsa, S.S.; Makukula, Z.G. On spectral relaxation method approach for steady von Karman flow of a Reiner-Rivlin fluid with Joule heating, viscous dissipation and suction/injection. Cent. Eur. J. Phys. 2013, 11, 363–374. [Google Scholar] [CrossRef]
- Canuto, C.; Hussaini, M.V.; Quarteroni, A.; Zang, T.A. Spectral Methods in Fluid Dynamics; Springer: Berlin, Germany, 1988. [Google Scholar]
- Trefethen, L.N. Spectral Methods in MATLAB; SIAM: Philadelphia, PA, USA, 2000. [Google Scholar]
- Gorla, R.S.R.; Pop, I.; Dakappagari, V. Three-Dimensional Flow of a Power-Law Fluid due to a Stretching Flat Surface. ZAMM J. Appl. Math. Mech. 1995, 75, 389–394. [Google Scholar] [CrossRef]
Iter. | |||||||||
---|---|---|---|---|---|---|---|---|---|
Present Study | Munir et al. [43] | Ariel [4] | Gorla et al. [47] | Present Study | Munir et al. [43] | Ariel [4] | Gorla et al. [47] | ||
0.25 | 45 | −1.04881108 | −1.048818 | −1.048813 | −1.048813 | −0.19456383 | −0.194567 | −0.194565 | −0.194564 |
5.0 | 35 | −1.09309502 | −1.093098 | −1.093096 | −1.093097 | −0.46520485 | −0.465207 | −0.465206 | −0.465205 |
0.75 | 40 | −1.13448575 | −1.134487 | −1.134486 | −1.134485 | −0.79461826 | −0.794619 | −0.794619 | −0.794622 |
1.0 | 40 | −1.17372074 | −1.173721 | −1.173721 | −1.173720 | −1.17372074 | −1.173721 | −1.173721 | −1.173720 |
Pr | Γ | for NH | ||||||
---|---|---|---|---|---|---|---|---|
n = 0.75 | ||||||||
Iter | CPU Time | Basic SRM | Iter | CPU Time | SRM with SOR | |||
0.1 | 12 | 18.76627 | 4.77995 | 0.9 | 9 | 12.29875 | 4.77995 | |
0.71 | 12 | 20.46802 | 6.036175 | 0.9 | 9 | 10.91867 | 6.036175 | |
1 | 12 | 24.63855 | 9.396499 | 0.9 | 9 | 11.36188 | 9.396499 | |
2 | 12 | 22.21707 | 11.99444 | 0.9 | 9 | 11.10621 | 11.99444 | |
3 | 12 | 22.47097 | 14.18906 | 0.9 | 9 | 11.82956 | 14.18906 | |
4 | 12 | 22.68458 | 16.12413 | 0.9 | 9 | 11.61693 | 16.12413 | |
5 | 0.2 | 12 | 23.24728 | 2.389975 | 0.9 | 9 | 13.33771 | 2.389975 |
2 | 0.3 | 12 | 21.94909 | 1.593317 | 0.9 | 9 | 13.95093 | 1.593317 |
x | 0.4 | 14 | 21.53128 | 1.194987 | 0.9 | 9 | 16.56932 | 1.194987 |
0.5 | 17 | 28.74275 | 0.95599 | 0.85 | 10 | 14.70957 | 0.95599 | |
n = 1.75 | ||||||||
0.1 | 11 | 17.44803 | 5.716165 | 0.9 | 8 | 12.54738 | 5.716165 | |
0.71 | 11 | 20.91306 | 7.272926 | 0.9 | 8 | 11.56558 | 7.272926 | |
1 | 11 | 21.13117 | 11.38285 | 0.9 | 8 | 12.25918 | 11.38285 | |
2 | 11 | 20.89956 | 14.51542 | 0.9 | 8 | 11.95635 | 14.51542 | |
3 | 11 | 22.29397 | 17.1434 | 0.9 | 8 | 13.95373 | 17.1434 | |
4 | 11 | 20.65066 | 19.45184 | 0.9 | 8 | 12.40026 | 19.45184 | |
5 | 0.2 | 11 | 24.54107 | 2.858083 | 0.9 | 8 | 13.56013 | 2.858083 |
2 | 0.3 | 11 | 24.52556 | 1.905388 | 0.9 | 8 | 12.39242 | 1.905388 |
0.4 | 12 | 23.28151 | 1.42904 | 0.9 | 9 | 14.90034 | 1.42904 | |
0.5 | 13 | 23.59943 | 1.143232 | 0.9 | 10 | 15.30949 | 1.143232 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayalakshmi, P.; Obulesu, M.; Ganteda, C.K.; Raju, M.C.; Varma, S.V.; Lorenzini, G. Heat Transfer Analysis of Sisko Fluid Flow over a Stretching Sheet in a Conducting Field with Newtonian Heating and Constant Heat Flux. Energies 2023, 16, 3183. https://doi.org/10.3390/en16073183
Jayalakshmi P, Obulesu M, Ganteda CK, Raju MC, Varma SV, Lorenzini G. Heat Transfer Analysis of Sisko Fluid Flow over a Stretching Sheet in a Conducting Field with Newtonian Heating and Constant Heat Flux. Energies. 2023; 16(7):3183. https://doi.org/10.3390/en16073183
Chicago/Turabian StyleJayalakshmi, Pothala, Mopuri Obulesu, Charan Kumar Ganteda, Malaraju Changal Raju, Sibyala Vijayakumar Varma, and Giulio Lorenzini. 2023. "Heat Transfer Analysis of Sisko Fluid Flow over a Stretching Sheet in a Conducting Field with Newtonian Heating and Constant Heat Flux" Energies 16, no. 7: 3183. https://doi.org/10.3390/en16073183