Photovoltaic Systems through the Lens of Material-Energy-Water Nexus
Abstract
:1. Introduction
2. Methods
2.1. Data
2.2. Network Approach
2.3. Material Circularity Analysis
3. Results and Discussion
3.1. Material-Energy-Water Flows of PV Network
3.2. Material Circularity Indicator
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Description |
EoL | End-of-life |
LCA | Life cycle assessment |
MCI | Material circularity index |
MEW | Material, energy, water |
PED | Primary energy demand |
PCE | Power-conversion efficiency |
PV | Photovoltaic |
V50 | Material used is 50% virgin material. |
V0 | Material used is 0% virgin material, fully closed loop system. |
References
- World Economic Forum. The Speed of the Energy Transition Gradual or Rapid Change? White Paper; World Economic Forum: Geneva, Switzerland, 2019; 32p. [Google Scholar]
- IEA. Global Energy Review 2019; IEA: Paris, France, 2020. [Google Scholar] [CrossRef]
- Sharma, A.; Pandey, S.; Kolhe, M. Global review of policies & guidelines for recycling of solar pv modules. Int. J. Smart Grid Clean Energy 2019, 8, 597–610. [Google Scholar] [CrossRef]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strateg. Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- REN21. Renewables 2022 Global Status Report; REN21: Paris, France, 2022. [Google Scholar]
- Celik, I. Eco-Design of Emerging Photovoltaic (PV) Cells; The University of Toledo: Toledo, OH, USA, 2018. [Google Scholar]
- Bloomberg NEF Emerging Markets Outlook 2020; Teneo Intell.: New York, NY, USA, 2020.
- Monteiro Lunardi, M.; Wing Yi Ho-Baillie, A.; Alvarez-Gaitan, J.P.; Moore, S.; Corkish, R. A life cycle assessment of perovskite/silicon tandem solar cells. Prog. Photovolt. Res. Appl. 2017, 25, 679–695. [Google Scholar] [CrossRef]
- Anctil, A.; Lee, E.; Lunt, R.R. Net energy and cost benefit of transparent organic solar cells in building-integrated applications. Appl. Energy 2020, 261, 114429. [Google Scholar] [CrossRef]
- Sinha, P. Life cycle materials and water management for CdTe photovoltaics. Sol. Energy Mater. Sol. Cells 2013, 119, 271–275. [Google Scholar] [CrossRef]
- Celik, I.; Phillips, A.B.; Song, Z.; Yan, Y.; Ellingson, R.J.; Heben, M.J.; Apul, D. Environmental analysis of perovskites and other relevant solar cell technologies in a tandem configuration. Energy Environ. Sci. 2017, 10, 1874–1884. [Google Scholar] [CrossRef]
- Leccisi, E.; Fthenakis, V. Life-cycle environmental impacts of single-junction and tandem perovskite PVs: A critical review and future perspectives. Prog. Energy 2020, 2, 032002. [Google Scholar] [CrossRef]
- Antonanzas, J.; Quinn, J.C. Net environmental impact of the PV industry from 2000–2025. J. Clean. Prod. 2021, 311, 127791. [Google Scholar] [CrossRef]
- Lamnatou, C.; Chemisana, D. Life-cycle assessment of photovoltaic systems. In Nanomaterials for Solar Cell Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 35–73. ISBN 9780128133378. [Google Scholar]
- Ludin, N.A.; Mustafa, N.I.; Hanafiah, M.M.; Ibrahim, M.A.; Asri Mat Teridi, M.; Sepeai, S.; Zaharim, A.; Sopian, K. Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review. Renew. Sustain. Energy Rev. 2018, 96, 11–28. [Google Scholar] [CrossRef]
- Chowdhury, M.S.; Rahman, K.S.; Chowdhury, T.; Nuthammachot, N.; Techato, K.; Akhtaruzzaman, M.; Tiong, S.K.; Sopian, K.; Amin, N. An overview of solar photovoltaic panels’ end-of-life material recycling. Energy Strateg. Rev. 2020, 27, 100431. [Google Scholar] [CrossRef]
- Majewski, P.; Al-shammari, W.; Dudley, M.; Jit, J.; Lee, S.H.; Myoung-Kug, K.; Sung-Jim, K. Recycling of solar PV panels- product stewardship and regulatory approaches. Energy Policy 2021, 149, 112062. [Google Scholar] [CrossRef]
- Chomać-Pierzecka, E.; Kokiel, A.; Rogozińska-Mitrut, J.; Sobczak, A.; Soboń, D.; Stasiak, J. Analysis and Evaluation of the Photovoltaic Market in Poland and the Baltic States. Energies 2022, 15, 669. [Google Scholar] [CrossRef]
- Stolz, P.; Frischknecht, R.; Kessler, T.; Züger, Y. Life cycle assessment of PV-battery systems for a cloakroom and club building in Zurich. Prog. Photovolt. Res. Appl. 2019, 27, 926–933. [Google Scholar] [CrossRef]
- Gerbinet, S.; Belboom, S.; Leonard, A. Life Cycle Analysis (LCA) of photovoltaic panels: A review. Renew. Sustain. Energy Rev. 2014, 38, 747–753. [Google Scholar] [CrossRef]
- Celik, I.; Mason, B.E.; Phillips, A.B.; Heben, M.J.; Apul, D. Environmental Impacts from Photovoltaic Solar Cells Made with Single Walled Carbon Nanotubes. Environ. Sci. Technol. 2017, 51, 4722–4732. [Google Scholar] [CrossRef]
- Celik, I.; Song, Z.; Heben, M.J.; Yan, Y.; Apul, D.S. Life cycle toxicity analysis of emerging PV cells. In Proceedings of the Conference Record of the IEEE Photovoltaic Specialists Conference, Portland, OR, USA, 5–10 June 2016; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; Volume 2016, pp. 3598–3601. [Google Scholar]
- Bhandari, K.P.; Collier, J.M.; Ellingson, R.J.; Apul, D.S. Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis. Renew. Sustain. Energy Rev. 2015, 47, 133–141. [Google Scholar] [CrossRef]
- Celik, I.; Song, Z.; Cimaroli, A.J.; Yan, Y.; Heben, M.J.; Apul, D. Life Cycle Assessment (LCA) of perovskite PV cells projected from lab to fab. Sol. Energy Mater. Sol. Cells 2016, 156, 157–169. [Google Scholar] [CrossRef][Green Version]
- Shirkey, G.; Belongeay, M.; Wu, S.; Ma, X.; Tavakol, H.; Anctil, A.; Marquette-Pyatt, S.; Stewart, R.A.; Sinha, P.; Corkish, R.; et al. An environmental and societal analysis of the us electrical energy industry based on the water–energy nexus. Energies 2021, 14, 2633. [Google Scholar] [CrossRef]
- Briese, E.; Piezer, K.; Celik, I.; Apul, D. Ecological network analysis of solar photovoltaic power generation systems. J. Clean. Prod. 2019, 223, 368–378. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, B.; Feng, K.; Hubacek, K. Ecological Network Analysis for Carbon Metabolism of Eco-industrial Parks: A Case Study of a Typical Eco-industrial Park in Beijing. Environ. Sci. Technol. 2015, 49, 7254–7264. [Google Scholar] [CrossRef]
- Maani, T.; Celik, I.; Heben, M.J.; Ellingson, R.J.; Apul, D. Environmental impacts of recycling crystalline silicon (c-SI) and cadmium telluride (CDTE) solar panels. Sci. Total Environ. 2020, 735, 138827. [Google Scholar] [CrossRef] [PubMed]
- Sica, D.; Malandrino, O.; Supino, S.; Testa, M.; Lucchetti, M.C. Management of end-of-life photovoltaic panels as a step towards a circular economy. Renew. Sustain. Energy Rev. 2018, 82, 2934–2945. [Google Scholar] [CrossRef]
- Heath, G.A.; Silverman, T.J.; Kempe, M.; Deceglie, M.; Ravikumar, D.; Remo, T.; Cui, H.; Sinha, P.; Libby, C.; Shaw, S.; et al. Research and development priorities for silicon photovoltaic module recycling to support a circular economy. Nat. Energy 2020, 5, 502–510. [Google Scholar] [CrossRef]
- Khalifa, S.A.; Mastrorocco, B.V.; Au, D.D.; Barnes, T.M.; Carpenter, A.C.; Baxter, J.B. A Circularity Assessment for Silicon Solar Panels Based on Dynamic Material Flow Analysis. In Proceedings of the 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), Fort Lauderdale, FL, USA, 20–25 June 2021; pp. 560–563. [Google Scholar] [CrossRef]
- Weckend, S.; Wade, A.; Heath, G.A. End-of-Life Management: Solar Photovoltaic Panels; National Renewable Energy Lab.(NREL): Golden, CO, USA, 2016; ISBN 9789295111981. [Google Scholar]
- Maida, J. Crystalline Silicon Solar PV Modules Market Size to Grow by USD 46.90 Bn|APAC to Occupy 64% Global Market Share. Available online: https://www.prnewswire.com/news-releases/crystalline-silicon-solar-pv-modules-market-size-to-grow-by-usd-46-90-bn--apac-to-occupy-64-global-market-share--technavio-301457133.html (accessed on 24 February 2023).
- Chen, S.; Chen, B. Network environ perspective for urban metabolism and carbon emissions: A case study of Vienna, Austria. Environ. Sci. Technol. 2012, 46, 4498–4506. [Google Scholar] [CrossRef]
- Ellen MacArthur Foundation. Circularity Indicators: An Approach to Measuring Circularity: Methodology; Ellen MacArthur Foundation: 2015; Volume 23. Available online: https://ellenmacarthurfoundation.org/material-circularity-indicator (accessed on 28 March 2023).
- Frischknecht, R.; Stolz, P.; Krebs, L.; de Wild-Scholten, M.; Sinha, P.; Kim, H.C.; Raugei, M.; Stucki, M. Life Cycle Inventories and Life Cycle Assessments of Photovoltaic Systems; Sinha, P., Ed.; IEA PVPS Task 12; International Energy Agency Photovoltaic Power Systems Programme: Paris, France, 2020; ISBN 9783907281147. [Google Scholar]
- Sphera Solutions Inc. GaBi ts 2021; Sphera Solutions Inc. Available online: https://sphera.com/ (accessed on 28 March 2023).
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Latunussa, C.E.L.; Ardente, F.; Blengini, G.A.; Mancini, L. Life Cycle Assessment of an innovative recycling process for crystalline silicon photovoltaic panels. Sol. Energy Mater. Sol. Cells 2016, 156, 101–111. [Google Scholar] [CrossRef]
- Markert, E.; Celik, I.; Apul, D. Private and externality costs and benefits of recycling crystalline silicon (c-Si) photovoltaic panels. Energies 2020, 13, 3650. [Google Scholar] [CrossRef]
- Ardente, F.; Latunussa, C.E.L.; Blengini, G.A. Resource efficient recovery of critical and precious metals from waste silicon PV panel recycling. Waste Manag. 2019, 91, 156–167. [Google Scholar] [CrossRef]
- Sinha, P.; Cossette, M.; Ménard, J.-F. End-of-life Cdte PV recycling with semiconductor refining. In Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition, Frankfurt am Main, Germany, 24–28 September 2012; pp. 4653–4656. [Google Scholar]
- Bergesen, J.D.; Heath, G.A.; Gibon, T.; Suh, S. Thin-Film Photovoltaic Power Generation Offers Decreasing Greenhouse Gas Emissions and Increasing Environmental Co-Benefits in the Long Term. Environ. Sci. Technol. 2014, 48, 9834–9843. [Google Scholar] [CrossRef]
- Voltz, T.; Grischek, T. Energy management in the water sector—Comparative case study of Germany and the United States. Water-Energy Nexus 2018, 1, 2–16. [Google Scholar] [CrossRef]
- Deblonde, T.; Cossu-Leguille, C.; Hartemann, P. Emerging pollutants in wastewater: A review of the literature. Int. J. Hyg. Environ. Health 2011, 214, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Hosseinian Ahangharnejhad, R.; Becker, W.; Jones, J.; Anctil, A.; Song, Z.; Phillips, A.; Heben, M.; Celik, I. Environmental Impact per Energy Yield for Bifacial Perovskite Solar Cells Outperforms Crystalline Silicon Solar Cells. Cell Rep. Phys. Sci. 2020, 1, 100216. [Google Scholar] [CrossRef]
- Phylipsen, G.; Alsema, E.A. Environmental Life-Cycle Assessment of Multicrystalline Silicon Solar Cell Modules; Utrecht University: Utrecht, The Netherlands, 1995. [Google Scholar]
- NREL. Best Research-Cell Efficiency Chart (Rev. 01-26-2022); NREL: Golden, CO, USA, 2022. [Google Scholar]
- Frischknecht, R.; Stolz, P.; Heath, G.; Raugei, M.; Sinha, P.; de Wild-Scholten, M. Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity, 4th ed.; Frischknecht, R., Ed.; IEA PVPS Task 12; International Energy Agency Photovoltaic Power Systems Programme: Paris, France, 2020; ISBN 9783906042992. [Google Scholar]
- Zhang, C.; Ma, Q.; Cai, M.; Zhao, Z.; Xie, H.; Ning, Z.; Wang, D.; Yin, H. Recovery of porous silicon from waste crystalline silicon solar panels for high-performance lithium-ion battery anodes. Waste Manag. 2021, 135, 182–189. [Google Scholar] [CrossRef]
- Rühle, S. Tabulated values of the Shockley-Queisser limit for single junction solar cells. Sol. Energy 2016, 130, 139–147. [Google Scholar] [CrossRef]
- RP Photonics Consulting GmbH Band Gap. Available online: https://www.rp-photonics.com/band_gap.html (accessed on 28 March 2023).
- Kadro, J.M.; Hagfeldt, A. The End-of-Life of Perovskite PV. Joule 2017, 1, 29–46. [Google Scholar] [CrossRef][Green Version]
- Liu, Y.; Wang, S.; Chen, B. Water–land nexus in food trade based on ecological network analysis. Ecol. Indic. 2019, 97, 466–475. [Google Scholar] [CrossRef]
- Shockley, W.; Queisser, H.J. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. J. Appl. Phys. 1961, 32, 510–519. [Google Scholar] [CrossRef]
- Yang, J.; Chen, B. Energy-water nexus of wind power generation systems. Appl. Energy 2016, 169, 1–13. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Z.; Fath, B.D.; Li, S. Ecological network analysis of an urban energy metabolic system: Model development, and a case study of four Chinese cities. Ecol. Modell. 2010, 221, 1865–1879. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Chen, B. Multiregional input–output and ecological network analyses for regional energy–water nexus within China. Appl. Energy 2018, 227, 353–364. [Google Scholar] [CrossRef]
- Wang, S.; Fath, B.; Chen, B. Energy–water nexus under energy mix scenarios using input–output and ecological network analyses. Appl. Energy 2019, 233–234, 827–839. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Zheng, H. Ecological network analysis of energy metabolism in the Beijing-Tianjin-Hebei (Jing-Jin-Ji) urban agglomeration. Ecol. Modell. 2017, 351, 51–62. [Google Scholar] [CrossRef]
- Zubas, A.R.; Fischer, M.; Gervais, E.; Herceg, S.; Nold, S. Combining circularity and environmental metrics to assess material flows of PV silicon. EPJ Photovolt. 2023, 14, 10. [Google Scholar] [CrossRef]
- Corona, B.; Shen, L.; Reike, D.; Rosales Carreón, J.; Worrell, E. Towards sustainable development through the circular economy—A review and critical assessment on current circularity metrics. Resour. Conserv. Recycl. 2019, 151, 104498. [Google Scholar] [CrossRef]
- Zhang, Y.; Kim, M.; Wang, L.; Verlinden, P.; Hallam, B. Design considerations for multi-terawatt scale manufacturing of existing and future photovoltaic technologies: Challenges and opportunities related to silver, indium and bismuth consumption. Energy Environ. Sci. 2021, 14, 5587–5610. [Google Scholar] [CrossRef]
- Kiehbadroudinezhad, M.; Merabet, A.; Hosseinzadeh-bandbafha, H.; Ghenai, C. Environmental assessment of optimized renewable energy-based microgrids integrated desalination plant: Considering human health, ecosystem quality, climate change, and resources. Environ. Sci. Pollut. Res. 2023, 30, 29888–29908. [Google Scholar] [CrossRef] [PubMed]
- Feldman, D.; Ramasamy, V.; Fu, R.; Ramdas, A.; Desai, J.; Margolis, R. U.S. Solar Photovoltaic System and Energy Storage Cost Benchmark: Q1 2020; Europe Solar Innovation Co., Ltd.: Tokyo, Japan, 2020. [Google Scholar]
Phase | Inventories | Inputs | Outputs |
---|---|---|---|
Cradle-to-gate | Solar panel production (manufacturing) | Material components, auxiliary chemicals, electricity, other energy sources, water, fuel | PV panel, manufacturing material waste, manufacturing wastewater, consumed energy, evaporated water |
Gate-to-use | Solar industry, electricity grid | PV panels, solar energy | Electricity to the grid |
EoL | Recovery | Auxiliary chemicals, PV panels, electricity, water, fuel | Recovered materials, recovered material waste, recovered wastewater, consumed energy |
Recycling | Recovered materials, electricity | Recycled materials, recycling material waste, consumed energy | |
Landfill/incineration (hazardous and municipal) | Manufacturing material waste, recovery material waste, recycling material waste, electricity, fuel | Dissipated energy | |
Wastewater treatment | Manufacturing wastewater, recovery wastewater, electricity | Clean water, consumed energy, evaporated water |
Scenario | Definition | Comparison with Baseline MCI |
---|---|---|
PCE | Power conversion efficiency is increased by 25% | The PCE of both modules increased by 25% (29.13% for s-Si and 27.63% for CdTe), while the market average remained at 19.5% |
V50% | Material used is 50% virgin material | Increase 50% of feedstock from virgin materials, instead of 0%, while the remaining 50% comes from recycled materials |
V0% | Closed loop system, 100% recycled (0% virgin) | Assumes all recovered and recycled waste is reusable as feedstock |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belongeay, M.; Shirkey, G.; Lunardi, M.M.; Rodriguez-Garcia, G.; Sinha, P.; Corkish, R.; Stewart, R.A.; Anctil, A.; Chen, J.; Celik, I. Photovoltaic Systems through the Lens of Material-Energy-Water Nexus. Energies 2023, 16, 3174. https://doi.org/10.3390/en16073174
Belongeay M, Shirkey G, Lunardi MM, Rodriguez-Garcia G, Sinha P, Corkish R, Stewart RA, Anctil A, Chen J, Celik I. Photovoltaic Systems through the Lens of Material-Energy-Water Nexus. Energies. 2023; 16(7):3174. https://doi.org/10.3390/en16073174
Chicago/Turabian StyleBelongeay, Megan, Gabriela Shirkey, Marina Monteiro Lunardi, Gonzalo Rodriguez-Garcia, Parikhit Sinha, Richard Corkish, Rodney A. Stewart, Annick Anctil, Jiquan Chen, and Ilke Celik. 2023. "Photovoltaic Systems through the Lens of Material-Energy-Water Nexus" Energies 16, no. 7: 3174. https://doi.org/10.3390/en16073174