3D Solar Harvesting and Energy Generation via Multilayers of Transparent Porphyrin and Iron Oxide Thin Films
Abstract
:1. Introduction
2. Synthesis and Characterization of the Porphyrin Compounds
3. Synthesis and Characterization of the Iron Oxide Nanoparticles
4. Photothermal Thin Films for 3D Solar Light Harvesting and Energy Generation
5. Transparent DSSC Thin Films for 3D Solar Light Harvesting and Energy Generation
6. Solar Desalination via Multilayer Transparent Photothermal Films
7. Issues and Challenges
8. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parida, B.; Iniyan, S.; Goic, R. A review of solar photovoltaic technologies. Renew. Sustain. Energy Rev. 2011, 15, 1625–1636. [Google Scholar] [CrossRef]
- Poponi, D. Analysis of diffusion paths for photovoltaic technology based on experience curves. Sol. Energy 2003, 74, 331–340. [Google Scholar] [CrossRef]
- Mehrtash, M.; Guillermo, Q.; Yvan, D.; Daniel, R. Performance evaluation of sun tracking photovoltaic systems in Canada. In Proceedings of the 20th Annual International Conference on Mechanical Engineering-ISME 2012, Shiraz, Iran, 16–18 May 2012; pp. 16–18. [Google Scholar]
- Mondol, J.D.; Yohanis, Y.G.; Norton, B. The impact of array inclination and orientation on the performance of a grid-connected photovoltaic system. Renew. Energy 2007, 32, 118–140. [Google Scholar] [CrossRef]
- Fouad, M.M.; Shihata, L.A.; Morgan, E.I. An integrated review of factors influencing the perfomance of photovoltaic panels. Renew. Sustain. Energy Rev. 2017, 80, 1499–1511. [Google Scholar] [CrossRef]
- Ito, M.; Kato, K.; Sugihara, H.; Kichimi, T.; Kichimi, J.; Kurokawa, K. A preliminary study on potential for very largescale photovoltaic power generation (VLSPV) system in the Gobi desert from economic and environmental viewpoints. Sol. Energy Mater. Sol. Cells 2003, 75, 507–517. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, J.; Wang, F.; Xiao, B. Economic analysis of power generation from floating solar chimney power plant. Renew. Sustain. Energy Rev. 2009, 13, 736–749. [Google Scholar] [CrossRef]
- Cunow, E.; Giesler, B. The megawatt solar roof at the new Munich Trade Fair Centre—An advanced and successful new concept for PV plants in the megawatt range. Sol. Energy Mater. Sol. Cells 2001, 67, 459–467. [Google Scholar] [CrossRef]
- Irace, P.; Brandon, H. Solar Heating in Commercial Buildings. Mechanical Engineering and Materials Science Independent Study. 2017. Available online: https://openscholarship.wustl.edu/mems500/50 (accessed on 1 December 2022).
- Available online: https://solar.gwu.edu/how-much-land-would-it-take-power-us-solar#:~:text=According%20to%20a%202008%20analysis,1%2C948%20square%20feet%20per%20person (accessed on 1 December 2022).
- Building-Integrated Photovoltaics (BIPV). Market Size, Industry Analysis Report, Regional Outlook, Application Development Potential, Price Trends, Competitive Market Share & Forecast, 2021–2027; Allied Market Research: Portland, OR, USA, 2022. [Google Scholar]
- Tripathy, M.; Sadhu, P.K.; Panda, S.K.; Shukla, A.K.; Sudhakar, K.; Baredar, P. A critical review on building integrated photovoltaic products and their applications. Renew. Sustain. Energy Rev. 2016, 61, 451–465. [Google Scholar] [CrossRef]
- Taşer, A.; Koyunbaba, B.K.; Kazanasmaz, T. Thermal, daylight, and energy potential of building-integrated photovoltaic (BIPV) systems: A comprehensive review of effects and developments. Sol. Energy 2023, 251, 171–196. [Google Scholar] [CrossRef]
- Rajoria, C.S.; Kumar, R.; Sharma, A.; Singh, D.; Suhag, S. Development of flat-plate building integrated photovoltaic/thermal (BIPV/T) system: A review. Mater. Today 2021, 46, 5342–5352. [Google Scholar] [CrossRef]
- Ramadan, H.S.; Helmi, A.M.; Abo-Elyousr, F.K. eReview of the State-of-the-Art. Energy Build. 2016, 141, 477–488. [Google Scholar]
- MVrcan, H.S.; Mihaljević, A.; Valić, T.; Đulbić, M. Optimal resilient facade thermal photovoltaic clustering allocation for microgrid enhanced voltage profile. Int. J. Electr. Power Energy Syst. 2023, 148, 108940. [Google Scholar] [CrossRef]
- Lai, C.M.; Hokoi, S. Solar façades: A review. Build. Environ. 2015, 91, 152–165. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, X. A Review of Material Technologies, System Design and Economics. Energy Convers. Manag. 2017, 159, 127–139. [Google Scholar]
- Lin, J.; Shi, D. Photothermal and photovoltaic properties of transparent thin films of porphyrin compounds for energy applications. Appl. Phys. Rev. 2021, 8, 011302. [Google Scholar] [CrossRef]
- Zhao, Y.; Dunn, A.; Shi, D. Effective reduction of building heat loss without insulation materials via the photothermal effect of a chlorophyll thin film coated “Green Window”. MRS Commun. 2019, 9, 675–681. [Google Scholar] [CrossRef][Green Version]
- Zhao, Y.; Lin, J.; Kundrat, D.M.; Bonmarin, M.; Krupczak, J.; Thomas, S.V.; Lyu, M.; Shi, D. Photonically-Activated Molecular Excitations for Thermal Energy Conversion in Porphyrinic Compounds. J. Phys. Chem. C 2020, 124, 1575–1584. [Google Scholar] [CrossRef]
- Lyu, M.; Lin, J.; Krupczak, J.; Shi, D. Light angle dependence of photothermal properties in oxide and porphyrin thin films for energy-efficient window applications. MRS Commun. 2020, 10, 439–448. [Google Scholar] [CrossRef]
- Zhao, Y.; Sadat, M.; Dunn, A.; Xu, H.; Chen, C.-H.; Nakasuga, W.; Ewing, R.C.; Shi, D. Photothermal effect on Fe3O4 nanoparticles irradiated by white-light for energy-efficient window applications. Sol. Energy Mater. Sol. Cells 2017, 161, 247–254. [Google Scholar] [CrossRef][Green Version]
- Sadat, M.E.; Kaveh Baghbador, M.; Dunn, A.W.; Wagner, H.P.; Ewing, R.C.; Zhang, J.; Xu, H.; Pauletti, G.M.; Mast, D.B.; Shi, D. Photoluminescence and photothermal effect of Fe3O4 nanoparticles for medical imaging and therapy. Appl. Phys. Lett. 2014, 105, 091903. [Google Scholar] [CrossRef]
- Shi, D.; Sadat, M.E.; Dunn, A.W.; Mast, D.B. Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications. Nanoscale 2015, 7, 8209–8232. [Google Scholar] [CrossRef] [PubMed]
- Dunn, A.W.; Ehsan, S.M.; Mast, D.; Pauletti, G.M.; Xu, H.; Zhang, J.; Ewing, R.C.; Shi, D. Photothermal effects and toxicity of Fe3O4 nanoparticles via near infrared laser irradiation for cancer therapy. Mater. Sci. Eng. C 2015, 46, 97–102. [Google Scholar] [CrossRef]
- Lin, J.; Zhao, Y.; Shi, D. Optical thermal insulation via the photothermal effects of Fe3O4 and Fe3O4@Cu2-xS thin films for energy-efficient single-pane windows. MRS Commun. 2020, 10, 155–163. [Google Scholar] [CrossRef]
- Lin, J.; Krupczak, J.; Shi, D. Solar harvesting and energy generating building skins with photothermal–photovoltaic dual-modality based on porphyrin thin films. MRS Commun. 2022, 12, 1225–1234. [Google Scholar] [CrossRef]
- Lin, J.; Wang, Y.; Lyu, M.; Shi, D. Transparent porphyrin-based hybrid films for spectral selective solar harvesting and energy generation. Sol. Energy Mater. Sol. Cells 2022, 243, 15. [Google Scholar] [CrossRef]
- Al-Ezzi, A.S.; Ansari, M.N.M. Photovoltaic Solar Cells. Appl. Syst. Innov. 2022, 5, 67. [Google Scholar] [CrossRef]
- Sivakumar, M.B.; Sivaraj, S. A Review of Photovoltaic Cells and their Applications. Renew. Sustain. Energy Rev. 2018, 94, 67–82. [Google Scholar]
- Murugan, S.; Shanmugam, S.; Bharathi, J.J. Advances in Photovoltaic Cells and Their Applications. Mater. Today Proc. 2018, 9, 2389–2400. [Google Scholar]
- Lee, Y.; Ruf, T.S. Efficiency Improvements and Materials Development for Photovoltaic Cells. Energy Technol. 2016, 4, 1430–1441. [Google Scholar]
- Li, H.L.; Wang, Y.L.; Chen, J.S.; Lu, Y.Q. Challenges and Opportunities for Photovoltaic Cells in Energy Conversion. J. Clean. Prod. 2017, 165, 49–58. [Google Scholar]
- Shockley, W.; Queisser, H.J. Detailed Balance Limit of Efficiency of p-n Junction Solar Panels. J. Appl. Phys. 1961, 32, 510–519. [Google Scholar] [CrossRef]
- Lee, Y.; Park, C.; Balaji, N.; Lee, Y.-J.; Dao, V.A. High-efficiency Silicon Solar Panels: A Review. Isr. J. Chem. 2015, 55, 1050–1063. [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, X.; Liu, S.; Zhang, B.; Lin, K.; Zhang, J.; Conibeer, G. A review on thermalization mechanisms and prospect absorber materials for the hot carrier solar panels. Sol. Energy Mater. Sol. Panels 2021, 225, 111073. [Google Scholar] [CrossRef]
- Huang, X.; Jain, P.K.; El-Sayed, I.H.; El-Sayed, M.A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 2008, 23, 217–228. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S.-T.; Liu, Z. Graphene in Mice: Ultrahigh In Vivo Tumor Uptake and Efficient Photothermal Therapy. Nano Lett. 2010, 10, 3318–3323. [Google Scholar] [CrossRef]
- Chu, M.; Li, H.; Wu, Q.; Wo, F.; Shi, D. Pluronic-encapsulated natural chlorophyll nanocomposites for in vivo cancer imaging and photothermal/photodynamic therapies. Biomaterials 2014, 35, 8357–8373. [Google Scholar] [CrossRef]
- Feng, L.; Wu, L.; Qu, X. New Horizons for Diagnostics and Therapeutic Applications of Graphene and Graphene Oxide. Adv. Mater. 2013, 25, 168–186. [Google Scholar] [CrossRef]
- Yang, H.W.; Liu, H.L.; Li, M.L.; Hsi, I.W.; Fan, C.T.; Huang, C.Y.; Lu, Y.J.; Hua, M.-Y.; Chou, H.-Y.; Liaw, J.-W. Magnetic gold-nanorod/PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy. Biomaterials 2013, 34, 5651–5660. [Google Scholar] [CrossRef]
- Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751–760. [Google Scholar] [CrossRef]
- Layer, G.; Jahn, D.; Deery, E.; Lawrence, A.D.; Warren, M.J. Biosynthesis of Heme and Vitamin B12. Chem. Biol. 2010, 7, 445–499. [Google Scholar] [CrossRef]
- Sarkar, D.; Sharma, A.; Talukder, G. Chlorophyll and chlorophyllin as modifiers of genotoxic effects. Mutat. Res. Genet. Toxicol. 1994, 318, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Gouterman, M. Spectra of porphyrins. J. Mol. Spectrosc. 1961, 6, 138–163. [Google Scholar] [CrossRef]
- Cook, L.P.; Brewer, G.; Wong-Ng, W. Structural Aspects of Porphyrins for Functional Materials Applications. Crystals 2017, 7, 223. [Google Scholar] [CrossRef][Green Version]
- Husain, A.A.; Hasan, W.Z.W.; Shafie, S.; Hamidon, M.N.; Pandey, S.S. A review of transparent solar photovoltaic technologies. Renew. Sustain. Energy Rev. 2018, 94, 779–791. [Google Scholar] [CrossRef]
- Chang, S.-Y.; Cheng, P.; Li, G.; Yang, Y. Transparent Polymer Photovoltaics for Solar Energy Harvesting and Beyond. Joule 2018, 2, 1039–1054. [Google Scholar] [CrossRef][Green Version]
- Liu, X.; Zhong, Z.; Zhu, R.; Yu, J.; Li, G. Periodic band-pass electrode enables record-performance transparent organic photovoltaics. Joule 2022, 6, 1918–1930. [Google Scholar] [CrossRef]
- Malek, F.; Harit, T.; Cherfi, M.; Kim, B. Insights on the Synthesis of N-Heterocycles Containing Macrocycles and Their Complexion and Biological Properties. Molecules 2022, 27, 2123. [Google Scholar] [CrossRef]
- Deng, Z.; Wu, W.; Wang, Y.; Shi, D. Progress in Circulating Tumor Cell Isolation: A Biomarkerless Approach. eBioMedicine 2022, 83, 104237. [Google Scholar] [CrossRef]
- Chen, B.; Le, W.; Wang, Y.; Li, Z.; Wang, D.; Ren, L.; Lin, L.; Cui, S.; Hu, J.J.; Hu, Y.; et al. Targeting Negative Surface Charges of Cancer Cells by Multifunctional Nanoprobes. Theranostics 2016, 6, 1887–1898. [Google Scholar] [CrossRef]
- Wang, F.; Pauletti, G.M.; Wang, J.; Zhang, J.; Ewing, R.C.; Wang, Y.; Shi, D. Dual surface-functionalized Janus nanocomposites of polystyrene/Fe3O4@SiO2 for simultneous tumor cell targeting and stimulus-induced drug release. Adv. Mater. 2013, 25, 3485–3489. [Google Scholar] [CrossRef][Green Version]
- Cho, H.-S.; Dong, Z.; Pauletti, G.M.; Zhang, J.; Xu, H.; Gu, H.; Wang, L.; Ewing, R.C.; Huth, C.; Wang, F.; et al. Fluorescent, Superparamagnetic Nanospheres for Drug Storage, Targeting, and Imaging: A Multifunctional Nanocarrier System for Cancer Diagnosis and Treatment. ACS Nano 2010, 4, 5398–5404. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Cho, H.S.; Chen, Y.; Xu, H.; Gu, H.; Lian, J.; Wang, W.; Liu, G.; Huth, C.; Wang, L.; et al. Fluorescent polystyrene-Fe3O4 composite nanospheres for in vivo imaging and hyperthermia. Adv. Mater. 2009, 21, 2170–2173. [Google Scholar] [CrossRef][Green Version]
- Zhang, Z.; Liu, Y.; Wang, H.; Huang, B.; Wang, H.; Zhang, Y. Preparation and characterization of Fe3O4@Cu2-xS core-shell nanoparticles. Mater. Sci. Eng. B 2011, 176, 400–404. [Google Scholar]
- Li, H.; Wang, X.; Zhang, X. Preparation of Fe3O4@Cu2-xS Core-Shell Nanoparticles by a Two-Step Process and Their Optical Properties. J. Nanosci. Nanotechnol. 2012, 12, 9502–9506. [Google Scholar]
- Li, Q.; Guo, W.; Zhang, J.; Liu, L.; Song, Y.; Liu, Y. Preparation of Fe3O4@Cu2-xS Core-Shell Nanoparticles by a Simple Method and Their Magnetic Properties. J. Nanosci. Nanotechnol. 2013, 13, 574–578. [Google Scholar]
- Zhang, Y.; Liu, Y.; Zhang, Z.; Huang, B.; Wang, Y. Preparation and Characterization of Fe3O4@Cu2-xS Core-Shell Nanoparticles with Different Shell Thicknesses. J. Nanosci. Nanotechnol. 2013, 13, 469–473. [Google Scholar]
- Leao Andrade, A.; Domingos Fabris, J.; Zacarias Domingues, R.; Pereira, M.C. Current Status of Magnetite-Based Core@Shell Structures for Diagnosis and Therapy in Oncology Short running title: Biomedical Applications of Magnetite@Shell Structures. Curr. Pharm. Des. 2015, 21, 5417–5433. [Google Scholar] [CrossRef]
- Tian, Q.; Hu, J.; Zhu, Y.; Zou, R.; Chen, Z.; Yang, S.; Li, R.; Su, Q.; Han, Y.; Liu, X. Sub-10 nm Fe3O4@Cu2-xS Core–Shell Nanoparticles for Dual-Modal Imaging and Photothermal Therapy. J. Am. Chem. Soc. 2013, 135, 8571–8577. [Google Scholar] [CrossRef]
- Lyu, M.; Lin, J.; Krupczak, J.; Shi, D. Solar Harvesting through Multilayer Spectral Selective Iron Oxide and Porphyrin Transparent Thin Films for Photothermal Energy Generation. Adv. Sustain. Syst. 2021, 5, 2100006. [Google Scholar] [CrossRef]
- Best Research-Cell Efficiencies. Available online: https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190802.pdf (accessed on 21 November 2020).
- Wong, W.Y.; Wang, X.Z.; He, Z.; Djurišić, A.B.; Yip, C.T.; Cheung, K.Y.; Wang, H.; Mak, C.S.; Chan, W.K. Metallated conjugated polymers as a new avenue towards high-efficiency polymer solar cells. Nat. Mater. 2011, 6, 521–527. [Google Scholar] [CrossRef][Green Version]
- Chen, C.-C.; Dou, L.; Zhu, R.; Chung, C.-H.; Song, T.-B.; Zheng, Y.B.; Hawks, S.; Li, G.; Weiss, P.S.; Yang, Y. Visibly Transparent Polymer Solar Cells Produced by Solution Processing. ACS Nano 2012, 6, 7185–7190. [Google Scholar] [CrossRef] [PubMed]
- Bates, M.; Malhado, C.; Yang, C.; Herrera, C.K.; Lunt, R.R. High Efficiency Transparent and Semi-Transparent Photovoltaics Based on a Layer-By-Layer Deposition. Sol. RRL 2023. early view. [Google Scholar] [CrossRef]
- Grätzel, M. Dye-Sensitized Solar Cells. Nat. Photonics 2009, 3, 145–153. [Google Scholar] [CrossRef]
- Wu, C.; Chen, J.; Liu, Y.; Hou, J. Dye-sensitized solar cells: Recent advances and challenges. J. Mater. Chem. A 2016, 4, 7548–7564. [Google Scholar]
- Wang, X.; Grätzel, M. Dye-sensitized solar cells: From basics to the state of the art. Energy Environ. Sci. 2013, 6, 242–269. [Google Scholar]
- O’Regan, S.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Kim, J.; Lee, Y.; Kim, H. Dye-Sensitized Solar Cells: A Review on Materials, Devices, and Applications. Adv. Mater. 2010, 22, 1834–1850. [Google Scholar]
- Prince, R.; Grunwaldt, J. Dye-sensitized solar cells: Materials, devices, and future perspectives. Chem. Soc. Rev. 2015, 44, 123–142. [Google Scholar]
- Imahori, H.; Tamaki, K. Porphyrin-based solar cells. Chem. Soc. Rev. 2011, 40, 22–35. [Google Scholar]
- Fukuzumi, S.; Saito, M.; Tanaka, T. Porphyrin-based solar cells: Recent advances and future prospects. J. Porphyr. Phthalocyanines 2018, 22, 390–408. [Google Scholar]
- Maheshwaran, N.N.N.; Kandaswamy, K. Porphyrin-Based Solar Cells: A Review. Sol. Energy 2018, 170, 417–437. [Google Scholar]
- Arrechea, S.; Aljarilla, A.; de la Cruz, P.; Palomares, E.; Sharma, G.D.; Langa, F. Efficiency improvement using bis(trifluoromethane) sulfonamide lithium salt as a chemical additive in porphyrin based organic solar cells. Nanoscale 2016, 8, 17953–17962. [Google Scholar] [CrossRef] [PubMed][Green Version]
- De Angelis, F.; Di Carlo, A.; Filippetti, A.; Fontanesi, C. Porphyrin-Based Dye-Sensitized Solar Cells: A First-Principles Study. J. Phys. Chem. C 2007, 111, 11558–11564. [Google Scholar]
- Stamplecoskie, K.G.; Lim, S.S.S.; Weidman, I.M.M. Porphyrin-Based Solar Cells: Advances and Challenges. Adv. Mater. 2017, 29, 47. [Google Scholar]
- Yella, A.; Lee, H.-W.; Tsao, H.N.; Yi, C.; Chandiran, A.K.; Nazeeruddin, M.K.; Diau, E.W.-G.; Yeh, C.-Y.; Zakeeruddin, S.M.; Grätzel, M. Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency. Science 2011, 334, 629–634. [Google Scholar] [CrossRef]
- Hupp, J.T.; Niemczyk, M.P. Porphyrins as materials platforms for molecular solar cells. J. Mater. Chem. A 2013, 1, 12773–12783. [Google Scholar]
- Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B.F.E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, K.; Graetzel, M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 2014, 6, 242–247. [Google Scholar] [CrossRef][Green Version]
- Sharma, K.; Sharma, V.; Sharma, S.S. Dye-Sensitized Solar Cells: Fundamentals and Current Status Nanoscale. Res. Lett. 2018, 13, 381. [Google Scholar] [CrossRef]
- Daeneke, T.; Kwon, T.H.; Holmes, A.B.; Duffy, N.W.; Bach, U.; Spiccia, L. High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes. Nat. Chem. 2011, 3, 211–215. [Google Scholar] [CrossRef]
- Ammasi, A.; Iruthayaraj, R.; Munusamy, A.P.; Shkir, M. Molecular engineering on D-π-A organic dyes with flavone-based different acceptors for highly efficient dye-sensitized solar cells using experimental and computational study. J. Mol. Model. 2023, 29, 45. [Google Scholar] [CrossRef]
- Richhariya, G.; Meikap, B.C.; Kumar, A. Review on fabrication methodologies and its impacts on performance of dye-sensitized solar cells. Environ. Sci. Pollut. Res. 2022, 29, 15233–15251. [Google Scholar] [CrossRef]
- Manikandan, K.M.; Yelilarasi, A.; Pandaram, P.; Senthamaraikannan, P.; Saravanakumar, S.S.; Khan, A.; Asiri, A.M. The effect of γ-ray-irradiated conducting polymer electrolyte and its application of dye-sensitized solar cells to building window glass system. J. Solid State Electrochem. 2020, 24, 251–261. [Google Scholar] [CrossRef]
- Banchik, L.D.; Lienhard, V.J.H. Thermodynamic analysis of a reverse osmosis desalination system using forward osmosis for energy recovery. In Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition, Houston, TX, USA, 9–15 November 2012; Paper No. IMECE2012-86987. American Society of Mechanical Engineers: New York, NY, USA, 2012. [Google Scholar]
- Barello, M.; Manca, D.; Patel, R.; Mujtaba, I. Operation and modeling of RO desalination process in batch mode. Comput. Chem. Eng. 2015, 83, 139–156. [Google Scholar] [CrossRef][Green Version]
- Efraty, A.; Barak, R.N.; Gal, Z. Closed circuit desalination—A new low energy high recovery technology without energy recovery. Desalination Water Treat. 2011, 31, 95–101. [Google Scholar] [CrossRef][Green Version]
- Greenlee, L.F.; Lawler, D.F.; Freeman, B.D.; Marrot, B.; Moulin, P. Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Res. 2009, 43, 2317–2348. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Mata, L.J.; Arnell, N.W.; Doll, P.; Jimenez, B.; Miller, K.; Oki, T.; Sen, Z.; Shiklomanov, I. The implications of projected climate change for freshwater resources and their management. Hydrol. Sci. J. 2008, 53, 3–10. [Google Scholar] [CrossRef]
- Lienhard, V.J.H.; Mistry, K.H.; Sharqawy, M.H.; Thiel, G. Desalination Sustainability: A Technical, Socioeconomic, and Environmental Approach; Chapter 5 in Thermodynamics, Exergy, and Energy Efficiency in Desalination Systems; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Aghajani, M.; Rafiee, M.; Asghari, M. Solar desalination by membrane distillation process: A review. Desalination 2015, 365, 43–60. [Google Scholar]
- Al-Zahrani, S.M.; Kabeel, A.E. Solar energy desalination technologies: A review. Renew. Sustain. Energy Rev. 2019, 101, 28–50. [Google Scholar]
- Badr, H.M.; Ali, A.A. Solar-driven membrane distillation for seawater desalination: A comprehensive review. Desalination 2018, 431, 62–88. [Google Scholar]
- Guijt, C.; Fletcher, D.F. Solar-driven membrane distillation for seawater desalination: A review. Desalination 2018, 434, 30–51. [Google Scholar]
- California Department of Water Resources. 2018. Available online: https://suscon.org/blog/2022/06/awm-dwr-interview/?gclid=CjwKCAjw_YShBhAiEiwAMomsELjzgIqgAr5BUGe97bvUc-Ade7JdXKsdkQt9Ti-qbIr7QKVZPiYA0RoC3gkQAvD_BwE (accessed on 1 December 2022).
- Anjaneyulu, L.; Kumar, E.A.; Sankannavar, R.; Rao, K.K. Defluoridation of drinking water and rainwater harvesting using a solar still. Ind. Eng. Chem. Res. 2012, 51, 8040–8048. [Google Scholar] [CrossRef]
- O’Meagher, B.; Reid, D.; Harvey, R. Aids to Survival: A Handbook on Outback Survival, 25th ed.; Western Australia Police Academy: Maylands, Australia, 2017; p. 24. ISBN 0-646-36303-4. [Google Scholar]
- Lyu, M.; Lin, J.; Shi, D. Solar Desalination via Multilayers of Transparent Photothermal Fe3O4@Cu2–xS Thin Films. Energy Technol. 2021, 9, 11. [Google Scholar] [CrossRef]
- Rahmany, S.; Etgar, L. Semitransparent Perovskite Solar Cells. ACS Energy Lett. 2020, 5, 1519–1531. [Google Scholar] [CrossRef]
- Chu, W.; Li, X.; Li, S.; Hou, J.; Jiang, Q.; Yang, J. High-Performance Flexible Perovskite Solar Cells with a Metal Sulfide Electron Transport Layer of SnS2 by Room-Temperature Vacuum Deposition. CS Appl. Energy Mater. 2019, 2, 382–388. [Google Scholar] [CrossRef]
- Keshtmand, R.; Zamani-Meymian, M.-R.; Fallah, M. Enhanced Performance of Planar Perovskite Solar Cells Using Thioacetamide-Treated SnS2 Electron Transporting Layer Based on Molecular Ink. Energy Fuels 2022, 36, 5897–5909. [Google Scholar] [CrossRef]
- Dkhili, M.; Lucarelli, G.; De Rossi, F.; Taheri, B.; Hammedi, K.; Ezzaouia, H.; Brunetti, F.; Brown, T.M. Attributes of High-Performance Electron Transport Layers for Perovskite Solar Cells on Flexible PET versus on Glass. ACS Appl. Energy Mater. 2022, 5, 4096–4107. [Google Scholar] [CrossRef]
- Gao, Y.; Huang, K.; Long, C.; Ding, Y.; Chang, J.; Zhang, D.; Etgar, L.; Liu, M.; Zhang, J.; Yang, J. Flexible Perovskite Solar Cells: From Materials and Device Architectures to Applications. ACS Energy Lett. 2022, 7, 1412–1445. [Google Scholar] [CrossRef]
- Mahapatra, A.D.; Basak, D. Biodegradable Filter Paper Based Broad-Band Photodetection by Chemical Bath Deposited SnS2 2D-Nanosheet Array Film. ACS Appl. Electron. Mater. 2021, 3, 2114–2122. [Google Scholar] [CrossRef]
- Tan, Y.; Xiao, B.; Xu, P.; Luo, Y.; Jiang, Q.; Yang, J. Improving the Photovoltaic Performance of Flexible Solar Cells with Semitransparent Inorganic Perovskite Active Layers by Interface Engineering. ACS Appl. Mater. Interfaces 2021, 13, 20034–20042. [Google Scholar] [CrossRef]
- Hu, Z.; Lin, Z.; Su, J.; Zhang, J.; Chang, J.; Hao, Y. A Review on Energy Band-Gap Engineering for Perovskite Photovoltaics. Sol. RRL 2019, 13, 1900304. [Google Scholar] [CrossRef]
Voc (V) | Isc (mA) | P Max (mW) | F.F. | Light Density (W/cm2) | Efficiency (%) | |
---|---|---|---|---|---|---|
1st layer | 0.689 | 13.245 | 4.880 | 0.535 | 0.100 | 4.880 |
2nd layer | 0.629 | 1.406 | 0.643 | 0.727 | 0.017 | 0.643 |
3rd layer | 0.574 | 0.428 | 0.269 | 1.098 | 0.012 | 0.269 |
4th layer | 0.550 | 0.396 | 0.136 | 0.625 | 0.010 | 0.136 |
5th layer | 0.519 | 0.241 | 0.082 | 0.658 | 0.006 | 0.082 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, J.; Lyu, M.; Shi, D. 3D Solar Harvesting and Energy Generation via Multilayers of Transparent Porphyrin and Iron Oxide Thin Films. Energies 2023, 16, 3173. https://doi.org/10.3390/en16073173
Lin J, Lyu M, Shi D. 3D Solar Harvesting and Energy Generation via Multilayers of Transparent Porphyrin and Iron Oxide Thin Films. Energies. 2023; 16(7):3173. https://doi.org/10.3390/en16073173
Chicago/Turabian StyleLin, Jou, Mengyao Lyu, and Donglu Shi. 2023. "3D Solar Harvesting and Energy Generation via Multilayers of Transparent Porphyrin and Iron Oxide Thin Films" Energies 16, no. 7: 3173. https://doi.org/10.3390/en16073173