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Abstract: We have proposed an impact assessment methodology for determining sustainability
in energy-intensive industrial production based on a comprehensive combination of economic,
environmental, and social indicators for sustainable development. The goal of this study was to
disclose this methodology for assessing sustainability in energy-intensive industrial production. We
proved that any energy-intensive chemical, metallurgical, and energy generation processes should
maximize the material output values and product value addition to ensure innovative sustainable
development. We proposed indicators that determine the levels of increasing the sustainability of
energy-intensive production as a whole, as well as taking into account individual technological
processes. We proposed a procedure for making managerial decisions to increase the sustainability
of energy-intensive outputs using the technological renewal of fixed assets and/or technological
modernization of production. Our proposed methodology is based on a graphical model of the
technological development’s life cycle of the existing energy-intensive production process. In addition,
the proposed methodology ensures resource- and energy-efficiency intensification, together with the
environmental safety of the technological processes.

Keywords: criteria; indicators; energy-intensive industrial production; resource- and energy-efficiency;
technological innovation; technological renewal; sustainability; economic analysis

1. Introduction

Engineering specialists in chemical technology fields have introduced a new concept of
“sustainable production” in recent years that arose from the point of view of a sustainable
development concept. This new concept comprehensively considers the main activities of
humanity, such as environmental responsibility (ES) or the rational use of natural resources,
as well as ensuring the environmental safety of technogenic systems, economic reproduc-
tion (material values creation), and social development. The new concept represents, in
particular, a complex chemical–technological system [1–4]. “Sustainable production” is an
energy- and resource-efficient, ecologically safe, socially-oriented production model that is
essential for producing the required high-quality products [1]. It should be noted that the
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modern concept of “sustainable production” differs from the traditional concept in terms
of the stability of the movement of various physical systems [1,2].

Currently, most scientists and practitioners accept such opinions on the sustainable
development of economic systems of any scale and level, including the industrial and
economic levels [5–7]. For example, this concept was used to form the best available
technologies (BAT) concept. At the same time, scientific publications have suggested using
three groups of indicators to assess the sustainability of development: environmental state
(ES) (or natural resource), economic, and social indicators, all of which reflect the three
main components of sustainable development. However, precise vital indicators should be
determined in each of these groups [2].

Unfortunately, we have admitted that the values of various indicators, even key
indicators, could be contradictory. This significantly complicates or makes it impossible to
choose the best option for the transition to sustainable development. In this case, various
convolution methods of one or more indicators, often multiple indices, are proposed to
compare development options. However, convolution is based on experts’ assessments
on the importance of each indicator, which adds a high proportion of subjectivity to the
results of management decisions.

In recent years, several new publications have been devoted to applying the sustain-
able development concept in scientists’ and chemical engineers’ activities [8,9]. The work
by [8] considers the life cycle sustainability assessment as a basis for developing a new
approach to evaluating the three aspects of sustainability concerning the Vietnam energy
industry. However, the authors noted that the methodology had limited practicability,
thus preventing its wider use/application. Ren et al. [9] presented a decision-making
methodology applicable in the early stages of the sustainable design of chemical products
and processes. Ren et al. [9] proposed using indicators to evaluate design options for
three aspects of sustainability, and they were computed based on an easily accessible and
easy-to-calculate globally harmonized system of classification and labeling of chemicals.
At the same time, the inclusion of estimates was carried out based on multi-criteria anal-
ysis methods for solutions. The proposed methodology could become a tool for rapid
conceptual design for systematic decision-making at the early stages of energy-intensive
product synthesis/chemical technology systems (CTS). However, firstly, it is noted that this
approach could be a rapid conceptual design for systematic decision-making tool only at
the early stages of energy-intensive product synthesis/CTS; it is not universal and suitable
for any industrial system. Secondly, it is essential to use a certain set of baseline indicators
not reflected in the financial statements of operating enterprises to implement this approach
in the practical activities of engineers.

Currently, many researchers believe that the sustainable development of economic
systems requires innovations at various levels [10,11]. Shumpeter [12] is considered to be
the founder of the innovation theory. Shumpeter’s works were the basis for the subsequent
creation and development of the theory of endogenous economic growth, which reflects
the direct impact of technological progress on economic growth [13–15]. Nevertheless,
Foster [16], Sahal [17], Twiss [18], and Dosi [19] considered the theoretical and practical
problems involved in managing the utilization of technical innovations in the 1980s of
the last century. However, it is not clear how several indicators reflecting an innovation’s
effectiveness could be used to appraise its influence on production and an economic
systems’ sustainability [20].

Studying the impact on the stability of a system’s life cycle is considered to be an
important perspective [21]. Nonetheless, studies on such impacts are fragmentary since
only one of the three sustainability aspects/indicators is studied. Conversely, life cycles
vary. For example, enterprise, product (goods), and process life cycles could be considered.
Many published studies have focused on life cycle environmental assessments [22,23] and
evaluating goods’ life cycle costs [24]. At the same time, there are few studies on the life
cycles of processes, primarily, technological processes [25,26]. S-curve-related studies have
been widely published [27,28]. Christensen [29] significantly contributed to these studies,
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especially in technology development at the individual company level [29]. However,
he considered the change in various technologies’ productivity depending on the time
factor, which did not aid in evaluating their sustainability and the sustainability of their
production and economic systems as a whole.

We have proposed a new methodology for assessing the sustainability of energy-
intensive industrial production. Its disclosure was the purpose of this work.

2. Materials and Methods
Methodology of Criteria Formation

Currently, there are many definitions of sustainable development which take into
account its various aspects and the scale of application (country, region, economic sector,
enterprise, and technological process). In this article, we considered the main provisions of
a system economic analysis for the technological renewal of production (SEATRP) that we
have been developing related to one of the several categories of energy-intensive industrial
production, i.e., chemical and technological production processes.

SEATRP is based on the ideas of complex systems’ cyclical development, including
the theory of “long waves” by the Russian scientist N.D. Kondratiev [30], and on the theory
of endogenous economic growth, considering the influence of technological progress on
economic systems’ growth as their internal factor [31].

The problem with determining indicators that simultaneously reflect sustainability’s
economic, environmental, and social aspects has not yet been solved, despite several
publications on the topic [21,32]. According to Machado et al. [33], further scientific
research and the development of new business models in this area are required.

There are many definitions of a business model. Still, in its most general and short
form, it is the enterprise management’s vision and conduct of business to satisfy customers
and earn profit [34,35]. Accordingly, environmental and social requirements (aspects) must
be considered to develop sustainable business models in the production management
process [36].

At the same time, enterprises should consider these requirements independently. Bo-
ken et al. [37] noted that maximizing efficiency for using materials and energy is one of
the eight archetypes of such models. Indeed, a more efficient use of material and energy
resources, i.e., a decrease in the material intensity (MI indicator) of products manufactured
by enterprises, reduces “natural capital” consumption [38]. On the other hand, a decrease
in material intensity ensures the transition to a circular economy through the reuse of
generated waste products in energy-intensive industrial production [39]. Thus, the envi-
ronmental aspects of sustainable energy-intensive production were considered. The social
indicators (an enterprise’s ability to meet its production team’s social needs) were solved
by reducing the MI indicator due to maximizing the share of value added in each unit
of value of the products manufactured by the enterprise. However, to achieve this in the
emerging sustainable business model, it was inherent to establish the relationship between
the technological modernization of production and the possibility of reducing MI; this
was the basis of the management algorithm for the innovative sustainable development of
industrial production.

In the last decade, many researchers have concluded that sustainable business models
should consider the interests of a broader range of stakeholders and society’s general
interests [40,41]. Thus, the task is to combine production development interests with the
interests of the development of individual countries and the global economy as a whole.
In 1997, in a report to the Club of Rome, E. Weizsacker et al. [42] showed that doubling
society’s wealth is possible using two times fewer resources. However, a universal criterion
for the efficiency of material and energy resources usage is required to implement such a
concept for production development practically. This universal criterion must be the same
for all levels of the world economic system—the economies of particular countries, regions,
industries, and manufacturing enterprises. This criterion was considered in our study [43].
It represented the maximization of the ratio of GDP to the value of the intermediate product
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necessary for its production at the country’s economic level. The criterion was transformed
into the maximization of the ratio of gross value addition (GVA) to the cost of material and
energy resources (MC) at the level of industries and individual manufacturing enterprises.

Thus, maximizing the value of the above universal criteria at all hierarchy levels of
economic systems is necessary to ensure sustainable environmental management through
sustainable production development. But how could this be completed in practice? In
our previous works [44,45], we substantiated the hypothesis of a proportional relationship
between capital and material intensities during production based on the case studies of
many large energy-intensive industrial enterprises’ activities over ten years. Such depen-
dencies are quantitatively expressed by the coefficient of the level of manufacturability
of production (CLMP). The degree of renewal of the core enterprise’s production active
assets (i.e., machinery, equipment, and vehicles) increases the CLMP value. Quantitatively,
the CLMP coefficient is the ratio of capital intensity to material intensity or the ratio of
material output to capital output. We developed a matrix depicting possible directions
for development based on an integrated study of material intensity, capital productivity
changes (as the inverse of the value of capital intensity), and the corresponding change in
the CLMP values. The matrix was based on the case studies of many industrial enterprises’
activities for over fifteen years. The matrix showed that any industrial system (enterprise,
industry, or industrial conglomerate) could develop technologically only in four directions,
but two of the four directions had two possible development options. At the same time,
changes in each or several trends were determined by the corresponding indicator in the
form of changes in material consumption values, capital productivity, or the CLMP values
in the opposite direction (Figure 1). The dynamics of the CLMP values showed the tempo
of technological progress.
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Figure 1. Matrix and indicators of the technological development of industrial firms (indicators
of the system’s transition to the appropriate direction or a variant of the direction of technologi-
cal development are highlighted in bold) [44]. MI—material intensity; CP—capital productivity;
CLMP—coefficient of the level of manufacturability of production.

Then, we substantiated that it was necessary to increase the coefficient values to
the maximum possible level in the corresponding period from the point of view of the
impact of the achievements of technological progress in any production and economic
system on production. We also developed a graphical model of the life cycle for the
technological development of production systems (LCTDP) to determine the actions of these
systems necessary for this impact. The LCTDP represented a graph of the development
of the production system over time, in which each of the six stages of the cycle showed
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value changes (increases or decreases) for three interrelated indicators, namely, material
productivity (MP), capital productivity (CP), and CLMP (Figure 2) [45].
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Figure 2. Life cycle graph of the technological development of production systems [45], where T is
the time period. MP—material productivity; 2, 1-1, 1-2, 3, 4-1, and 4-2—life cycle stages; A—point
corresponding to the maximum possible value of MP; A, B, and C—points showing the possibilities
of the transition to a new technological development cycle; S—point showing the beginning of
a favorable transition to a new development technology; E—point showing the necessary start
of the transition to a new development technology to avoid enterprise bankruptcy; MPo—the
initial level of material productivity at the enterprise during the transition to a new development
technology; MPmin—the level of material productivity after which the value of the coefficient of the
manufacturability level of production begins to decrease; MPmax—the maximum possible level of
material productivity with the existing production technology.

Only one out of six stages was the best stage from the point of view of increasing
the production resource efficiency because all three indicators increased simultaneously at
this stage.

Thus, the maximum possible material use, labor, and physical capital utilization
efficiency was achieved at this single technology development stage. A maximum potential
profit increase could be gained from manufactured and sold products. At this stage, the
technological development of production systems secures their economic stability and
corresponds to the “technological stability” concept.

When there is a technological improvement, a decrease in the production MI leads
to a reduction in the waste production capacity due to an increase in MP. Introducing
new technology utilizes previously accumulated production waste, ensuring production’s
environmental sustainability. Secondly, labor productivity will significantly increase be-
cause of the maximized capital return and intensive fixed assets renewal. In addition, the
enterprise and production sector’s average wage growth rate will be characteristic. We
can suppose that the enterprises’ average wage growth rate exceeds the average industry
growth rate or the country’s average growth rate concurrently due to the active use of
technological innovations. In this case study, part of the salary funds could be used to
finance guaranteed income funds for paying the enterprises’ relieved/retrenched personnel
due to productivity growth. Part of this fund could also be used to support other social
activities. Therefore, using part of the salary fund for the activities mentioned before will
guarantee social sustainability.
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Thus, economic, environmental, and social sustainability will be established simulta-
neously when production systems achieve technological sustainability, corresponding to
the concept of “sustainable technological development”.

From the LCTDP graph, it also follows that when using any production technology, an
enterprise should strive to achieve the maximum possible value of the MP. In this case, the
maximum reduction in material intensity will be ensured, and the maximum GVA value for
each unit of the value of the goods produced by the enterprise will be achieved. According
to Fige et al. [46], this state of a production system is called the achievement of an ideal
sustainable value added (SVA). From the point of view of economic theory, it corresponds
to the maximum possible material use, labor resources, and physical capital (fixed assets)
with the use of the best production technology (BPT) for an enterprise at a specific time,
i.e., it corresponds to the achievement of the limit of production capabilities.

3. Results and Discussion
3.1. Theoretical Results

The LCTDP graph shows that the maximum CLMP values will be reached at the end
of stage 1-1, i.e., not until the enterprise carries out technological renewal of the active part
of its fixed assets (FA). At the next stage, 1-2, the growth of the MP values will continue up
to the maximum, but they are already doing so by inertia based on the use of the previously
achieved potential for updating the FA. This means that it is necessary to continue timely
updates to the FA by further improving the production technology to continue ensuring
the technological sustainability of production. But at what point in time should it be
started? From a practical point of view, it is obvious that this process must be started
when the value of CLMP is at its maximum, i.e., when stage 1-1 is completed, and the
transition to stage 1-2 begins when the increment in its value is equal to zero. However, the
technological modernization process may be delayed with time, and the enterprise will
move to other stages (3 and 4-1) where the MP will decrease. Accordingly, this point in time
is determined based on the calculation of the maximum growth rate of the value of CLMP
from a theoretical point of view. Of course, this will require calculating the technological
development stages and the growth rate of CLMP values not once a year based on annual
financial statements but quarterly or bi-annually (based on management accounting data).
Ideally, such calculations should be performed at even shorter periods (up to a day or
even shifts). However, this will only be possible if enterprises use cyber–physical systems
to collect and transmit large data arrays, followed by processing them using Artificial
Intelligence and generating averaged data for the corresponding time interval by the MP,
CP, and CLMP values.

We can suppose that an enterprise in the corresponding period, which is typically
at least one year, is at stage 2 of technological development. In this case, this means the
beginning of mastering a new production technology when the MP is already growing but
capital productivity (CP) continues to decrease due to insignificant production capacity.
Accordingly, in this case, the management efforts of the enterprise are aimed at speedy
access to the design capacity.

The most difficult stages for the management process are stages 3 and, especially,
4-1 for ensuring the sustainable and innovative development of production. If an energy-
intensive enterprise is at stage 3 for more than one year, the effect of the MP growth due to
the technological renewal of the CP has already ended. Therefore, the decline stage begins
due to material resource overspending due to processing equipment wear, even if the CP
continues to grow due to increased production capacity. In this case, the enterprise needs to
look for options for introducing a new production technology and develop an appropriate
business plan.

Suppose an enterprise has already been at the 4-1 stage of technological development
for more than one year. In this case, a simultaneous decrease in the values of all three
index indicators takes place, i.e., the cost of output per unit increases, which inevitably
leads to a drop in total profit, and it is impossible to increase the output capacity on worn-
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out equipment. As a result, the company loses its financial stability and rapidly moves
towards a situation of financial insolvency and bankruptcy. Accordingly, the sooner the
management of an enterprise realizes the inevitability of a future financial collapse, the
sooner it is possible to develop and begin implementing a strategy for further production
modernization on a new technological basis.

As a result, the enterprise will move to the 4-2 stage of technological development,
and due to the slowdown in the rate of decrease in the MP compared to the CP, the value
of the CLMP will gradually begin to increase, i.e., at the end of stage 4-1, its value will
decrease to a minimum.

We can suppose that a retrospective analysis of the values of the index indicators of
the sustainability of an enterprise’s technological development over several years shows
a downward trend in its CLMP and, especially, its MP. In this case, it is evident that
the enterprise could no longer work effectively on the same technological basis. Then,
it is necessary to promptly develop a strategy for further innovative development and
implement the required business plans to achieve the values of the target indicators for MP,
CLMP, and CP, and these values are comparable to the corresponding values at the best
enterprises of the corresponding industries in the country or even in the world.

The matrix and the schedule of the housing and communal services discussed above
allow us to form six levels of stability-instability for the industrial system, as well as the
criteria for determining these levels (Table 1). This is very important when using the
proposed methodological approach to develop criteria for assessing industrial production
sustainability during the design processes, operations, and technological developments by
relevant specialists.

Table 1. Criteria for assessing the level of sustainability of industrial production.

The Number of the Stage of
Technological Development Indicators of the Level of Sustainability The Level and Dynamics of

Sustainability

2
MP increases
CP decreases

CLMP increases
The increase in the level of stability

1-1
MP increases
CP increases

CLMP increases
Maximum level of stability

1-2
MP increases
CP increases

CLMP decreases
Reducing the level of stability

3
MP decreases
CP increases

CLMP decreases
Increasing the level of instability

4-1
MP decreases
CP decreases

CLMP decreases
Maximum instability level

4-2
MP decreases
CP decreases

CLMP increases
Reducing the level of instability

Changes in the values of one of the three indicators for each stage are highlighted in bold, indicating a transition
to the appropriate level of stability or instability.

The value of the CLMP could be considered as a measure of the effectiveness of
the open technological innovation embodied in the production processes of enterprises,
which could be in the form of new machines and equipment, if only the volumes of fixed
assets are used when calculating the return on capital, which is typical, for example, for
Russian industrial enterprises. Accordingly, when considering the impact on the production
efficiency of open “disembodied” technological innovations [47] in the form of knowledge
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acquired by firms, such as patents, licenses, and software, that form the basis of their
intangible assets, we could calculate the overall efficiency coefficient of materialized, i.e., in
the form of main productivity, and “disembodied” technological innovations instead of
CP. Moreover, we can suppose that the enterprises themselves carry out research and
development (R & D). In this case, they would use “closed” technological innovations, and
then an integral coefficient could be calculated that takes into account the impact on the
production efficiency of technological innovations of all kinds. In this case, it is possible to
determine the share of influence on the effectiveness of the technological innovations and
on the industrial system’s stability level of each type of innovation.

In [48], we showed that the efficiency of a separate production technology or separate
technological process could be determined by computing the CLMP value as the ratio
of the depreciation costs from the machinery and equipment costs to the material costs
used in the technology or process for the corresponding period. Such a coefficient (CLMP)
measures the efficiency of open future materialized innovation. However, an enterprise’s
intangible assets, such as acquired knowledge, are also utilized by the enterprise for
a long period and have depreciative value. In this case, the corresponding coefficient,
as the ratio of the depreciation cost deduction from the intangible asset to the material
cost coefficient, will indicate the enterprise’s effectiveness using open future innovations
in a disembodied form (i.e., acquired knowledge). We could use such an indicator to
appraise innovation effectiveness in an enterprise’s activity dynamics. We could also
use the indicator to compare the level at which different enterprises have utilized such
innovations. Moreover, increased use of firms’ intellectual property signifies an increase
in the technology knowledge intensity of an enterprise. This fact could currently leverage
the position of an enterprise in the competition in its field. By following this approach,
a quantitative assessment of the production technologies’ knowledge intensity could be
derived as a fraction of the coefficient mentioned above in the gross value of the coefficient
of the level of manufacturability of production (CLMP). The coefficient could be determined
as the ratio of the depreciation deductions from the intangible assets, machinery, and
equipment costs to the material costs. At the same time, the value of such a generalized
indicator could be a measure for evaluating the effectiveness of utilizing all open incoming
innovations, i.e., innovations in materialized and disembodied forms. Consequently, it is
possible to determine the stability and dynamics of this change for different technologies
or technological processes when applying the coefficient in industrial systems.

Suffice it to say that up to 50% or more of an industrial enterprise’s production costs are
material costs (MC), i.e., the costs relate to raw materials, fuel, and energy. Consequently,
energy costs are the main portion of material costs. Energy saving is a priority task that
innovative developments introduced into production should solve. Therefore, it is desirable
to have indicators whose values would exhibit their effectiveness, on the one hand, and
their respective impact on the sustainability level of industrial production, on the other
hand. In our opinion, such an indicator could be an indicator that is the converse of
the CLMP indicator; it should be the ratio of the partial proportion of the gross material
costs (only energy costs) to the depreciation costs in the total production costs and sale of
products [49]. We could use this ratio to determine the depreciation costs separately for raw
materials and refined materials if it is necessary to save on the costs of raw materials and
refined materials. We can suppose that the enterprise reflects the division of all material
costs for raw materials, fuel, and energy in the notes in the financial statements. In such a
case, the indicators mentioned above could be dynamically used in an external economic
analysis of the activities of the enterprise.

Enterprises could use the production cost calculation for individual components of the
technological process (types of production activities) to make management decisions about
introducing innovative developments and their impacts on the changes in the sustainability
level. In such cases, it is possible to calculate the ratio of each element of material costs
(types of raw materials, refined materials, fuel, and energy) to the depreciation costs before
and after introducing the innovative developments. This ratio could be calculated in terms
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of the cost of material resources and in kind since all the necessary data are available in the
cost calculation for this matter.

3.2. Practical Results

We used the sustainability assessment methodology presented above to appraise
the sustainability levels of several dozen large energy-intensive industrial enterprises.
Table 2 shows appraisal results of the ten-year (2011–2020) activities of large metallurgical
enterprises in different countries, namely, PJSC “Norilsk Nickel” (Russia), PJSC “Severstal”
(Russia), Boliden AB (Sweden), and Freeport-McMoRan Inc (USA). We acquired the initial
data required for an appraisal from each company’s annual financial statements on their
websites [50–53]. Table 2 shows the calculated MP and CP values for each enterprise.

Table 2. Dynamics of the three sustainability indicators for the technological development of large
energy-intensive enterprises.

Indicator 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

PJSC “Norilsk Nickel”
MP 5.51 4.16 3.95 4.96 5.35 4.68 3.59 3.99 4.86 3.94
CPin 2.02 1.54 1.28 1.47 1.50 1.34 1.35 1.59 2.35 2.34
CLMP(in) 2.73 2.71 3.10 3.38 3.56 3.50 2.66 2.51 2.07 1.68
Life cycle stage - IV-1 IV-2 I-1 I-1 IV-2 III I-2 I-2 IV-1

PJSC “Severstal”
MP 1.44 1.51 1.53 1.65 1.85 1.73 1.62 1.62 1.45 1.60
CPin 2.62 2.05 1.84 1.83 2.02 2.07 2.37 2.53 2.42 1.97
CLMP(in) 0.55 0.74 0.83 0.90 0.92 0.84 0.68 0.64 0.60 0.81
Life cycle stage - II II II I-1 III III III IV-1 II

Boliden AB
MP 1.74 1.74 1.76 1.85 1.86 2.27 2.27 2.23 2.35 2.20
CPin 0.91 0.81 0.64 0.64 0.68 0.57 0.66 0.63 0.54 0.59
CLMP(in) 1.92 2.14 2.73 2.88 2.75 3.95 3.46 3.53 4.33 3.74
Life cycle stage - II II II I-1 IV-1 I-1 IV-1 II II

McMoRan Inc
MP 2.11 1.73 1.77 1.93 1.48 1.39 1.60 1.59 1.25 1.42
CPin 0.80 0.61 0.61 0.57 0.39 0.41 0.44 0.26 0.20 0.19
CLMP(in) 2.62 2.86 2.89 3.37 3.76 3.36 3.61 6.07 6.36 7.47
Life cycle stage - IV-2 I-1 II IV-2 III I-1 IV-2 IV-2 II

MP—material productivity; CPin—initial capital productivity value; CLMP(in)—initial CLMP.

The CP was determined in three versions, i.e., by the initial (CPin) and residual (CPres)
values of the total fixed assets and by the initial cost of only machinery and equipment. In
addition, the CLMP values were calculated as the ratios of MPs to CPs based on the initial
costs of the total fixed assets (FA). Accordingly, the LCTDP levels were determined based
on the value changes in the three indicators (increases or decreases) in any year relative to
the previous year.

We divided all the figures explaining the practical use of this methodology into three
groups. The first group corresponded to the MP and CP value trends, calculated in three
variants for all four enterprises, as shown in Figures 3–6.

Firstly, Figures 3–6 show that the MP and CP value trends had similar directions, i.e.,
a proportional relationship existed between the MP and CP. Secondly, this dependence
mentioned before exists for any CP calculation option.

The second group corresponded to each enterprise’s graphs (Figures 7–14), represent-
ing the CLMP value dynamics computed based on the initial cost of the total fixed assets
and the initial cost of machinery and equipment alone. The trends in the total values for
Ktotal are described and the calculations took into account the values of not only “material-
ized” open technological innovations in the form of fixed assets but also “nonmaterialized”
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open technological innovations. The “nonmaterialized” open technology innovations
(e.g., patents, licenses, and computer programs) were in the form of intangible assets (IA)
and closed technological innovations were in the form of the research and development
costs (R&D).
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From a comparative analysis of the enterprises’ graphs, we could conclude that the
CLMP and Ktot values tended to increase for all the enterprises. However, this trend was
more pronounced for the last two enterprises primarily due to their more active renewal
of fixed assets. Secondly, CLMP_fa and CLMPv exhibited similar trends, meaning that
the share of the machinery and equipment in the total fixed assets (FA) value remained
constant. Thirdly, the CLMP and Ktot value changes were practically the same in the
graphs. This means that the shares of intangible assets and R&D costs relative to the fixed
asset costs remained insignificant. However, it was still essential to assess the impact of
each of these values on the MP. Accordingly, the third group of figures (Figures 15–18)
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shows the changes in the coefficients of the intangible assets (K_ia) and R&D costs (K_rd)
for all four enterprises.
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From Figure 18, it could be assumed that the downward trend in the MP values for
Freeport-McMoRan Inc. was associated with a significant decrease in its R&D expenses. An
increase in such expenses at Boliden AB corresponded to the rise in MP values (Figure 17).
This conclusion was also confirmed by Figures 15 and 16, which show the absence of K_rd
growth trends for the PJSC “Norilsk Nickel” and the PJSC “Severstal”. Accordingly, there
was practically no growth in the MP at these enterprises.
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The general conclusion regarding the sustainability of technological development
for the four enterprises considered as case studies following the graphical model of the
LCTDP and the criteria table for assessing the sustainability of industrial production was
as follows: Boliden AB steadily developed over ten years since it had a prolonged period
(seven years) in which its technological development stage corresponded to different levels
of sustainable development (stage 1-1 for two years and stage 2 for five years). However,
its technological production capacity was not fully achieved over ten years. Accordingly,
the possibilities for increasing its MP and CP values were not fully used.
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Thus, the methodology presented in this paper for evaluating the sustainability of
energy-intensive industrial production could be practically used to determine the sustain-
ability level of an individual enterprise. This methodology could also be used to compare
the sustainability level across several enterprises, if necessary. This methodology is suffi-
cient for various stakeholders to use for performing an external economic analysis using an
enterprise’s public financial statements.
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The limitation of this approach could be its inability to consider the price factor, i.e., the
annual increase rates for the raw materials, refined materials, fuels, and energy costs. This
is because constituent material and energy costs may differ from machinery and equipment
costs as constituents of fixed assets. Subsequently, the computed annual CLMP values
could emerge as being less than the actual values. However, trends in changes in stability
level over a long period are of greater importance in an external analysis, and they will
be less sensitive to the influence of the price factor. However, we can suppose that an
internal analysis of a particular enterprise’s activities is performed. In this case, the price
factor is leveled-out since it is possible to consider the annual price changes for individual
constituent materials and energy constituents, as well as for fixed assets constituents. In
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the future, we plan to further develop the model considered in this article to evaluate
the sustainable impact on a particular technological process’s environment that enables
reductions in the waste quantities generated from its energy-intensive production.
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4. Conclusions

1. It was shown that resource and energy efficiencies are the main factors in the sustain-
able socio-economic development of industrial production.

2. A new methodology for the criteria formation for assessing the sustainability of
energy-intensive industrial production was proposed based on an integrated com-
bination of the economic, environmental (ecological), and social aspects of sustain-
able development.

3. It was established that in order to ensure sustainable innovative development, any
energy-intensive chemical, metallurgical, and energy production processes should
maximize the values of material output and value addition in the products manufac-
tured by the enterprise.
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4. The indicators were justified indicators that determined the levels of sustainability
and their dynamics for the enterprise as a whole, as well as for the dynamics for the
individual production technologies and individual technological processes.

Using a graphical model of the life cycle of technological development of existing
production, a scientifically based procedure was proposed for making management deci-
sions to ensure the sustainability of energy-intensive industrial production. The proposed
scientifically based procedure uses the technological renewal of fixed assets and/or techno-
logical modernization, as well as ways to ensure the intensification of resource and energy
efficiency, together with the environmental safety of technological processes.
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