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Abstract: As an important energy storage device, lithium-ion batteries (LIBs) have been widely used
in various fields due to their remarkable advantages. The high level of precision in estimating the
battery’s state of health greatly enhances the safety and dependability of the application process. In
contrast to traditional model-based prediction methods that are complex and have limited accuracy,
data-driven prediction methods, which are considered mainstream, rely on direct data analysis and
offer higher accuracy. Therefore, this paper reviews how to use the latest data-driven algorithms
to predict the SOH of LIBs, and proposes a general prediction process, including the acquisition of
datasets for the charging and discharging process of LIBs, the processing of data and features, and the
selection of algorithms. The advantages and limitations of various processing methods and cutting-
edge data-driven algorithms are summarized and compared, and methods with potential applications
are proposed. Effort was also made to point out their application methods and application scenarios,
providing guidance for researchers in this area.

Keywords: LIB; SOH; data-driven algorithms; data processing

1. Introduction

With the substantial increase in productivity and the consumption of power in the
modern era, the demand for energy is increasing. This has promoted the further develop-
ment of the energy and power industry [1]. As one of the basic energy storage devices with
the widest application coverage, LIBs have been becoming an important storage device in
the energy industry. However, one of the most serious challenges for LIBs applications, such
as in power grids, electric vehicles, mobile phones, etc., is degradation, which has a crucial
impact on LIBs cycling life. However, battery degradation is a complex process combining
internal reactions with external environments. The internal reactions include electrochemi-
cal reactions and side reactions. Lithium iron phosphate (LiFePO4) and commonly used
negative electrode materials serve as positive electrode materials in the primary reactions
of lithium-ion batteries (LIBs). The main chemical reaction of LIBs involves graphite (C),
with side reactions including salt decomposition, electrolyte oxidation, and active material
dissolution. The degradation mechanism of LIBs is illustrated in Figure 1 [2] and can be
classified into two main modes [3,4]: (1) reduction in lithium-ions due to the continued
consumption by side reactions, and (2) reduction in active materials leading to decreased
capacity of LIBs. More specifically, the loss of active material is mainly caused by graphite
peeling, binder decomposition, electrical contact loss caused by current collector corrosion,
and electrode particle breakage [5]. The reduction in lithium-ions is mainly caused by three
side reactions of solid electrolyte interface (SEI) film formation and decomposition reaction,
electrolyte decomposition reaction, and electroplating reaction. It is worth mentioning that
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these degradation mechanisms are highly related to materials. For example, the working
voltage of a graphite anode is lower than that of a common electrolyte, resulting in the
formation of an SEI film [6,7]. However, no SEI film is formed in lithium titanium oxide
(LTO) anodes because the potential of LTO is within the electrochemical threshold of the
electrolyte [8]. Another example is that the volume change in the lithium iron phosphate
(LFP) positive electrode is smaller than that of the Lithium manganese oxide (LMO) positive
electrode, so its structural deformation is also smaller [9]. In addition to the difference
in materials, the degradation mechanism is also very different under different operating
conditions and different battery designs. For example, the lithium-ion plating reaction
has a high probability of occurrence during rapid charging, but rarely occurs during dis-
charge [10]. For battery design, a smaller cathode particle size will result in less stress and
therefore less particle breakage, but due to the high specific surface area, it will also cause
more cathode material to dissolve [11].
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At present, the prediction methods of LIB mainly include model-based driving meth-
ods and data-based driving methods [12]. The model-driven method is mainly based
on the complex internal physical model of LIB established partially based on experience,
and transformed into mathematical problems, using the method of learning modeling to
represent the degradation process of LIB, such as the Kalman filter method [13], the particle
filter method [14], and other non-linear model prediction methods.

With the advent of the era of big data, thanks to the powerful computing power and
robustness of computers, data-driven machine learning (ML) and deep learning (DL) have
become increasingly important tools. For example, such tools include a backpropagation
neural network (BPNN) [15,16], a support vector machine (SVM) [17], a long short-term
memory (LSTM) neural network [18–20], etc. Data-driven machine learning methods have
the following characteristics:

1. There is no need to have too much understanding of the internal mechanism of the
subject matter, and various parameters and hyperparameters that are highly correlated
with the results need to be extracted;

2. General ML and DL need a large amount of data as support, as a method that does
not need to establish an internal mechanism model, a small amount of data alone
cannot support ML for accurate model establishment [21];

3. The quality of the data are generally considered to be the reason that hinders ML
from further improving the prediction accuracy. Due to the inevitable factors of actual
measurement, the data are full of noise, which will severely limit the offline training
of ML models.
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As an indicator of the degree of battery degradation, its SOH is not clearly defined. It
is generally believed that the SOH of a LIB can be calculated from the ratio of the current
maximum capacity to the initial capacity [22]. The mathematical formula is:

SOH =
Ct

C0
(1)

Among them, Ct is the current remaining capacity of the battery, and C0 is the
rated capacity.

Therefore, in the process of estimating the SOH of LIB, the following main issues need
to be discussed and analyzed:

1. Obtaining an accurate and large number of LIB charge and discharge datasets;
2. Performing mathematical analysis to extract features that have a higher degree of

correlation with SOH, and extracting a large amount of data related to features;
3. Data processing of battery characteristics to reduce fluctuations and noise;
4. Choosing a suitable machine learning model which takes into account accuracy

and efficiency.

By analyzing data-driven ML and DL, this paper initially discusses the issue with
lithium-ion battery (LIB) datasets in chapter two. Subsequently, it evaluates and compares
different techniques for reducing data noise in the latter half, while dedicating significant
attention to the selection of the most suitable method. The third chapter, which is the central
focus of the paper, utilizes features to predict the state of health (SOH). It analyzes the
algorithm principle and summarizes the latest research findings, discussing the advantages
and drawbacks of common data-driven algorithms and offering improvement directions.
This provides readers with the latest guidance on LIB SOH prediction.

2. Data Acquisition and Processing
2.1. LIB Dataset

Researchers can conduct a comprehensive training and verification of SOH prediction
by performing an aging test on the battery, which necessitates a large amount of data,
experimental testing, and data monitoring throughout the cycle, serving as a key element
in machine learning (ML) support. However, this experiment requires strict experimental
conditions, an appropriate environment, and a significant amount of time. Hence, based
on the results of the aging test, researchers can effectively complete SOH prediction using
the following datasets.

NASA provides a very complete set of battery datasets that are popular with schol-
ars [23]. Sufficient data were collected through regular aging experiments and were made
available online. Among them, B0005-B0007 and B0018 are the most commonly used
datasets. These datasets represent four sets of batteries charged to 4.2 V in a constant
current–constant voltage (CC-CV) mode of 1.5 A at a room temperature of 24 ◦C, and the
CC mode of 2 A discharges to 2.7 V, 2.5 V, 2.2 V and 2.5 V, respectively. The cells were
cycled until the end of life (EOL) criteria—a 30% drop in rated capacity—was observed,
and the effect of aging on internal parameters was observed and recorded.

Another dataset that is widely used in forecasting research is the Calce dataset [24]. The
CS2 dataset includes six sub-datasets. Cyclic aging conditions are also CC–CV charge and
CC discharge. In this dataset, during charging, the battery is charged at a constant current
of 0.5C (c-rate, used to indicate the magnitude of the current when the battery is charged
and discharged) until the voltage reaches 4.2 V, and then it charges at a constant voltage
of 4.2 V until the current drops below 0.05 A. During discharge, the battery discharges
with varying constant currents until the voltage drops to 2.7 V. Furthermore, the battery is
cycled to the EOL standard, and through the use of an ARBI battery tester, various data are
measured and recorded in the experiment.

Both datasets described above follow the same charging protocol, but the charging
current is adjusted, leading to variations in parameters due to changes in experimental
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conditions, while the nature of the datasets remains similar. These datasets can be utilized
in research for predicting SOH, and are recommended as a basis for feature extraction and
data processing, which can then be applied to various efficient algorithms.

This article takes 18650LIB as an example, where the cells had a rated capacity of
2.7 Ah. The nominal voltage was 3.6 V, with upper and lower cut-off voltages of 4.2 V and
2.5 V, respectively. The materials consisted of graphite on the anode and Li(NiCoAl)O2 on
the cathode. The cell specifications are summarized in Table 1.

Table 1. 18650 battery information introduction.

Parameter

Rated Capacity 2.7 Ah
Material Li(NiCoAl)O2/Carbon

Voltage range 2.5–4.2 V
Charging Temperature Range 10–45 ◦C
Discharge temperature Range −20–60 ◦C

2.2. Data Analysis

The core and foundation of data-driven ML and DL algorithms is the selection of input
features. The correlation between features and output, their own smoothness, and the
tensor of data all affect the fitting rate and accuracy of the model to a large extent. Figure 2a
shows the constant current–constant voltage charging curves of LIB under different cycle
times. From Figure 2a, part of the aging law of LIB can be seen, as with the increase in the
battery cycle life, the charging time of the CC phase showed a decreasing trend, whereas
the duration of the CV phase showed an increasing trend. Since there is a large correlation
between the battery charging curve and cycle life, it is helpful to select the characteristics
related to Li-ion battery SOH through the relevant data of the charging curve.
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A. Data noise reduction

After the original data are extracted, Z-score standardization is carried out uni-
formly [25], and the mean and standard deviation of the data are used to eliminate the
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dimension of the data and make it conform to the standard normal distribution (mean is 0,
standard deviation is 1) to greatly reduce the computational burden.

After the data are normalized, noise processing needs to be performed. By observing
Figure 2b, it can be seen that there will be erroneous data with large errors in the cycle data,
similar to cycle 31, and the voltage data of each cycle has regeneration and strong errors.
In a similar manner, just as local fluctuations exist, features extracted from the original
data also possess noise and fluctuations, while the global trend of capacity degradation is
accompanied by corresponding regeneration and fluctuations. Such abnormal fluctuations
caused by poor data quality have a great impact on the accuracy of the model. In order to
solve such problems, a variety of methods have been proposed and employed, as follows.

Liu Kailong et al. used empirical mode decomposition (EMD) to deal with such data
errors [26]. EMD is an effective signal processing technique that has been applied in many
practical fields (e.g., ocean waves, rotating machinery) due to its powerful ability to extract
low- and high-frequency components from highly dynamic signals. Using EMD through
an iterative screening process, a non-stationary dataset can be decomposed into a sequence
of residuals and a series of intrinsic mode functions (IMFs), which represent orthonormal
basis components. Specifically, the IMF necessitates satisfying various criteria: (1) the
count of zero crossings should be the same or at most vary from the count of extrema for
the entire dataset; (2) at any given point, the envelope characterized as a local extrema
should produce a mean of zero. Since regeneration phenomena and local fluctuations can
be regarded as high-frequency signals, while the global trend of capacity degradation is a
low-frequency signal, the EMD technique is employed to break down the initial capacity
degradation dataset into several IMFs and a residual. Figure 3a is IMF and a residual curve
after EMD decomposition.
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Zhang Chaolong et al. believe that the measured capacity data of batteries are often
polluted by noise [27]. Experimenting with noise-contaminated data fails to make accurate
capacity predictions. Therefore, in order to extract noise-free data, the volume data needs
to be processed. The EMD denoising method is used to solve the problem in the work, and
the image after EMD processing is shown in Figure 3b.

After data preprocessing, She Chenqi et al. discovered that the characteristic curve
was significantly influenced by imperfect voltage measurement, resulting in noticeable
ripple [4]. To effectively extract the characteristic curve, they employed a filtering algorithm,
specifically the Gaussian window (GW) filtering method, to smooth out the curve. This
filtering method is an improvement on the traditional moving average (MA) filter, which
treats all sampled data equally when computing the estimated value and is unable to
identify sampling anomalies that may cause significant estimation deviations. The GW
filter algorithm overcomes this limitation by employing a Gaussian distribution-shaped
weighted average of the data to derive the estimated value, effectively addressing the
problem of sampling anomalies.

Zhang Tingting et al. believed that traditional filtering methods mainly include linear
filtering methods and nonlinear filtering methods, such as median filtering and Wiener
filtering [28]. The traditional filtering method can only transform all the signals to the
time domain or all to the frequency domain, which cannot describe the non-stationary
characteristics of the signal, and cannot obtain the correlation of the signal. Wavelet
transforms have good time domain and frequency domain characteristics, and has the
advantages of low entropy, multi-resolution, wavelet basis selection diversity, and de-
correlation. Therefore, the wavelet transform is widely used in the field of noise reduction.
The wavelet noise-reduction process is as follows:

(1) Decompose the noisy signal into high-frequency and low-frequency signals using
a wavelet basis function. Typically, low-frequency signals are real signals, while high-
frequency signals are noise signals. They used the db5 wavelet as the wavelet basis function,
which is a commonly used wavelet transform due to its simple calculation. (2) Threshold
the high-frequency signal. (3) Reconstruct the signal using wavelet transform and output
the denoised signal. The original signal is decomposed into three layers using db5, and
heuristic thresholding and soft thresholding functions are used. The db5 wavelet was used
to denoise the B5 and B6 battery data. The wavelet denoising did not destroy the original
features of the data, and the denoised data retained the peak points of the original data.
Compared with the original data, the denoised capacity decay data are smoother. Wavelet
denoising removes the noise signal in the original data while preserving the authenticity of
the original data to the greatest extent.

Zhang Zhi-liang and others also believed that WTM provides localization characteris-
tics in both time and frequency domains [29]. Compared with traditional Fourier transform,
which can only give frequency domain information, it is an effective method for analyzing
non-stationary signals. method. After sampling the noise current and voltage signals,
the decomposition can be done using a 2n order WTM. During the denoising process, the
obtained wavelet coefficients are adjusted according to the threshold rule. Then, using these
denoised wavelet coefficients, the denoised current and voltage signals are reconstructed
with a 2n-order inverse WTM (IWTM). Finally, these denoised signals are used in the
following computations.

The above data processing methods include EMD, GW filter, and wavelet analysis.
All of them deal with the noise that will appear in the data. They are relatively good
data filtering methods. For datasets of different data quality, you can try to select the
appropriate method for many times., the specific data processing results can be observed
according to the curve trend of the output image, and the data quality can be judged based
on experience, and its quality directly affects the calculation accuracy.

B. Feature extraction

After the data noise reduction process, the obtained data are relatively smooth. At this
time, it is necessary to select the features with high correlation with the SOH of LIB, and
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then perform correlation analysis for screening, and select the features with high correlation
coefficient for model establishment.

Xiao Bin et al. selected 6 features according to the geometric features of the charging
curves under different cycles [30], as shown in Figure 4a: F1 is the number of cycles, indicating
the number of cycles of battery charge and discharge. F2 is the duration of the CC phase. F3 is
the duration of the CV phase. F4 is the duration of the CC phase at 3.9 V, F5 is the duration
of the CC phase at 4.0 V, and F6 is the duration of the CC phase at 4.1 V. Feature selection
was performed using grey relational analysis (GRA). It’s a grey system-based theory that
attempts to measure how high or low a relationship is based on the similarity between factors.
GRA provides quantitative measurements of system evolution and is ideal for dynamic
process analysis.
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This intuitively obtained feature based on the charging voltage curve is quite universal.
This method is relatively intuitive, but at the same time lacks the multi-dimensionality of
the feature. Even if four features with a correlation coefficient of about 0.9 are selected
according to the correlation, it is limited to the charging voltage. The curve itself improves
the singleness and instability in the DL process, which is not beneficial to improving the
accuracy and generalization of the model.

She Chengqi et al. proposed to apply the incremental capacity analysis (ICA) method
to the feature extraction of LIB [4]. The IC curve derived from dQ/dV calculation is shown
in Figure 4b. ICA deeply excavated and quantitatively analyzed the LIB during charging.
The relationship between voltage and charge during discharge. During the charging process
of a LIB, the open circuit voltage (OCV) has a relatively level section during the rising
process. In this section, as the charged power increases, the internal voltage of the battery
changes slowly, which is called a voltage plateau. It can be seen from the Figure 4b that
as the number of cycles increases, the voltage platform will gradually shift upward. After
optimizing the curve through SVR and filtering the noise with GW filter, the first peak
value and its peak position of each cycle are extracted as the input of the battery feature.

This method obtains new strong correlation features through ICA based on the charg-
ing curve of the battery, and analyzes the transformation process of LIB charging to extract
features, which helps to improve the accuracy of the model, but the acquisition of the
IC curve and the identification of its peaks have considerable challenges. The amount of
calculation increases the accuracy while slowing down the operation rate.

Dai Houde et al. incorporated additional features into the algorithm input based on
ICA [31]: (1) They considered the average signal to reflect the overall magnitude of the
signal by using the average value of the charging and discharging voltages. (2) The charging
time, which shows a decreasing trend in CC mode with decreasing SOH, was observed
from one cycle’s charging curve to reflect battery degradation. (3) The voltage increment
over a fixed period of time increases with decreasing SOH as the internal resistance of the
battery increases. (4) The four groups of peak values shown in Figure 4e were selected.
The curve shown in the figure is the IC curve. Based on the figure, it is evident that the
voltage per unit capacity of the battery undergoes significant changes during the period of
battery capacity decay, thus the peak value is employed. The voltage delta over the same
capacitance difference in the vicinity is characterized.

This method selects more peak points as features on the basis of ICA, improves the
fault tolerance rate of ICA, and combines more features with strong correlation. The
combination of multiple features is arguably a better feature selection method, which is
helpful for improving accuracy.

MA HPBNNan et al. selected CNN as the neural network algorithm for constructing
the prediction model [32]. The input chosen was the four-dimensional lithium-ion battery
data of voltage, current, temperature, and time during each cycle as shown in Figure 4c. To
avoid the input data volume being too large, a sampling rate of 1 Hz was determined to be
used directly. This method expands a relatively novel data processing method, which uses
large-scale data input and then uses neural network algorithms to automatically extract
features, instead of Manually screen data and select features.

By fully entrusting feature selection to the computer, this method partially eliminates
the limitations and biases of human selection. However, it also leads to difficulties in
monitoring and modifying the input features, sacrificing a certain degree of controllability
and leaving little room for improvement.

Ren Lei et al. expanded on the basis of M. A. HBPNNan et al. and selected the data
of the charging process and the discharging process at the same time, and obtained the
measured voltage or current by observing how it changed to a certain value [33]. For
example, they took the value of the maximum measured voltage during each complete
charge and recorded the time and value of the charging (discharging) current (voltage)
reaching the preset value described in the dataset documentation. After extracting
the features of each LIB, the method applied an auto-encoder (AE) to increase the
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dimensionality of the original data. The AE is an unsupervised neural network that
compressed the input into a hidden space representation and then reconstructed this
representation as the output to perform the task. The neural network structure of
the AE is shown in Figure 4d. It consists of an input layer, hidden layer, and output
layer. The AE mapped the input to the output 21-dimensional vectors of each original
adjacent 14 charge–discharge cycles stacked vertically into a temporal feature map of
size 14 × 21. A 21-dimensional LIB data vector was input to the encoder, resulting in
a 50-dimensional output. After the encoding process of the auto-encoder, the feature
map of the original dataset could be enlarged to a 14 × 50 time-domain feature map
as the input for subsequent calculations. The vector formed in this way included the
voltage measured during charging and the discharge temperature for each charge and
discharge cycle.

This method involves expanding the data dimension and utilizing the AE to en-
hance it. While the process of data information extraction for the subsequent neural
network remains unobservable, it improves the feature’s interpretability and conse-
quently enhances the feature and model quality to some extent. However, increasing the
dimensionality also incurs a higher computational cost for the model and may lead to
decreased fitting accuracy.

Kristen A. Severson and others also captured the information in the charge and dis-
charge voltage curves of LIB [34]. They first extracted common features such as voltage,
current, temperature, and internal resistance, and excluded some features with low corre-
lation coefficients. Then, they obtained the capacity-voltage function and observed and
calculated the dynamic changes of the discharge voltage during the cycle. The quantitative
changes of the charge and discharge voltage were obtained by applying a fixed cycle period.
The key factor in the quantitative analysis of the change in charge and discharge voltage
is the variance, as well as other metrics such as the minimum value, average value, and
the difference between the discharge voltage of a given cycle and that of the 10th cycle.
The average negative correlation coefficient of −0.92 was obtained through correlation
analysis. Through various comparison experiments, the variance of the discharge voltage
difference was calculated. A comprehensive experimental analysis was carried out mainly
in combination with various other characteristics.

The proposed discharge voltage difference scalars may not have a clear physical
meaning, but the analysis of LIB SOH decay process from a dynamic changes perspective
strongly impacts the data-driven algorithm. The author’s comparative experiments provide
ample evidence for this. The variance of the single-selected discharge voltage difference
and its combination with various other features have been compared and analyzed to prove
the reliability of this feature. Under the premise of guaranteed accuracy, the amount of
calculation is also very appropriate, and there will be no ICA and AE increase. This method
incurs a significant computational burden, and while its simplicity may result in some loss
of accuracy, it does offer a very high computational speed.

Feature selection has a strong connection with the selection of data-driven algorithms
in the following. Common LIB features include time, voltage, current, temperature, etc.
Further features can be analyzed and calculated. The variance of the discharge voltage
difference also has a strong correlation with the SOH. For a network with strong data
mining capabilities such as CNN, the data can be arranged reasonably, or the AE can be
used to increase or reduce the dimension and directly input it as a feature. This feature is
the key step of SOH prediction of LIB, which has strong flexible combination characteristics.
The reader can analyze the correlation of each feature and adjust it according to the
characteristics of the data-driven algorithm.

3. Data-Driven Algorithms

After implementing feature extraction and data processing, it is necessary to select
an appropriate algorithm to train the SOH prediction model. This is the core step of SOH
prediction, and various algorithms need to be screened.



Energies 2023, 16, 3167 10 of 28

ML and DL, as a broad category, can be classified into supervised learning and un-
supervised learning. In unsupervised learning, such as the autoencoder mentioned in the
previous section, only feature data are provided, and the autoencoder can learn indepen-
dently, analyzing the data structure and outputting a higher-dimensional representation of
strongly correlated eigenvectors. The unsupervised algorithm is also composed of a variety
of clustering algorithms, which are not the focus of this paper and will not be described
in detail. The supervised algorithm has a clear prediction answer, and the algorithm that
learns the features and obtains accurate prediction results through the algorithm is divided
into two major categories: regression problems and classification problems. This paper
focuses on the SOH estimation of LIB, which involves a regression problem where the aim is
to predict continuous values as output. In the field of regression, there are various common
algorithms that dominate, such as linear regression (LR), support vector regression (SVR),
convolutional neural network (CNN), etc. These algorithms have their own advantages for
regression prediction under different principles and basic frameworks. In the following
chapter, we will provide a detailed analysis of the principles, frameworks, and advantages
and disadvantages of these common algorithms.

3.1. Linear Regression

As one of the core subcategories of machine learning, the LR model is the cornerstone
of the regression algorithm. The classic LR assumes that the model is current for the
parameters, the parameters can only appear in the form of a power, and the error needs
to obey the normality with zero mean. In terms of distribution, the eigenvalues need to
be variable and independent of each other. It can be seen that LR as a basic algorithm has
strong limitations, and it cannot be applied in many situations where nonlinear or feature
distribution are scattered. The basic LR assumption function is:

yi = θTxi (2)

Among them, yi represents the output battery SOH predicted value vector, xi repre-
sents the input n-dimensional feature vector, and θT represents the n-dimensional model
parameter vector. The fitting goal of LR is to minimize the loss function, which is also the
goal of most data-driven algorithms, that is, the error between the estimated value and the
actual value, the formula is:

J(θ) =
1

2α ∑n
i=1

(
yi − θTxi

)2
(3)

Among them, J(θ) represents the loss function, and α is represented as a constant, so
that the squared effect is canceled when the loss function is derived and has no effect on
the optimization result.

Kristen A. Severson et al. enhanced the basic LR method by introducing the elastic net
(EN) regularization technique. EN is a LR model trained using both L1 and L2 norms as
regularization terms. The resulting fitted model combines the sparsity of Lasso regression
with the regularization ability of ridge regression. Unlike other methods, EN does not
generate cross paths, leading to a faster convergence and higher efficiency and accuracy. Its
loss function is:

J(θ) =
1

2α ∑n
i=1

(
yi − θTxi

)2
+ ελ ∑m

j=1 θj
2 +

1− ε

2
λ ∑m

j=1

∣∣θj
∣∣ (4)

They argue that in this paradigm, the input features are linear or non-linear variations
of the original data, generated and used in the elastic framework of the regularization
look-ahead framework, and the choice of the regularized linear model enables us to propose
domain-specific features of varying complexity, while maintaining high interpretability.
Linear models also have lower computational costs; models can be trained offline, and on-
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line prediction only requires a single dot product after data preprocessing. After accounting
for multiple ways of combining features, they obtained an average error of 7.5%.

As algorithms continue to gain popularity, there is a constant influx of complex and
novel models that prioritize model accuracy. However, Kristen A. Severson and colleagues
introduced the idea of prioritizing efficiency and convenience [34]. The elastic network
(EN) they proposed simplifies the calculation process for offline processing, and while its
prediction error of 7.5% may be higher than more complex models, it meets the practical
requirements of normal engineering applications. This highlights the need for ML and DL
to consider the balance between efficiency and accuracy, which is a critical and sometimes
conflicting issue when implementing SOH prediction methods in engineering practice.

LR is a classical machine learning method, which can be used when features and
results have a strong linear relationship, with ultra-high fitting efficiency and good accuracy.
However, its limitations make it difficult to use this method in the prediction of SOH of
lithium-ion batteries, and few researchers use LR as the core algorithm. If linear features
can be obtained through mathematical operations, then LR is a good choice.

3.2. Support Vector Regression

The second chapter mentions that SVR is applied to the zero-denominator identifica-
tion of IC curve. SVR is a regression prediction algorithm based on support vector machine
(SVM). The original intention of SVM is as a classification algorithm. In the classification
task, the distance between the sample points closest to the hyperplane is the largest. As
shown in Figure 5, a simple binary classification task is completed.
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To apply SVM to regression prediction, it is necessary to make changes. The same is to
maximize the distance between the sample points and the hyperplane. The purpose of SVR
is to maximize the distance between the farthest sample points on the hyperplane. The
right side of Figure 5 is the SVR expectation. Therefore, the interval of SVR needs to be
limited, that is, the deviation between the established SOH prediction model and the actual
SOH value must be ≤ ε, and this deviation range is called the ε pipeline. The mathematical
formula is:

min
w, b

1
2
||w||22 (5)

s.t. |yi − (wTxi + b)| ≤ ε, i = 1, 2 . . . , N (6)

Among them, w represents the weight, yi represents the virtual function, b represents
the intercept term, and xi represents the input vector. The selection of ε is a crucial factor in
practical engineering applications. If ε is set too small, there is a risk that some samples will
fall outside the ε-tube, which could result in the model being unable to capture important
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information. Conversely, if ε is set too large, outliers may heavily influence the model,
leading to a model with high variance and poor performance.

yi −
(
wTxi + b

)
≤ ε + ξ↑i(

wTxi + b
)
− yi ≤ ε + ξ↓i

ξ↑i , ξ↓i ≥ 0
(7)

Among them, ξ↑i represents the upper bound constraint, and ξ↓i represents the lower
bound constraint.

Xiao Bin et al. combined the least squares (LS) method with SVR to developed a
least squares support vector regression (LS-SVR) model with a polynomial kernel func-
tion [30]. For the LS-SVR regression model, the hyperplane can transform the problem
of minimizing the loss function and solve the convex optimization problem through the
Lagrangian function:

minR(ω, C, ξ) = 1
2 ||w||

2
2 +

1
2 C

N
∑

i=1
ξi

2

s.t.
∣∣yi −

(
wTxi + b

)∣∣ ≤ ε, i = 1, 2 . . . , N

L(ω, b, ξ, α, β) = R(ω, C, ξ)−
N
∑

i=1
αi
(
ωT ϕ(xi) + b + ξi − yi

) (8)

where C is the penalty factor and α and β are the Lagrange multipliers. The optimized
regression model can be written as:

f (x) =
N

∑
i=1

αi ϕ(xi)ϕ
(
xj
)
+ b (9)

where xi and xj are both input vectors. This method adds the K-fold verification method
when optimizing the hyperparameters. The errors obtained by the LS-SVR model under
the verification of multiple battery data are shown in Table 1. Although the performance of
different battery groups is different, the overall performance indicators remain the same.
The LS-SVR model with a polynomial kernel has proven to be effective in overcoming the
nonlinear relationship between input variables and battery SOH, as demonstrated by the
total error range of battery SOH estimation being between −1.83% and 2.25%.

This method adds the K-fold verification method when optimizing the hyperparame-
ters. The errors obtained by the LS-SVR model under the verification of multiple battery
data are shown in Table 1. Although the performance of different battery groups is different,
the overall performance indicators remain the same. The results of the study demonstrate
that the LS-SVR model with a polynomial kernel is effective in overcoming the nonlinear
relationship between the input variables and battery SOH. This is evidenced by the total
error range of battery SOH estimation, which falls between −1.83% and 2.25%.

Racha Khelif et al. used the SVR model of the linear kernel function [35], as shown in
the following formula:

k
(

xi, xj
)
= xi

Txj (10)

They also combined the time detection mechanism to input the health data of LIB and
used the weighted average method to obtain the input features and make predictions. The
adjustment of γ, C, ξ, combined with ten cross-validation, obtained the best MSE of 0.045.
The article also stipulates a novel prediction result evaluation method, which is detailed in
the Table 2.
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Table 2. Results of the estimation.

Kernel Test Case RMSE MAE MAPE R2(%) Error (%)
No.5 1.26 0.89 0.53 99.8 [−1.48 2.25]
No.6 1.36 1.08 0.65 99.73 [−1.83 1.09]
No.7 0.95 0.7 0.41 99.67 [−1.4 1.39]

Polynomial kernel

No.5.6.7 1.19 0.89 0.53 99.66 [−1.83 2.25]

In order to avoid the direct calculation of the inner product in the high-dimensional or
even infinite-dimensional feature space, Zhang Yajun et al. chose the Gaussian kernel func-
tion to map the input to the high-dimensional space combined with the feature extraction
method of ICA for combined modeling [36]. The formula is as follows.

k
(

xi, xj
)
= exp

(
−
∣∣∣∣xi − xj

∣∣∣∣2
2σ2

)
(11)

where σ represents the Gaussian parameter, which determines the height of the peak of
the Gaussian distribution. The authors suggest that the SVR model for Li-ion battery SOH
estimation has a low computational burden and high accuracy, as only a small number
of support vectors (SV) have non-zero values and dominate the model. Furthermore, the
SVR model does not require intensive mathematical operations. The authors conducted
two experiments on three sets of batteries in various datasets, and the accuracy was much
higher than that of the ordinary linear regression model, as shown in Table 3.

Table 3. Results of the estimation.

SVR Linear Model
Battery Label

MAE (%) RMSE (%) MAE (%) RMSE (%)
B5 0.3413 0.5935 3.1645 3.6222
B6 0.5979 1.0953 5.296 6.0685

CS35 0.2729 0.3663 1.4508 1.8601
CS36 0.5157 0.6701 3.4108 3.9441

Cai Lei et al. proposed a feature selection method using non-dominated sorting
genetic algorithm (NSGA-II) [37], which combined the use of radial basis function (RBF),
also known as Gaussian kernel function to construct SVR, and used the same kernel as
Zhang Yajun et al. function.

The RBF sum function has the benefit of being able to approximate other kernel
functions by parameter adjustment, making it a flexible kernel function. Figure 6 presents a
novel comparison using this method to predict SOH from different battery SOCs. The SOH
estimation for battery 1 and battery 2 using current pulses at SOC = 20% and SOC = 50% is
a preferred choice. Since the mean square error of battery 2 as the validation set is 0.0046
under all conditions, and the results of the training set battery 1, its mean square error is
0.0035, thus demonstrating the good generalization of the method.

As can be seen from the above, the kernel function is used as the core of SVR for
regression prediction, and the common SVR kernel functions used for SOH prediction of
LIB are shown in Table 4.

The overall advantage of the SVR algorithm lies in that the nonlinear data needs to
be mapped to the high-dimensional space through the kernel function in the calculation
to become linearly separable data, which cleverly avoids the complexity of the high-
dimensional space. When the kernel function is known, it can be simplify the difficulty of
solving high-dimensional space problems. At the same time, SVR finally solves a convex
quadratic programming problem, which will obtain a global optimal solution, solve the
local extreme value problem that cannot be avoided in neural networks, and have better
generalization ability.
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However, the mapping process of the kernel function brings more computation and
requires a lot of storage space, which is also one of the inevitable problems of SVR. Moreover,
the establishment of the SVR model and the selection of the kernel function are more
dependent on the selection of LIB features, the analysis of the feature structure, and the
selection of hyperparameters. Whether the kernel function and features are matched
and adapted determines the accuracy and rate of SVR prediction. At present, there is no
established method for selecting models, and researchers have to rely on their experience
and experiments to make a choice.

Table 4. Kernel functions commonly used in regression prediction.

Function Formula Remark

Linear kernel k
(
xi, xj

)
= xT

i xj

Polynomial kernel k
(
xi, xj

)
=
(
xT

i xj
)2

d ≥ 1 is the degree of polynomial

Gaussian kernel k
(
xi, xj

)
= exp

(
− ||xi−xj||2

2τ2

)
τ > 0 is the bandwidth of the Gaussian kernel

Sigmoid kernel k
(
xi, xj

)
= tanh

(
βxT

i xj + θ
)

β > 0, θ < 0

From the results given by various researchers, SVR kernel function selection is very
flexible and has a great impact on the results. It is a machine learning algorithm with
great potential. Compared with LR, SVR can achieve higher prediction accuracy. With the
development of mathematical theory, SVR will certainly be enhanced.

3.3. BP Neural Network

The BP neural network (BPNN) emulates biological processes to exhibit certain traits
of the human brain using artificial neurons. It operates on a parallel divisional processing
structure and is categorized as a machine learning algorithm. The artificial neurons
within BPNN are typically referred to as “processing units” and from the perspective
of the network, they are commonly known as “nodes”. As shown in the Figure 7a, the
input features are weighted and summed by weights, and the whole is input to the
neuron, which is mapped to another value through the activation function for output.
The activation function represented by f generally uses the sigmoid or relu function.
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As shown in Figure 7b, the basic BPNN architecture is formed by interconnecting
processing units (artificial neurons) and linked signal channels. Each processing unit can
branch into any number of identical signals, which are then connected in parallel. The
architecture includes input layer, hidden layer, and output layer, of which there can be
multiple hidden layers, which is also the key to self-construction and design of BPNN.

The definition of the loss function is the same as that of LR. This is the standard for
evaluating the forward propagation process. The mean square error (RMSE) is often used
as the loss function for regression problems. The formula is:

E = ∑n
i=1(Ti −Oi)

2 (12)

Among them, E represents the error, Ti represents the target value, and Oi represents
the model predicted value. In the process of backpropagation, the actual error is propagated,
and the error of the output layer is transmitted back to the network, and then the weight
parameters are corrected. Its basic weight update formula is:

δw = α·Ek·Ok(1−Ok)·OT
j (13)

Among them, α represents the learning rate, and includes all the constants in the
formula, and the subscript K represents the number of layers of the neural network.
Backpropagation also relies on gradient descent to find the value of w that minimizes
the error. As an optimization algorithm, gradient descent is one of the most important
techniques and foundations. The algorithm is constantly updated in order to minimize
the loss function by finding the minimum value of the error gradient. Stochastic gradient
descent updates the parameters for each training sample, with a single update executed
at each step, resulting in faster speeds. However, frequent parameter updates can lead
to high variance, which can be partly alleviated by mitigating local minima [38]. Mini-
batch gradient descent addresses the issues associated with stochastic gradient descent by
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updating parameters using sample values in batches, reducing fluctuations and ensuring
stable convergence, making it a favorable optimization method. Additionally, gradient
descent can leverage momentum techniques to accelerate gradient descent training by
optimizing relevant directions and attenuating irrelevant directions [39]. The Adagrad
algorithm optimizes by adjusting the appropriate learning rate and is particularly suitable
for processing sparse data [40]. Finally, the AdaDelta algorithm builds on Adagrad to tackle
the issue of learning rate decay and constrain the window of previous gradients [38].

The accuracy of the univariate model (m-AIC) based on m-AIC algorithm was further
improved by Khalid, A et al. [41], firstly, by modeling and unifying with the multi-layer
perceptron (MLP), and then, by modeling and unifying with the nonlinear autoregressive
neural network (NARX) neural network with external input (using the previously predicted
parameters). The predicted mean square error of the model is 0.1048% and 0.0175%, whereas
the corresponding error of the independent model is 0.271% and 0.0236%, respectively.

M A Hannan et al. proposed a BPNN algorithm combined with backtracking search
algorithm (BSA) [32]. The parameters of BPNN have an important impact on the perfor-
mance of the algorithm. The learning rate parameter can be used to identify if values are
stuck in local minima. In contrast, the hidden layer neurons control the time complexity
of the algorithm. Overfitting may occur if the hidden neurons are higher than optimal,
and underfitting and high variance may occur when the number of hidden neurons is
less than optimal. These parameters are set empirically, and it is difficult to ensure an
optimal solution. Therefore, the BSA algorithm is used to obtain the optimal value and
learning rate of the hidden layer neurons. BSA can operate large-dimensional problems
using historical populations and mapping matrices to obtain optimal solutions. Taking
the data of the Dynamic Stress Test (DST) cycle as the training and testing sets, the RMSEs
of the BPNN-BSA model calculated with the battery data at 0 ◦C, 25 ◦C, and 45 ◦C were
1.47%, 0.81%, and 0.48%, respectively.

Ge Dongdong et al. proposed the use of BPNN to improve extreme learning ma-
chine (ELM) combined with the bat algorithm (BA) [42]. ELM is a feedforward neural
network with a single hidden layer, which simplifies the original BPNN model, and has the
advantages of fast learning speed and generalization. To prevent the hidden layer from
having a fixed number of neurons, the connection weights and thresholds are set randomly.
However, this approach may result in an imprecise estimation of the State of Health (SOH)
of the battery. To overcome these shortcomings, the BA algorithm is used to optimize the
connection weights and biases of the ELM model. The RMSE of the BA-ELM model is
0.5354%, and the MAE is 0.4326%, which is the smallest error among the models in the
comparison test.

The structure of feedforward neural networks, including BPNN and its variants, is
similar. They exhibit greater capacity for processing multi-dimensional nonlinear data and
possess stronger feature mining capabilities, compared to the LR algorithm. This enhances
accuracy to some extent. However, these neural networks tend to suffer from over-fitting
issues and are susceptible to local minima. Furthermore, they can only mine the correlation
between input and output from a one-dimensional perspective. However, with the progress
of charging and discharging cycles of LIB, there are differences between the data. Even
with the combination of BPNN’s basic model with excellent parameter optimization or
weight fitting algorithms, its accuracy cannot be improved due to the inability to mine the
correlation in the time series. As a result, BPNN is typically used as the primary model, but
there are limited instances of achieving outstanding results in Li-ion battery SOH prediction
using this neural network.

According to the various methods proposed by researchers, BPNN is a fast fitting
algorithm with general accuracy and large prediction fluctuation, which is suitable for
small batch and low accuracy requirements, and is also suitable for applications such as
edge computing.
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3.4. Long Short-Term Memory Neural Networks

The SOH value of a LIB is a sequential data set. Therefore, it is necessary to consider
not only the data from the current time step but also the data from the preceding time
step during processing, as it can influence the subsequent time step. The transmission of
information is one-way. The output of the network only depends on the current input and
has no memory ability. The RNN can record the output of each time step, and the previous
time step will affect the output of the subsequent time step, so it can effectively process
data with sequence characteristics and mine time series information from it. The common
loop body structure is a special neural network structure. As shown in Figure 8a, it consists
of an input layer, a hidden layer, and an output layer. After the loop body is expanded, it is
shown on the right.
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Among them, the input of the hidden layer processing unit St includes Xt, St−1, Xt
is the input at the current moment, and St−1 is the information at the previous moment.
After receiving the input, the tanh activation function should be used to map, and Ot is
the output at time t. Softmax is often used as an activation function. RNN is formed by
stacking loop bodies. As shown in Figure 8b, it is a one-way RNN, which usually processes
data related to the current moment and the previous moment.

Khalid, A et al. used the empirical mode decomposition (EMD)—recursive wavelet
neural network (RWNN) model as a prediction method for SOH of lithium-ion batter-
ies [43]. A charge–discharge capacity analysis method based on reference charging rate
was proposed for aging degradation analysis. The prediction accuracy of neural network
was improved through advanced modeling and continuous filtering of various lithium-ion
battery parameters.

Long Short-Term Memory Neural Network (LSTM) is a type of RNN, which is an
improvement on RNN. The parameter learning of the RNN cycle can be learned through
the back-propagation algorithm over time; in order words, the error is passed forward
step by step according to the reverse order of time. When the input sequence is relatively
long, the gradient explosion or gradient disappearance problem will occur, which is also
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called the long-term dependency problem. To address this issue, gating mechanisms are
introduced to improve recurrent neural networks, namely LSTMs and Gated Recurrent
Units (GRUs). Figure 8c shows the detailed internal structure of LSTM, in which LSTM has
three special network structures called “gates”. The overall combined LSTM structure can
more effectively determine the forgetting or retention of information, specifically:

Forgetting gate ( ft): The forgetting gate will jointly decide which part of the memory
needs to be forgotten according to the current input xt, the state Ct−1 at the last moment,
and the output ht−1 at the last moment. The mathematical formula is:

ft = σg

(
W f xt + Uht−1 + b f

)
(14)

Among them, W f represents the input matrix of the forget gate at the current moment,
U represents the output matrix of the previous moment, b f represents the bias unit, and σg
represents the sigmoid activation function.

Input gate (it): After the work of the forget gate is over, some information is deleted,
and the input gate determines which memories will enter the current state Ct according to
xt, Ct−1, ht−1. The mathematical formula is:

it = σg(Wixt + Uht−1 + bi) (15)

Output gate (ot): After the new state Ct is calculated, the output of the current mo-
ment is generated through the output gate according to xt, Ct−1, ht−1. The mathematical
formula is:

ot = σg(Woxt + Uht−1 + bo) (16)

So far, the current state Ct and output ht can be obtained through the overall structure
of LSTM. The mathematical formula is:

Ct = ft ∗ Ct−1 + it ∗ σc(Wc + Uht−1 + bc) (17)

ht = ot ∗ σc(Ct) (18)

Among them, σc represents the tanh activation function, and * represents the star
multiplication, which is the point-to-point multiplication between matrices.

The core idea of the GRU model is the same as that of the LSTM, with only a slight
difference in the selection of the gating module. Interested readers can refer to it by
themselves. It is generally believed that the LSTM and GRU only differ in the amount of
calculation. The LSTM is larger and the GRU is reduced by 25%.

Khalid, A et al. creatively used multi-layer perceptron (MLP) combined with LSTM
to estimate the available capacity of batteries, and fully considered the nonlinear and
time-varying characteristics of batteries [44]. They believed that compared with the single
LSTM model, the combination had higher accuracy and robustness.

Ephrem Chemali et al. proposed to use LSTM to mine deeply the characteristic
data of various LIB and make accurate predictions of SOC [45]. They believe that
LSTM can mine information from time series compared with BPNN and can improve
the performance of the model after full fitting. Generalization, compared to RNNs,
improves on their longstanding problem, where gradients explode or vanish during
backpropagation, as shown in the Table 5 below. The LSTM model achieves an MAE of
0.573% at a fixed ambient temperature and a MAE of 1.606% on the dataset where the
ambient temperature is increased from 10 ◦C to 25 ◦C.
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Table 5. Results of the estimation.

Ambient Temperature MAE (%) RMSE (%) STDDEV (%) MAX (%)

25 ◦C 0.774 1.110 0.796 3.692
10 ◦C 0.782 0.995 0.616 4.047
0 ◦C 2.088 2.444 1.270 6.687

Varying Temperature 1.606 2.038 1.256 5.815

Li Weihan et al. also proposed a method to predict the SOH of LIB in multiple
environments with LSTM models, and provided the trained models to embedded devices
with local deep learning functions for verification [46]. Such models have been tested
in future battery systems. Model validation results show that it is robust against noisy
inputs and is able to generate feasible outputs even when the input set provided to it
is incomplete. This results in a viable SOH estimate even when the input measurement
process is interrupted or erroneous. After comparative experiments, as shown in Figure 9,
the network achieves the best mean absolute percentage error of 0.76%.
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Zhang Yongzhi et al. applied the improved LSTM model to predict the RUL of LIB,
combined dropout to prevent overfitting of neural networks, and used elastic mean square
backpropagation for adaptive optimization [21]. Through experimental comparison, it is
found that the online data required by the LSTM-RNN model to accurately predict RUL is
reduced to 20–25% of the complete data, and the error is relatively small.

Yang Fangfang et al. proposed a method that uses LSTM as an algorithm and combines
the unscented Kalman filter (UKF) to filter out noise [47]. Estimating battery SOC at
different temperatures up to 50 ◦C, referring to the results in Table 6, the root mean square
error is less than 1.1%, and the average error is less than 1%.

Table 6. Results of the estimation.

Methods MAE (%) RMSE (%) Computation Time (s)

Proposed method 0.82 0.93 1.20
NN 5.72 8,13 0.039

SVM 5.85 8.80 0.57
GPR 4.99 7,30 2.32
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Liu Kailong and colleagues decomposed the original battery capacity data using
EMD. They then utilized LSTM to fit the residuals, which enabled the maintenance and
updating of long-term dependence of battery capacity degradation without encountering
gradient disappearance. Additionally, they employed a GPR sub-model to capture local
fluctuations [26]. This approach enabled the simultaneous consideration of quantifying un-
certainty caused by the phenomenon of capacity regeneration. The prediction performance
of several data-driven models was investigated and compared from the perspective of ker-
nel function and number of training inputs. The combined LSTM+GPR model outperforms
other similar models. Moreso, they suggested that approach can easily be extended to
other battery health diagnostics. From the fitting error of the LSTM model at different time
steps, the RMSE and the maximum error are in the range of 0.0048 and 0.038, respectively,
indicating that the model can achieve higher accuracy.

LSTM is a neural network that is improved and optimized on the basis of RNN.
From the structure, it can be found that the network can calculate the dependencies
between various observations in the time series, and its large existence in the LIB data
set is closely related to the time series related data. Compared to common models such
as LR, SVR, and BPNN in mining feature information, this approach has significant ad-
vantages. Additionally, it addresses the issue of the gradient disappearing during neural
network training, which can cause abnormal training, and exhibits strong generalization
capabilities. At the same time, adding dropout and other methods can further improve
its generalization advantage.

The limitation brought by LSTM is also due to its high requirements on hardware
resources, which require a large amount of data as support. At the same time, the gradient
problem of RNN has been solved to a certain extent in LSTM and its variants, but the
sequence order is still limited, and is not completely resolved. Moreover, the four linear
layers in the LSTM structure consume significant resources for calculation during operation,
and the computational efficiency will be significantly lower than that of simple neural
networks or data-driven algorithms.

As one of the most established algorithms currently used, LSTM plays an impor-
tant role in the research field. Many researchers use LSTM as the core algorithm for
in-depth learning, and its prediction accuracy and robustness are very good. It can perform
high-precision fitting for time series data, and is a well-established and in-depth learning
algorithm, which can be widely used.

3.5. Convolutional Neural Network

CNN is often used in machine vision because it has great advantages in processing
pixels in images. Furthermore, methods were later developed to deal with sequence
prediction. As a kind of neural network, as shown in the Figure 10, it can be generally
divided into input layer, convolution layer, pooling layer, fully connected layer, and
output layer.
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The convolutional layer slides a window similar to 3*3 on the constructed input feature
map, stops at each possible position and extracts the surrounding feature component weight
matrix, also known as the convolution kernel. The pooling layer performs different pooling
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operations. Generally, the maximum pooling operation is used to sample the feature map.
Usually, a 2*2 window and a stride of 2 are used, so that the features extracted by the
convolution layer can be refined. Generally speaking, two to three groups of convolution-
pooling combination algorithms are used to complete the feature extraction step.

As discussed in the previous chapter, there is no clear quantitative formula for de-
scribing the relationship between LIB life and the voltage, current, and temperature curves
during charging, so we need to empirically find features that can accurately describe the
life of LIB; however, the current relationship between the V/I/T curve of a battery and the
battery cycle life (or RUL) is difficult to fully understand due to its complex electrochemical
reaction mechanism.

Therefore, CNN is used to comprehensively and automatically capture and model
the features hidden in the curve. The feature map is to arrange all the features into a
3D model according to a certain rule [48]. In the case of Lithium-ion batteries (LIBs), a
one-dimensional model can be developed using time or battery capacity. Alternatively, a 3D
model can be created by using the number of cycles as one dimension and different features
as another dimension, as reported in [49]. It can be seen from the above analysis that CNN
can use convolution and pooling operations to continuously identify prominent features
from the constructed feature map and perform integration optimization [50]. Compared
with the features selected by experience, it is not necessarily more accurate, but it will be
comprehensive. The captured features are input to the fully connected layer for neural
network operations, and finally a complete LIB SOH prediction model is obtained.

Qian Cheng and colleagues developed a 1D CNN model, which includes 1D convo-
lution, pooling, and fully connected layers [51]. The proposed model consists of three
convolutional layers, one global pooling layer, and two fully connected layers. The layer
composition is shown in Figure 11a,b. After each convolutional layer, a batch normal-
ization technique is applied to improve the performance and stability of the 1D CNN
model. Furthermore, as shown in Table 1, the stride in the convolutional and pooling
layers is artificially set to 1, whereas the other hyperparameters should be optimized by
an optimization algorithm. Before training, the 1D CNN parameters are initialized to a
uniform distribution using the Xavier initialization method. Then, during training, these
parameters are updated based on a gradient descent algorithm and a mean squared error
loss function. When conducting the comparative experiments, the data are segmented from
three different locations as input, and given the prediction results of the two batteries in
Figure 11c,d, the CNN model still provides the best capacity estimates for all scenarios.

Ren Lei et al. proposed an Auto-CNN-LSTM model, which uses the aforementioned
AE to upgrade the feature map to improve the mineable line of LIB data, and then uses
the CNN module to extract the feature map output from the autoencoder [33]. Regarding
the extract depth information, they chose the most suitable CNN structure as shown in
the figure below. Fully connected layers are often used to map the features learned by the
convolutional and pooling layers into the sampling space, and they choose to drop them
to reduce computation. The network structure is shown in Figure 11e. The CNN exploits
the features in each charge and discharge cycle to find the temporal features between
adjacent charge and discharge cycles that can be extracted by the autoencoder. During the
forward propagation of deep CNN, the feature maps are gradually blurred, and the global
information of each feature map will gradually become prominent. Finally, the information
extracted by this part will be transformed into a feature vector with 480 elements through a
flattening layer. This feature vector will be input into the DNN as part of the combination
with the LSTM, and the LSTM model will be used to predict the mining ability of the feature
time series. The predicted results are shown in the Table 7 below. The root mean square
error of the prediction results obtained by using Auto-CNN-LSTM and filtering with linear
filters is 4.8%, which is markedly superior to the error rates of the other two data-driven
models based on the auto-encoder and deep neural network (ADNN) and Support Vector
Machine (SVM), which produced error rates of 11.8% and 18.2% respectively.
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Table 7. Results of the estimation.

Method RMSE (%) Accuracy (%)

Auto-CNN-LSTM 5.03 94.97
Linear Filter 4.84 95.16

Second-Order Filter 4.98 95.02
Third-Order Filter 4.98 95.02

ADNN 11.80 88.20
SVM 18.23 81.77

Yang Yixin et al. proposed an HCNN model to simulate the relationship between
battery charging V/I/T curves, battery cycle life, and RUL under different charging strate-
gies [52–54]. Unlike traditional CNNs, the proposed HCNN is the first model to integrate
both three-dimensional CNNs (3DCNNs) and two-dimensional CNNs (2DCNNs) for the
purpose of predicting battery life. The introduced 3DCNN layer can fuse the differences
between these V/I/T curves and their periods to account for the strong relationship be-
tween them. Moreso, the 2DCNN layer can fully and automatically extract and model the
features hidden in these curves. The proposed method involves analyzing two distinct sets
of cycles for the battery: the first mi cycles represent the fresh state, while the subsequent
n_i cycles reflect the cycled state. By considering the battery’s voltage (V), current (I), and
temperature (T) as functions of capacity ratio, the model predicts battery life by inputting
charging data for a total of mi + ni cycles.

In the HCNN model shown in the Figure 11f, the information in the V/I/T three-
dimensional input sequence is captured by adding a 3DCNN layer. Because the simple
3DNN layer has too many neural network parameters, the model is difficult to train.
Therefore, a hybrid CNN (HCNN) was proposed which combines 3DCNN and 2DCNN,
and was connected by two subnetworks in parallel. Subnetwork-1 utilized cyclic charging
as input for the three matrices generated by V/I/T during the process of mi + ni. On the
other hand, subnetwork-2 employed the input of each curve and the difference between
the first cycle curves of battery V/I/T. Considering the strong relationship between cells V,
I, and T, only one 3DCNN layer is used as the input layer to fuse the curves. It is combined
with two 2D CNN layers to automatically extract and model features hidden in the input
curves. The results of the battery life prediction are finally output from the outputs of
the two sub-networks through the perceptron. After conducting sufficient comparison
experiments, under different charging strategies, the test error of early prediction of battery
cycle life of different batteries is 1.1%, and the test error of RUL prediction is 3.6%.

After the above review of scholars, it can be found that when using CNN to predict the
capacity problem of LIB, the manual selection process of features can be omitted, and the
correlation between the data of each charging curve and the structure of CNN can be ana-
lyzed mainly. To match, many improved CNN structures have been developed, which are
more suitable for various data of LIB and reduce the subjectivity in the prediction process.
In addition, there is no need to worry about the huge load of high-dimensional data on the
neural network algorithm. The shared convolution kernel has no pressure on processing
high-dimensional data, and can comprehensively correlate the multi-dimensional data,
and the extracted features are more accurate.

The limitations of CNN are also brought about by its prominent characteristics. The
data integration of the pooling process also means that some features may be lost. The
variability of its structure means that it needs to be confirmed through multiple parameter
adjustments, and a large number of samples are required for supply. For its analysis and
extraction, training will consume more resources and take a long time. However, the
training process of CNN is similar to a black box, and its physical meaning cannot be
clearly defined.

According to the improvement methods of CNN provided by researchers, the core
problem of the algorithm is how to form a feature map and improve the internal logic of
CNN. CNN has several structures designed to address various prediction problems and is
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known for its strong robustness. The accuracy of predictions heavily relies on the chosen
feature map and the structure of the CNN, both of which are determined by the researchers.
Similarly, LSTM also possesses high accuracy and research potential, and is a deep learning
algorithm that will likely become mainstream in the future.

After the above analysis, we summarize the advantages and disadvantages of common
data driven algorithms in Table 8. Please refer to it in detail.

Table 8. Comparison of commonly used data-driven algorithms.

Algorithm Advantage Limitation Prediction Accuracy

Linear regression

Simple linear model, supports fast
fitting of linear data, direct
thinking, strong interpretability,
and high computational efficiency.

Accuracy depends on the
quality of linear feature
selection, requires strict linear
assumptions, is prone to
overfitting, and is sensitive
to outliers.

LR algorithm is generally not
suitable for fitting large
quantities of nonlinear data
and needs the support of
linear features. It has good
fitting effect for small batches
of linear datasets. Taking
MAE as an example, the error
is generally about 10%.

Support Vector
Regression

The high-dimensional data are
skillfully processed through the
kernel function, avoiding the
complexity of the data, avoiding
the local extreme value or the
global optimal solution, and has a
good generalization ability.

The mapping of the kernel
function requires a lot of
storage space. There is no
fixed scheme for the selection
of the kernel function, which
is not mature enough, and
requires a lot of adjustment
parameters for
comparison experiments.

The progress of SVR
algorithm depends on the
selection of kernel function.
Under reasonable selection,
the MAE error of SVR
prediction is about 5%.

Backpropagation
Neural Network

Can directly process
multi-dimensional nonlinear data,
strong mining ability, improved
generalization, and high
computational efficiency.

The problem of model
overfitting still exists, and it is
prone to local minima rather
than global optimal solutions,
and the ability to mine the
relationship between features
and output is general, Unable
to mine more information
from the timeline.

As a basic type of neural
network, BPNN can generally
reach about 7% of MAE error
in LIB life prediction problems
with less characteristic
dimensions and
non-explosive gradients.

Long Short-Term
Memory Neural Network

It can calculate the dependencies
between various observations in
the time series and has great
advantages in mining feature
information. It solves the problem
of gradient disappearance that has
occurred when fitting small-scale
data volumes, and the model
accuracy and generalization are
further improved.

The high requirements for
hardware resources require a
large amount of data to
support, and the problem of
gradient disappearance still
occurs in large-scale data, and
the calculation efficiency
is low.

As a relatively mature neural
network type, LSTM has
solved many problems left by
BPNN. With the support of
various improved models, the
MAE error of LIB life
prediction can generally reach
about 1%.

Convolutional
Neural Network

The process of manual feature
selection is omitted, and there is a
large room for structural
improvement. It can process
large-scale data and fully mine the
correlation between
multi-dimensional data. The
extracted features are more
objective and the calculation
accuracy is high.

The fitting process operating
in a “black box” mode results
in a prediction process that is
uncontrollable and opaque,
necessitating a large volume
of data and exhibiting low
computational efficiency.

As a neural network with a
high degree of automation,
CNN can achieve the same
accuracy as LSTM, that is,
about 1% MAE error, under
the support of reasonable
input and output, by focusing
on the way to optimize its
input characteristics
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4. Conclusions

Due to the challenging engineering requirements, high precision, and harsh environmen-
tal conditions during LIB charge and discharge testing, acquiring data during actual operation
is typically difficult, and can lead to significant errors and fluctuations. As such, we suggest
that readers consider using publicly available datasets for their modeling operations.

In data processing, according to different data types, corresponding methods can be
selected. The three mentioned in this paper are all common data processing methods with
filtering properties, and different parameters can be set to adjust the required smoothness.

In terms of feature selection, since the overall charge and discharge data of LIB
is nonlinear, we do not recommend selecting linear features. The research conducted
by Kristen A. Severson and others is highly promising, but it is challenging to identify
comparable features. In terms of practicality, methods akin to Xiao Bin’s approach feature a
small workload, convenient feature extraction, and high efficiency, albeit at the cost of a
certain level of accuracy. Chengqi et al. and Dai Houde et al. utilized ICA to extract features
and uncover those that possessed physical significance and high correlation. Despite the
increase in computational workload, the use of ICA ensured accuracy, and the IC curve
provided the capability for deeper feature exploration. Both MA HBPNNan et al. and
Ren Lei et al. utilized a data feature map input that aligns with CNN. This approach
replaces manual empirical feature extraction with AI-based feature mining. By providing
a comprehensive data feature map, researchers have the option to select from multiple
improved feature mapping techniques, along with the flexibility to choose post-input
algorithms. This strategy enables deep input feature mining of LIB using CNN, with the
primary focus being to ensure CNN can accurately accept input data. We believe this
method has significant potential.

The most critical step is selecting a suitable data-driven algorithm. If a proper linear
feature can be chosen, the LR algorithm is a convenient and efficient prediction method, but it
is limited by its large error and tendency to overfit, so caution must be exercised in its selection.
On the other hand, SVR is known for its excellent performance, particularly in its ability to
process high-dimensional data and map it from nonlinearity to linearly separable spaces,
while avoiding local extremes and producing good generalization performance. Choosing
a suitable sum function can result in a highly precise algorithm. BP neural network, being
a relatively simple neural network, performs well when combined with a better gradient
descent model, which significantly improves its generalization and accuracy. Although it
has high efficiency compared to other advanced neural network algorithms, its local extreme
value problem is not easily solvable, and its information mining ability is moderate, making
it a suitable method for basic work. LSTM and GRU are advanced algorithms of RNN,
which excel at mining time series information from features and achieving high accuracy,
essentially solving the problem of gradient disappearance. Adding dropout further improves
its generalization, though gradient disappearance may still occur with large amounts of data,
making its computational requirements significant. After the improvement of computer
hardware, it has become an excellent data-driven algorithm. The CNN algorithm, even after
being adapted from machine vision to regression problems, retains its strong ability to mine
data. The combination of convolution and pooling can extract and refine features, solving
the subjectivity and incompleteness of manual feature selection. When input features and
network structure are adjusted, it becomes a highly powerful algorithm. The fully connected
layer after feature mining can be combined with neural networks such as LSTM and GRU to
form a reliable prediction model. The innovation focus of research is also mostly focused on
optimization. In terms of the input method of features and changes in network structure, the
disadvantage is that it is difficult to understand the operation process, in addition to the huge
amount of calculation involved. At present, there are relatively novel CNN structures such
as Resnet and Inception, which can be tried to be applied to the SOH prediction of LIB [52].
After referring to many experimental verification methods, we believe that the development
trend of AI is complete objectification and automation. When combined with the experimental
process, it can be concluded that utilizing CNN and its enhanced structures such as TCN
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and Resnet represents a data mining algorithm that possesses both automation and accuracy.
For example, Sun et al. used the improved DAG structure based on CNN to complete the
high-precision prediction of lithium-ion battery SOH. The accurate mining of time sequence
information by LSTM and GRU can ensure the analysis and processing of the above extracted
information and solve the problem of time dependence and gradient explosion. For example,
Zhang et al. used the LSTM-RNN algorithm to realize the high-precision prediction of RUL of
lithium-ion batteries. Although the combination of the two will consume a large amount of
computing resources, with the rapid improvement of hardware and software performance,
these problems will be solved.

The main contribution of this paper is to present a comprehensive prediction process
by integrating numerous relevant literature, including the comparison and demonstration
of various methods. This approach helps readers stay updated on the latest research trends
and future advancements in the field of SOH prediction for LIB Direction. In particular, the
paper provides insights into the principles and strategies for using powerful data-driven
algorithms. Therefore, this paper has significant practical implications and can guide future
research in this field.
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Abbreviations

LTO lithium titanium oxide AE autoencoder
LFP LiFePO4 lithium iron phosphate EMD empirical mode decomposition
SEI solid electrolyte interface SVR support vector regression
SV support vectors SVM support vector machine
SOH state of health Simple RNN simple recurrent neural network
RUL remaining useful life SOC state of charge
ML machine learning LR linear regression
DL deep learning BPTT back propagation algorithm

LMO lithium manganese oxide LSTM RNN
long short-term recurrent neural
network

IMF intrinsic mode functions MSE mean square error
ANN artificial neural networks ICA incremental capacity analysis
GRU gated recurrent unit GRA grey relational analysis

RNN recurrent neural network NASA
National Aeronautics and Space
Administration

CC constant current CV constant voltage
GW Gaussian window LIB Lithium-ion battery
CNN convolutional neural network BMS battery management system
OCV open circuit voltage EOL end of life
MA moving average LS least squares
RBF radial basis function UFK unscented Kalman filter



Energies 2023, 16, 3167 27 of 28

References
1. Zhang, M.; Liu, Y.; Li, D.; Cui, X.; Wang, L.; Li, L.; Wang, K. Electrochemical Impedance Spectroscopy: A New Chapter in the Fast

and Accurate Estimation of the State of Health for Lithium-Ion Batteries. Energies 2023, 16, 1599.
2. Vetter, J.; Novák, P.; Wagner, M.R.; Veit, C.; Möller, K.C.; Besenhard, J.O.; Winter, M.; Wohlfahrt-Mehrens, M.; Vogler, C.;

Hammouche, A. Ageing mechanisms in lithium-ion batteries. J. Power Sources 2005, 147, 269–281. [CrossRef]
3. Sarasketa-Zabala, E.; Aguesse, F.; Villarreal, I.; Rodriguez-Martinez, L.M.; Lopez, C.M.; Kubiak, P. Understanding Lithium

Inventory Loss and Sudden Performance Fade in Cylindrical Cells during Cycling with Deep-Discharge Steps. J. Phys. Chem. C
2015, 119, 896–906. [CrossRef]

4. She, C.Q.; Wang, Z.P.; Sun, F.C.; Liu, P.; Zhang, L. Battery Aging Assessment for Real-World Electric Buses Based on Incremental
Capacity Analysis and Radial Basis Function Neural Network. IEEE Trans. Ind. Inform. 2020, 16, 3345–3354. [CrossRef]

5. Liu, C.; Li, D.; Wang, L.; Li, L.; Wang, K. Strong robustness and high accuracy in predicting remaining useful life of supercapacitors.
APL Mater. 2022, 10, 061106. [CrossRef]

6. Han, X.B.; Lu, L.G.; Zheng, Y.J.; Feng, X.N.; Li, Z.; Li, J.Q.; Ouyang, M.G. A review on the key issues of the lithium ion battery
degradation among the whole life cycle. Etransportation 2019, 1, 100005. [CrossRef]

7. Wang, W.; Yang, D.; Huang, Z.; Hu, H.; Wang, L.; Wang, K. Electrodeless Nanogenerator for Dust Recover. Energy Technol. 2022,
10, 2200699. [CrossRef]

8. Verma, P.; Maire, P.; Novak, P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries.
Electrochim. Acta 2010, 55, 6332–6341. [CrossRef]

9. Ma, N.; Yang, D.; Riaz, S.; Wang, L.; Wang, K. Aging Mechanism and Models of Supercapacitors: A Review. Technologies 2023,
11, 38. [CrossRef]

10. Panchal, S.; Khasow, R.; Dincer, I.; Agelin-Chaab, M.; Fraser, R.; Fowler, M. Thermal design and simulation of mini-channel cold
plate for water cooled large sized prismatic lithium-ion battery. Appl. Therm. Eng. 2017, 122, 80–90. [CrossRef]

11. Yu, X.; Ma, N.; Zheng, L.; Wang, L.; Wang, K. Developments and Applications of Artificial Intelligence in Music Education.
Technologies 2023, 11, 42. [CrossRef]

12. Hu, X.S.; Che, Y.H.; Lin, X.K.; Onori, S. Battery Health Prediction Using Fusion-Based Feature Selection and Machine Learning.
IEEE Trans. Transp. Electrif. 2021, 7, 382–398. [CrossRef]

13. Sun, F.C.; Hu, X.S.; Zou, Y.; Li, S.G. Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for
electric vehicles. Energy 2011, 36, 3531–3540. [CrossRef]

14. Wang, D.; Yang, F.F.; Tsui, K.L.; Zhou, Q.; Bae, S.J. Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Spherical
Cubature Particle Filter. IEEE Trans. Instrum. Meas. 2016, 65, 1282–1291. [CrossRef]

15. Long, B.; Li, X.N.; Gao, X.Y.; Liu, Z. Prognostics Comparison of Lithium-Ion Battery Based on the Shallow and Deep Neural
Networks Model. Energies 2019, 12, 3271. [CrossRef]

16. Guo, Y.; Yu, P.; Zhu, C.; Zhao, K.; Wang, L.; Wang, K. A state-of-health estimation method considering capacity recovery of
lithium batteries. Int. J. Energy Res. 2022, 46, 23730–23745. [CrossRef]

17. Hu, X.S.; Jiang, J.C.; Cao, D.P.; Egardt, B. Battery Health Prognosis for Electric Vehicles Using Sample Entropy and Sparse Bayesian
Predictive Modeling. IEEE Trans. Ind. Electron. 2016, 63, 2645–2656. [CrossRef]

18. Qu, J.T.; Liu, F.; Ma, Y.X.; Fan, J.M. A Neural-Network-Based Method for RUL Prediction and SOH Monitoring of Lithium-Ion
Battery. IEEE Access 2019, 7, 87178–87191. [CrossRef]

19. Guo, Y.; Yang, D.; Zhang, Y.; Wang, L.; Wang, K. Online estimation of SOH for lithium-ion battery based on SSA-Elman neural
network. Prot. Control Mod. Power Syst. 2022, 7, 40. [CrossRef]

20. Cui, Z.H.; Kang, L.; Li, L.W.; Wang, L.C.; Wang, K. A combined state-of-charge estimation method for lithium-ion battery using
an improved BGRU network and UKF. Energy 2022, 259, 124933. [CrossRef]

21. Zhang, Y.Z.; Xiong, R.; He, H.W.; Pecht, M.G. Long Short-Term Memory Recurrent Neural Network for Remaining Useful Life
Prediction of Lithium-Ion Batteries. IEEE Trans. Veh. Technol. 2018, 67, 5695–5705. [CrossRef]

22. Deng, Y.W.; Ying, H.J.; Jiaqiang, E.; Zhu, H.; Wei, K.X.; Chen, J.W.; Zhang, F.; Liao, G.L. Feature parameter extraction and
intelligent estimation of the State-of-Health of lithium-ion batteries. Energy 2019, 176, 91–102. [CrossRef]

23. Liu, D.T.; Luo, Y.; Liu, J.; Peng, Y.; Guo, L.M.; Pecht, M. Lithium-ion battery remaining useful life estimation based on fusion
nonlinear degradation AR model and RPF algorithm. Neural Comput. Appl. 2014, 25, 557–572. [CrossRef]

24. Zhao, G.Q.; Zhang, G.H.; Liu, Y.F.; Zhang, B.; Hu, C. Lithium-ion Battery Remaining Useful Life Prediction with Deep Belief
Network and Relevance Vector Machine. In Proceedings of the IEEE International Conference on Prognostics and Health
Management (ICPHM), Dallas, TX, USA, 19–21 June 2017; pp. 7–13.

25. Tian, H.X.; Qin, P.L.; Li, K.; Zhao, Z. A review of the state of health for lithium -ion batteries: Research status and suggestions.
J. Clean. Prod. 2020, 261, 120813. [CrossRef]

26. Liu, K.L.; Shang, Y.L.; Ouyang, Q.; Widanage, W.D. A Data-Driven Approach with Uncertainty Quantification for Predicting
Future Capacities and Remaining Useful Life of Lithium-ion Battery. IEEE Trans. Ind. Electron. 2021, 68, 3170–3180. [CrossRef]

27. Zhang, C.L.; He, Y.G.; Yuan, L.F.; Xiang, S. Capacity Prognostics of Lithium-Ion Batteries using EMD Denoising and Multiple
Kernel RVM. IEEE Access 2017, 5, 12061–12070. [CrossRef]

28. Zhang, T.; Yu, M.; Li, B.; Liu, Z. Capacity Prediction of Lithium-Ion Batteries Based on Wavelet Noise Reduction and Support
Vector Machine. Trans. China Electrotech. Soc. 2020, 35, 3126–3136.

http://doi.org/10.1016/j.jpowsour.2005.01.006
http://doi.org/10.1021/jp510071d
http://doi.org/10.1109/TII.2019.2951843
http://doi.org/10.1063/5.0092074
http://doi.org/10.1016/j.etran.2019.100005
http://doi.org/10.1002/ente.202200699
http://doi.org/10.1016/j.electacta.2010.05.072
http://doi.org/10.3390/technologies11020038
http://doi.org/10.1016/j.applthermaleng.2017.05.010
http://doi.org/10.3390/technologies11020042
http://doi.org/10.1109/TTE.2020.3017090
http://doi.org/10.1016/j.energy.2011.03.059
http://doi.org/10.1109/TIM.2016.2534258
http://doi.org/10.3390/en12173271
http://doi.org/10.1002/er.8671
http://doi.org/10.1109/TIE.2015.2461523
http://doi.org/10.1109/ACCESS.2019.2925468
http://doi.org/10.1186/s41601-022-00261-y
http://doi.org/10.1016/j.energy.2022.124933
http://doi.org/10.1109/TVT.2018.2805189
http://doi.org/10.1016/j.energy.2019.03.177
http://doi.org/10.1007/s00521-013-1520-x
http://doi.org/10.1016/j.jclepro.2020.120813
http://doi.org/10.1109/tie.2020.2973876
http://doi.org/10.1109/ACCESS.2017.2716353


Energies 2023, 16, 3167 28 of 28

29. Zhang, Z.L.; Cheng, X.; Lu, Z.Y.; Gu, D.J. SOC Estimation of Lithium-Ion Batteries with AEKF and Wavelet Transform Matrix.
IEEE Trans. Power Electron. 2017, 32, 7626–7634. [CrossRef]

30. Wang, Z.K.; Zeng, S.K.; Guo, J.B.; Qin, T.C. State of health estimation of lithium-ion batteries based on the constant voltage
charging curve. Energy 2019, 167, 661–669. [CrossRef]

31. Dai, H.D.; Zhao, G.C.; Lin, M.Q.; Wu, J.; Zheng, G.F. A Novel Estimation Method for the State of Health of Lithium-Ion Battery
Using Prior Knowledge-Based Neural Network and Markov Chain. IEEE Trans. Ind. Electron. 2019, 66, 7706–7716. [CrossRef]

32. Hannan, M.A.; How, D.N.T.; Lipu, M.S.H.; Ker, P.J.; Dong, Z.Y.; Mansur, M.; Blaabjerg, F. SOC Estimation of Li-ion Batteries With
Learning Rate-Optimized Deep Fully Convolutional Network. IEEE Trans. Power Electron. 2021, 36, 7349–7353. [CrossRef]

33. Ren, L.; Dong, J.B.; Wang, X.K.; Meng, Z.H.; Zhao, L.; Deen, M.J. A Data-Driven Auto-CNN-LSTM Prediction Model for
Lithium-Ion Battery Remaining Useful Life. IEEE Trans. Ind. Inform. 2021, 17, 3478–3487. [CrossRef]

34. Severson, K.A.; Attia, P.M.; Jin, N.; Perkins, N.; Jiang, B.; Yang, Z.; Chen, M.H.; Aykol, M.; Herring, P.K.; Fraggedakis, D.; et al.
Data-driven prediction of battery cycle life before capacity degradation. Nat. Energy 2019, 4, 383–391. [CrossRef]

35. Khelif, R.; Chebel-Morello, B.; Malinowski, S.; Laajili, E.; Fnaiech, F.; Zerhouni, N. Direct Remaining Useful Life Estimation Based
on Support Vector Regression. IEEE Trans. Ind. Electron. 2017, 64, 2276–2285. [CrossRef]

36. Zhang, Y.J.; Liu, Y.J.; Wang, J.; Zhang, T. State-of-health estimation for lithium-ion batteries by combining model-based incremental
capacity analysis with support vector regression. Energy 2022, 239, 121986. [CrossRef]

37. Cai, L.; Meng, J.H.; Stroe, D.I.; Peng, J.C.; Luo, G.Z.; Teodorescu, R. Multiobjective Optimization of Data-Driven Model for
Lithium-Ion Battery SOH Estimation With Short-Term Feature. IEEE Trans. Power Electron. 2020, 35, 11855–11864. [CrossRef]

38. Fatima, N. Enhancing Performance of a Deep Neural Network: A Comparative Analysis of Optimization Algorithms. Adcaij-Adv.
Distrib. Comput. Artif. Intell. J. 2020, 9, 79–90. [CrossRef]

39. Wang, L.; Xie, L.; Yang, Y.; Zhang, Y.; Wang, K.; Cheng, S. Distributed Online Voltage Control with Fast PV Power Fluctuations
and Imperfect Communication. IEEE Trans. Smart Grid 2023. [CrossRef]

40. Senior, A.; Heigold, G.; Ranzato, M.; Yang, K. An empirical study of learning rates in deep neural networks for speech recognition.
In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vancouver, BC,
Canada, 26–31 May 2013; pp. 6724–6728.

41. Khalid, A.; Sarwat, A.I. Unified Univariate-Neural Network Models for Lithium-Ion Battery State-of-Charge Forecasting Using
Minimized Akaike Information Criterion Algorithm. IEEE Access 2021, 9, 39154–39170. [CrossRef]

42. Ge, D.D.; Zhang, Z.D.; Kong, X.D.; Wan, Z.P. Extreme Learning Machine Using Bat Optimization Algorithm for Estimating State
of Health of Lithium-Ion Batteries. Appl. Sci.-Basel 2022, 12, 1398. [CrossRef]

43. Khalid, A.; Sundararajan, A.; Acharya, I.; Sarwat, A.I. Prediction of Li-Ion Battery State of Charge Using Multilayer Perceptron
and Long Short-Term Memory Models. In Proceedings of the IEEE Transportation Electrification Conference and Expo (ITEC),
Detroit, MI, USA, 19–21 June 2019.

44. Khalid, A.; Sarwat, A.I. Fast Charging Li-Ion Battery Capacity Fade Prognostic Modeling Using Correlated Parameters’ Decompo-
sition and Recurrent Wavelet Neural Network. In Proceedings of the IEEE Transportation Electrification Conference and Expo
(ITEC), Chicago, IL, USA, 21–25 June 2021; pp. 27–32.

45. Chemali, E.; Kollmeyer, P.J.; Preindl, M.; Ahmed, R.; Emadi, A. Long Short-Term Memory Networks for Accurate State-of-Charge
Estimation of Li-ion Batteries. IEEE Trans. Ind. Electron. 2018, 65, 6730–6739. [CrossRef]

46. Li, W.H.; Sengupta, N.; Dechent, P.; Howey, D.; Annaswamy, A.; Sauer, D.U. Online capacity estimation of lithium-ion batteries
with deep long short-term memory networks. J. Power Sources 2021, 482, 228863. [CrossRef]

47. Yang, F.F.; Zhang, S.H.; Li, W.H.; Miao, Q. State-of-charge estimation of lithium-ion batteries using LSTM and UKF. Energy 2020,
201, 117664. [CrossRef]

48. Cui, Z.H.; Kang, L.; Li, L.W.; Wang, L.C.; Wang, K. A hybrid neural network model with improved input for state of charge
estimation of lithium-ion battery at low temperatures. Renew. Energy 2022, 198, 1328–1340. [CrossRef]

49. Li, D.; Yang, D.; Li, L.; Wang, L.; Wang, K. Electrochemical Impedance Spectroscopy Based on the State of Health Estimation for
Lithium-Ion Batteries. Energies 2022, 15, 6665. [CrossRef]

50. Sun, H.L.; Yang, D.F.; Wang, L.C.; Wang, K. A method for estimating the aging state of lithium-ion batteries based on a multi-linear
integrated model. Int. J. Energy Res. 2022, 46, 24091–24104. [CrossRef]

51. Qian, C.; Xu, B.H.; Chang, L.; Sun, B.; Feng, Q.; Yang, D.Z.; Ren, Y.; Wang, Z.L. Convolutional neural network based capacity
estimation using random segments of the charging curves for lithium-ion batteries. Energy 2021, 227, 120333. [CrossRef]

52. Yang, Y.X. A machine-learning prediction method of lithium-ion battery life based on charge process for different applications.
Appl. Energy 2021, 292, 116897. [CrossRef]

53. Wang, W.L.; Yang, D.F.; Yan, X.R.; Wang, L.C.; Hu, H.; Wang, K. Triboelectric nanogenerators: The beginning of blue dream. Front.
Chem. Sci. Eng. 2023. [CrossRef]

54. Zhang, M.; Wang, W.; Xia, G.; Wang, L.; Wang, K. Self-Powered Electronic Skin for Remote Human–Machine Synchronization.
ACS Appl. Electron. Mater. 2023, 5, 498–508. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TPEL.2016.2636180
http://doi.org/10.1016/j.energy.2018.11.008
http://doi.org/10.1109/TIE.2018.2880703
http://doi.org/10.1109/TPEL.2020.3041876
http://doi.org/10.1109/TII.2020.3008223
http://doi.org/10.1038/s41560-019-0356-8
http://doi.org/10.1109/TIE.2016.2623260
http://doi.org/10.1016/j.energy.2021.121986
http://doi.org/10.1109/TPEL.2020.2987383
http://doi.org/10.14201/ADCAIJ2020927990
http://doi.org/10.1109/TSG.2023.3236724
http://doi.org/10.1109/ACCESS.2021.3061478
http://doi.org/10.3390/app12031398
http://doi.org/10.1109/TIE.2017.2787586
http://doi.org/10.1016/j.jpowsour.2020.228863
http://doi.org/10.1016/j.energy.2020.117664
http://doi.org/10.1016/j.renene.2022.08.123
http://doi.org/10.3390/en15186665
http://doi.org/10.1002/er.8709
http://doi.org/10.1016/j.energy.2021.120333
http://doi.org/10.1016/j.apenergy.2021.116897
http://doi.org/10.1007/s11705-022-2271-y
http://doi.org/10.1021/acsaelm.2c01476

	Introduction 
	Data Acquisition and Processing 
	LIB Dataset 
	Data Analysis 

	Data-Driven Algorithms 
	Linear Regression 
	Support Vector Regression 
	BP Neural Network 
	Long Short-Term Memory Neural Networks 
	Convolutional Neural Network 

	Conclusions 
	References

