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Abstract: With the increasing number of electric vehicles (EVs), the randomness of the charging
load will have an increasing impact on the distribution network (DN) and road network. Different
guidance strategies lead to different network-related capabilities of fast charging stations (FCSs). In
this paper, a hierarchical and comprehensive evaluation method is proposed for the network-related
capability of FCSs. Based on the comprehensive evaluation method, a charging guidance strategy
is proposed to improve the network-related capability of FCSs. Finally, the network connection
capability of FCSs under four strategies is comprehensively evaluated to verify the effectiveness of
the proposed method.

Keywords: fast charging station; electric vehicles; analytic hierarchy process; the entropy weight
method; fuzzy comprehensive evaluation method; charging guidance strategy

1. Introduction

Electric vehicles (EVs) have been considered as a feasible solution to deal with high
fuel consumption and greenhouse gas emissions [1,2]. The global stock of EVs increased by
68% with respect to the previous year, and it targets a 30% sales share for EVs by 2030 [3].
Therefore, the charging load will become one of the important loads of the distribution
network. However, the uncontrolled nature of charging may have adverse effects on the
distribution network and road network [4–6].

At present, the research mainly focuses on the impact assessment of electric vehicles on
the distribution network. Wang, H. [7] proposed a comprehensive risk assessment method
for distribution network operation, considering multiple risk factors in view of the security,
economic, and other operational risks caused by EVs’ access to the distribution network.
The principal component analysis method was used to reduce the dimensions of the risk
assessment matrix and calculate the objective weight coefficient, and the acceptable number
of electric vehicles in the region was estimated. Chen, W. [8] proposed the evaluation index
system of distribution network carrying capacity, and evaluated the carrying capacity of
the distribution network from the aspects of technical rationality, safety, reliability, and
economy. Wang, J. [9] evaluated the economic performance of fast charging stations (FCSs)
from the aspects of investment costs and operating benefits.

In order to reduce the adverse impact of a charging load on the power system,
Li, D. [10] proposed a charging guidance strategy based on the real-time demand of the
market. Through the application of the strategy, EVs can obtain subsidies for charging or
discharging. However, the author did not consider the negative impact of a large number of
EVs charging on the power system. In order to improve the consumption level of renewable
energy generation, Ding, Z. [11] proposed a charging guidance strategy for the operation
of highway FCSs. However, the operation status of the power system mentioned in [11]
is relatively fixed. In order to reasonably guide EVs to the FCSs, T. Zhao [12] proposed a
charging price formulation strategy based on the Stackelberg game. EVs can be guided to
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the appropriate FCSs to complete charging according to the change in price. X. Sun [13]
proposed a voltage control strategy for the distribution network based on charging navi-
gation. The operation level of the distribution network has been effectively improved. In
order to reduce the travel cost and improve the operation level of the distribution network,
H. Yang [14] proposed the road speed matrix acquisition and recovery algorithm to achieve
the orderly charge and discharge of EVs, and improve the load operation level of the
distribution network.

At the same time, some scholars also began to study how to mitigate the impact of
EVs on the power system and road network. In order to meet the charging demand of EVs
and reduce the traffic burden, Li, X. [15] proposed a charging navigation strategy for EVs
based on price incentives. In order to relieve the charging problem at peak hours, J. Tan [16]
proposed a charging guidance strategy based on a hierarchical game. A non-cooperative
game is used to simulate competition between FCSs. The evolutionary game is used to
realize the decision-making and selection of EVs. The reliability of the distribution network
and the utilization efficiency of FCSs were improved. Z. Moghaddam [17] proposed an
intelligent charging guidance strategy based on the EV network. The charging time, driving
time, and charging cost were considered. Shi, X. [18] proposed an electric EV charging
guidance strategy based on locational marginal prices (LMP). The congestion problem of
traffic and power lines was alleviated. Z. Jin [19] proposed a charging guidance strategy
based on the alliance blockchain for the taxi charging system to maximize passenger
satisfaction and the service efficiency of operators. Qian, T. [20] proposed an EV charging
guidance strategy based on deep reinforcement learning. However, the proposed strategy
did not analyze the impact on the power system and road network.

Furthermore, Zenginis I [1] proposed a charging price strategy based on the daily
profits of FCSs and charging waiting time which effectively avoided the congestion in FCSs.
Y. Xiang [21] studied the interaction of EVs in the process of path planning, and proposed
an optimization method of the EV charging path based on an event-driven pricing strategy.

Although the above article alleviates the impact of EV charging on the power system
and road network, it does not offer a quantitative analysis of the network connection
capability of FCSs. The main contributions of this article are as follows:

(1) A hierarchical comprehensive evaluation architecture for the network-related
capability of fast charging stations is proposed. The architecture is mainly divided into
three layers which comprehensively evaluate the operation status of the system under
different guidance strategies. From the three dimensions of the index layer, the rule layer,
and the target layer, the network-related capability of FCSs can be evaluated quantitatively.

(2) A hierarchical comprehensive evaluation method is proposed. In the index layer, a
combination weighting method based on the entropy weight method (EWM) and analytic
hierarchy process (AHP) is proposed to allocate the weight of indicators. In addition, the
fuzzy comprehensive evaluation method (FCEM) is applied to evaluate the network-related
capability of FCSs.

(3) A charging guidance strategy is proposed based on the comprehensive evaluation
results. By the application of the proposed strategy, the EVs will be guided to the FCSs
which have the highest comprehensive evaluation score. The application of the proposed
strategy avoids the occurrence of the extreme operation state in power systems, road net-
works and FCSs. Compared with the other three strategies, the network-related capability
of FCSs is improved.

In the process of strategy development, the proposed strategy is realized based on
the operation state of the distribution network, road network, and FCSs. The EVs will be
guided to the FCS which has the least impact on the operation of the coupling system. The
advantages of the proposed strategy are shown in Table 1. Compared with the strategy
proposed in [22], the operation level of the distribution network is improved by the appli-
cation of the proposed strategy (e.g., voltage violation rate). Compared with the strategy
proposed in [23], on the basis of ensuring that the road network is at a high operation level,
the operation level of the distribution network is significantly improved by the application
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of the strategy proposed in this paper. Compared with the strategy proposed in [24], on the
basis of ensuring that the road network is at a high operation level, the operation levels of
the road network and FCSs are significantly improved by the application of the strategy
proposed in this paper (e.g., travel flow, charging waiting time, and utilization rate of FCSs).

Table 1. Comparison of guidance strategies.

Strategy
System Operation Status Considered

Distribution Network Road Network FCSs

This paper X X X
Literature [22] X - -
Literature [23] - X -
Literature [24] - - X

The chapter arrangement and relationship of this paper are shown in the Figure 1.
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In this paper, the evaluation system for the network-related capacity of fast charging
stations will be constructed in Section 2, and the selection principles and calculation
methods of evaluation indexes will also be given in Section 2. Section 3 will discuss
the network-related capacity evaluation of the fast charging station at different layers. In
Section 4, the charging guidance strategy is proposed based on the network-related capacity
of FCSs, and the proposed strategy is verified in Section 5.

2. Construction of the Network-Related Capability Evaluation System for Fast
Charging Stations

FCSs are a key part of the “vehicle-road-network” coupling system. Therefore, for
the evaluation of the network-related capacity of the fast charging station, the operation
state of the power system, road network, and FCSs should be fully considered to evaluate
the impact of the FCSs on the coupling network under different operating modes. In
order to evaluate the network-related capability of the charging station more reasonably, a
hierarchical evaluation framework is proposed to evaluate the network-related capability
of FCSs. The comprehensive evaluation framework is shown in Figure 2.
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2.1. Evaluation Target of the Distribution Network Operation Level
2.1.1. Voltage Offset Rate

The voltage offset rate is the value that the per-unit value of voltage deviates from
1 p. u. when the voltage of the distribution network operates within the normal range.
This value reflects the power quality of the distribution network. In this paper, the average
voltage offset rate is used as the evaluation target to represent the operation state of the
distribution network:

∆U =

T
∑

t=1

Nlimit
t
∑

ilimit
t

∣∣∣Uilimit
t
−Uref

∣∣∣
T
∑

t=1
Nlimit

t

(1)

where ∆U is the average voltage offset rate; Uref is the reference value of the voltage
amplitude; t is the time interval; T is the number of time interval; ilimit

t is the index of the
node of distribution network which the voltage is amplitude in the normal range; and
Nlimit

t is the number of nodes in which voltage amplitude is in the normal range.

2.1.2. Voltage Violation Rate

The voltage violation rate is the ratio of the number of voltages out of limit nodes in
the distribution network. This value reflects the safe operation state of the distribution
network. The voltage violation rate is defined as follows:

∆N =

T
∑

t=1
Nunlimit

t

T
∑

t=1
Npower

(2)

where ∆N is the average voltage violation rate; Nunlimit
t is the number of nodes in which

the voltage is out of limit; and Npower is the number of distribution network nodes.

2.1.3. Load Fluctuation

Load fluctuation is the value that the load offsets from the average load. In this paper,
the average load fluctuation is defined as follows:

∆P =

T
∑

t=1

∣∣Pt − P
∣∣

T
(3)
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P =

T
∑

t=1
Pt

T
(4)

where ∆P is the value of the average load fluctuation; Pt is the total load of the distribution
network; and P is the average load of the distribution network.

2.1.4. Active Power Loss

The active power loss is generated during the operation of the distribution network,
which reflects the economic operation state of the distribution network. It is defined
as follows:

Ploss
t =

Nbranch

∑
ibranch

(Pibranch
t )

2
+ (Qibranch

t )
2(

Uibranch
t

)2 ribranch
(5)

where Ploss
t is the active power loss; ibranch is the index of the branch; Nbranch is the number

of the branches; Pibranch
t and Qibranch

t are the value of the active power injection and reactive
power injection, respectively; Uibranch

t is the voltage amplitude; and ribranch
is the resistance

value of the branch ibranch.

2.2. Evaluation Target of the Road Network Operation Level
2.2.1. Traffic Flow

The traffic flow represents the traffic volume passing through the link, which reflects
the traffic carried by the link at a certain time. It is defined as follows:

Dilink
t =

Ncar
t

∑
icar
t =1

dt
icar
t ,ilink

(6)

dt
icar
t ,ilink

=

{
0 Not passing this link
1 Passing this link

(7)

where ilink is the index of the link; Dilink
t is the traffic flow of link ilink; icar

t is the index of
the vehicles; Ncar

t is number of the vehicles which are traveling in t; and dt
icar
t ,ilink

is a binary
variable.

2.2.2. Link Travel Time

Link travel time is the time that vehicles drive through the link. In this paper, the BPR
function is applied to calculate the link travel time.

θ
ilink
t = θ

ilink
0 (1 + α(

Dilink
t

Cilink

)

β

) (8)

where θ
ilink
t is the link travel time; θ

ilink
0 the free link travel time; Cilink

is the actual capacity
of the link; and α and β is model parameter. In this paper, we set α = 0.15 and β = 4.

2.2.3. Road Service Level

The road service level can be divided into six levels to illustrate the road traffic load
condition. The traffic flow status is used as the dividing condition. The road service level
qualitatively describes free flow, stable flow, saturated flow, and forced flow. The road
service level is defined in Equation (9) and Table 2.

ω =
Dilink

t
Cilink

(9)
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Table 2. The road service level [25].

Road Service Level ω Value Road Service Level ω Value

1 ω ≤ 0.3 4 0.7 < ω ≤ 0.9
2 0.3 < ω ≤ 0.5 5 0.9 < ω ≤ 1
3 0.5 < ω ≤ 0.7 6 ω > 1

2.3. Evaluation Target of the FCS Operation Level
2.3.1. Charging Waiting Time

The charging waiting time reflects the congestion status in FCSs. In this paper, the
charging completion time is used as charging waiting time. The charging waiting time is
defined as follows:

tw = tend
iFCS

(10)

where iFCS is the index of FCS; tend
iFCS

is the charging completion time and tw is the charging
waiting time.

2.3.2. Utilization Rate of FCSs

The definition of the utilization rate of FCSs is as follows:

kt =

NFCS
∑

iFCS=1

NiFCS
∑

iiFCS
=1

γ
iiFCS
t

NFCS
∑

iFCS=1
NiFCS

(11)

γ
iiFCS
t =

{
0 Idle state
1 Usage status

(12)

where kt is the utilization rate of FCSs; NFCS is the number of FCSs; iiFCS
is the index of

charging piles in FCS iFCS; NiFCS
is the number of charging piles in FCS iFCS; and γ

iiFCS
t is a

binary variable.

3. Comprehensive Evaluation Method for the Network Connection Capability of FCSs

In this paper, the fuzzy comprehensive evaluation method is applied to evaluate the
network connection capability of FCSs. The comprehensive evaluation process of this paper
is shown in Figure 3.

3.1. Index Layer

In the index layer, the score of each evaluation index is calculated, and the weight
coefficient of each evaluation index is calculated; the weight coefficient is divided into an
objective weighting part and a subjective weighting part.

3.1.1. Objective Weighting Method

The entropy weight method (EWM) is applied for the calculation of the objective
weighting part. The weight of each evaluation index is determined by the entropy value.
The calculation process of the entropy weight method is as follows:

Step 1: Standardize the index value. In order to ensure the comparability between
indexes, the indexes are divided into positive indexes and negative indexes for standard-
ization. The calculation formula is as follows:

yjmk =
xjmk − xjm

min

xjm
max − xjm

min

(13)
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yjmk =
xjm

max − xjmk

xjm
max − xjm

min

(14)
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Equation (13) is the standardized formula for positive indexes and Equation (14) is the
standardized formula for negative indexes. Where j is the index of the rule layer; m is the
index of the index layer; k is the index of the indexes; yjmk is the standardized index value;

xjmk is the index value before standardization; xjm
min is the minimum value of xjmk; and xjm

max
is the maximum value of xjmk.

Step 2: Calculate the information entropy of each index.

Ejm = −

S
∑

s=1
ys

jmk ln ys
jmk

ln S
(15)

where Ejm is the information entropy; s is the index of the guiding strategy; S is the number
of guidance strategy; and ys

jmk is the standardized index value.
Step 3: Calculate the objective weighting part of the weight coefficient.

wo
jm =

1− Ejm

Nj −
Nj

∑
m=1

Ejm

(16)
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Nj

∑
m=1

wo
jm = 1 , wo

jm ∈ [0, 1] (17)

where wo
jm is the objective weight coefficient and Nj is the number of indexes. The matrix

of the objective weight coefficient can be defined as follows:

Wo
j = (wo

j1, . . . , wo
jm, . . . , wo

jNj
)T (18)

3.1.2. Subjective Weighting Method

Step 1: Construct judgment matrix. The judgment matrix A is a square matrix, which
compares the indexes under the same rule layer in pairs and forms a square matrix of
Nj × Nj.

Step 2: Calculate the subjective weighting part of weight coefficient. In this paper, the
geometric average method (GAM) is applied to calculate the subjective weight coefficient.
The calculation formula is as follows:

wb
jm =

Nj

∏
m=1

aibm

Nj

∑
ib=1

Nj

∏
m=1

aibm

(19)

Nj

∑
m=1

wb
jm = 1 , wb

jm ∈ [0, 1] (20)

where wb
jm is the subjective weight coefficient; aibm is the element of matrix A; and ib is

similar to m. The matrix of the subjective weight coefficient can be defined as follows:

Wb
j = (wb

j1, . . . , wb
jm, . . . , wb

jNj
)

T
(21)

Step 3: Calculate consistent ratio. The consistency ratio is calculated as follows:

CI =
λmax − Nj

Nj − 1
(22)

CR =
CI
RI

(23)

where CI is the consistency index of the judgment matrix A; λmax is the maximum char-
acteristic value of matrix A; CR is the consistent ratio; and RI is the random consistency
index. If CR < 0.1, matrix A is appropriate; if CR ≥ 0.1, the judgment matrix needs to be
re-constructed. The value of RI is set as follows (Table 3).

Table 3. The random consistency index.

Nj 1 2 3 4 5 6 7 8 9

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45

Step 4: Calculate weight coefficient. According to the subjective weight coefficient
matrix and the objective weight coefficient matrix, the combined weight coefficient matrix
of the index layer is calculated as follows:

Wj = ρWo
j + (1− ρ)Wb

j (24)

where Wj is the weight coefficient matrix and ρ is the combination weighting coefficient. In
this paper, we set ρ = 0.5.
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3.1.3. Fuzzy Comprehensive Evaluation Method

By the application of the fuzzy comprehensive evaluation method in the index layer,
on the one hand the indexes can be scored based on the membership function and scoring
matrix; on the other hand, the score of the rule layer can be determined by combining the
weight coefficient matrix and the score of the index layer. The calculation process of the
fuzzy comprehensive evaluation method is as follows:

F = (20 40 60 80 100)T (25)

Step 1: Construct membership function. In this paper, the trapezoidal membership
function Fm is constructed. The distribution form of the membership function is shown in
Figure 4.
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Step 2: Calculate the fuzzy evaluation matrix of the index layer. The member function
is a piecewise function. In this paper, the member function is divided into five parts.
Therefore, the fuzzy evaluation matrix Hb of the index layer is a 5× 5 square matrix.

Hb = Fm(yjmk) (26)

Step 3: Calculate the index layer score. The scoring results of the index layer can be
calculated based on the fuzzy evaluation matrix and scoring matrix of the index layer:

Fb = ‖HbF‖1 (27)

where Fb is the score of the index layer.

3.2. Rule Layer

The calculation of the rule layer is divided into the score calculation and the weight
coefficient calculation of the rule layer.

3.2.1. Score Calculation of the Rule Layer

The score calculation of the rule layer is based on the scores of the index layer and the
combined weight coefficient.

f j = Fj
bWj (28)

3.2.2. Weight Coefficient of the Rule Layer

The AHP is applied to calculate the weight coefficient matrix W of the rule layer. The
calculation process can refer to the relevant parts mentioned above.
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3.3. Target Layer

The calculation process of the target layer is divided into two steps:
Step 1: Calculate the score matrix of the rule layer.

FUP = ( f1, . . . , f j, . . . , fM) (29)

where FUP is the score matrix of the rule layer.
Step 2: Calculate the score of the target layer.

Fend = FUPW (30)

where Fend is the score of the target layer.

4. Charging Guidance Strategy Based on the Maximum Comprehensive
Evaluation Score

In order to improve the network-related capability of FCSs, a charging guidance
strategy based on the proposed evaluation method is suggested. The proposed strategy
aims to maximize the target layer score to guide EVs to charge.

F = max
{

F1
end

. . . FiFCS
end

. . . FNFCS
end

}
(31)

where F is the objective function; iFCS is the index of FCS; NFCS is the number of FCS; and
FiFCS

end
is the comprehensive evaluation score, when an EV selects iFCS FCS. The calculation

process of FiFCS
end

is consistent with the calculation process mentioned in Figure 2.
According to the calculation result of Equation (31), an EV will be guided to the FCS

with the highest comprehensive evaluation score for charging. The calculation flow chart
of the guidance strategy is as follows (Figure 5).
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5. Case Study

The road network structure is shown in Figure 6. In this paper, there are three
distribution networks, and all of them are IEEE 33, which is shown in Figure 7. The case
data are shown in Table 4, the strategies are shown in Table 5, and the index type is shown
in Table 6.
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Table 4. Case data.

FCS ID Distribution Network ID (Node) Rode Network Node Charging Pile Number Charging Pile Power (kW)

1 1 (11) 5 8 60
2 2 (17) 12 8 60
3 3 (21) 15 8 60
4 1 (25) 24 8 60
5 3 (33) 31 8 60

Table 5. Guidance strategy.

Calculation Result Guidance Strategy

(a) The proposed strategy
(b) The shortest path guidance strategy [22]
(c) The shortest travel time guidance strategy [23]
(d) The lowest charging price guidance strategy [24]
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Table 6. Index type.

Index Name Type Index Name Type

Voltage offset rate negative index Link travel time negative index
Voltage violation rate negative index Road service level negative index

Load fluctuation negative index Charging waiting time negative index
Active power loss negative index Utilization rate of FCSs positive index

Traffic flow negative index

5.1. Evaluation Results of Index Layer
5.1.1. Evaluation Results of the Distribution Network

In this paper, the entropy weight method is used to standardize the index values, and
the fuzzy comprehensive evaluation method is used to obtain the evaluation results of the
power grid. The evaluation results are shown in Figure 8.
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When the strategy (d) is applied to guide users, the power grid operation has obvious
advantages over the other three guidance strategies. When the lowest charging price
strategy is applied to guide EVs, EVs will be easy to guide to a single FCS, so the charging
load connected to the distribution network is relatively small. The active load in the
distribution network is reduced and the active power loss is reduced. Since the charging
price formulation process includes the penalty item of the voltage violation part, strategy
(d) has a full score in terms of the voltage violation rate. When strategy (a) is applied, the
score of the voltage violation rate is 97.17.

5.1.2. Evaluation Results of the Road Network

The evaluation results of the road network are shown in Figure 9.
When strategy (d) is applied to guide users, there are obvious disadvantages in link

travel time compared with the other three guidance strategies. Because EVs are guided
to a single FCS, the travel time of some links is increased. Due to the diversion effect of
centralized guidance, there is no significant impact on the overall service level and road
flow of the road network. Strategy (b) and strategy (c) have the least impact on the road
network operation, so these two strategies have almost the same score. When strategy
(a) is applied to guide EVs, the scoring result is basically consistent with strategy (b) and
strategy (c).
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5.1.3. Evaluation Results of FCSs

The evaluation results of FCSs are shown in Figures 10 and 11.
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In terms of the charging waiting time, the evaluation result of strategy (a) is better
than the other three strategies, and the application of strategy (d) will lead to congestion
in FCSs. Therefore, the charging waiting time will increase, and its evaluation score is the
lowest. The utilization rate of FCSs is a positive index; therefore, the higher the utilization
rate of FCSs, the higher the score of this item. When the strategy (d) is applied, the EVs
will be guided to the single FCS. The score of the utilization rate of FCSs for strategy (d) is
lowest. When strategy (a) is applied, the FCSs will be used reasonably. By the application
of the proposed strategy, the number of EVs served by the FCSs can be improved, and the
network connection capacity of FCSs can be improved.

5.2. Evaluation Results of the Rule Layer

The evaluation results of the rule layer are shown in Figure 12. At the same time, the
calculation results of combined weighting are shown in Tables 7–9.
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Table 7. Combined weighting coefficient of distribution network.

Voltage Offset Rate Voltage Violation Rate Active Power Loss Load Fluctuation

Objective weight coefficient 0.15 0.40 0.30 0.15
Subjective weight coefficient 0.05 0.48 0.08 0.39

Table 8. Combined weighting coefficient of road network.

Link Travel Time Traffic Flow Road Service Level

Objective weight coefficient 0.35 0.25 0.40
Subjective weight coefficient 0.16 0.42 0.42

Table 9. Combined weighting coefficient of FCSs.

Charging Waiting Time Utilization Rate of FCSs

Objective weight coefficient 0.42 0.58
Subjective weight coefficient 0.75 0.25

It can be seen from Figure 12 that the evaluation scores of the rule layer are relatively
balanced when strategy (a) is applied. Compared with the other three strategies, this
strategy comprehensively considers the overall operation state of the distribution network,
road network, and FCSs. Strategy (d) only takes the operation state of the power system
into account, so the evaluation score of the power system is the highest. Strategy (b) and
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strategy (c) mainly guide users based on the operation state of the road network, so
these two strategies have the highest scores in the comprehensive evaluation of the road
network. Because the utilization of charging stations is treated as a positive index in this
paper, so the shortest path strategy and the shortest travel time strategy have the higher
evaluation scores.

5.3. Evaluation Results of Target Layer

The evaluation results of the target layer are shown in Figure 13.
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It can be seen from Figure 13 that the network connection capability of FCSs has been
greatly improved when strategy (a) is applied. By the application the proposed method,
the score of the target layer is highest. When strategy (d) is applied, the operation state of
FCSs and the road network will be ignored. Its score is the lowest.

6. Conclusions

In this paper, an EV charging guidance strategy is proposed to improve the network-
related capability of FCSs. The following are some major finding:

(1) By the application of the proposed evaluation method, the network-related capacity
of FCSs can be quantitatively analyzed in multiple dimensions. The network-related
capacity of FCSs is evaluated comprehensively based on the state of the distribution
network, road network, and FCSs.

(2) By the application of the proposed EV guidance strategy, the state relationships among
the distribution network, road network, and charging station are balanced, and the
network-related capacity of FCSs is improved.
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