# Application of Active Disturbance Rejection in a Bearingless Machine with Split-Winding

^{1}

^{2}

^{3}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Split-Winding Bearingless Motor

#### Operation Principle

## 3. ADRC Control

## 4. Description of the System

#### 4.1. System Overview

#### 4.2. Split-Winding Bearingless Machine

#### 4.3. DSP TMS320F28335

#### 4.4. Control Algorithm Implementation

## 5. Experimental Results and Discussion

## 6. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Abbreviations

BIM | Bearingless Induction Machine |

ADRC | Active Disturbance Rejection Control |

LADRC | Linear Active Disturbance Rejection Control |

ESO | Extended State Observer |

LESO | Linear Extended State Observer |

NESO | Nonlinear Extended State Observer |

TD | Tracking Differentiator |

DSP | Digital Signal Processing |

PID | Proportional-Integral-Derivative |

PD | Proportional-Derivative |

PI | Proportional-Integral |

PWM | Pulse Width Modulation |

DC | Direct Current |

VSI | Voltage Source Inverter |

## References

- Yang, Z.; Jia, J.; Sun, X.; Xu, T. An enhanced linear adrc strategy for a bearingless induction motor. IEEE Trans. Transp. Electrif.
**2021**, 8, 1255–1266. [Google Scholar] [CrossRef] - Yang, Z.; Ji, J.; Sun, X.; Zhu, H.; Zhao, Q.Q. Active Disturbance Rejection Control for Bearingless Induction Motor Based on Hyperbolic Tangent Tracking Differentiator. IEEE J. Emerg. Sel. Top. Power Electron.
**2020**, 8, 2623–2633. [Google Scholar] [CrossRef] - Li, J.; Zhang, L.; Li, S.; Mao, Q.; Mao, Y. Active Disturbance Rejection Control for Piezoelectric Smart Structures: A Review. Machines
**2023**, 11, 174. [Google Scholar] [CrossRef] - Heidary, J.; Gheisarnejad, M.; Khooban, M.H. Stability Enhancement and Energy Management of AC-DC Microgrid based on Active Disturbance Rejection Control. Electr. Power Syst. Res.
**2023**, 217, 109105. [Google Scholar] [CrossRef] - Huang, C.; Zhao, H. Error-Based Active Disturbance Rejection Control for Wind Turbine Output Power Regulation. IEEE Trans. Sustain. Energy
**2023**, 1, 1–10. [Google Scholar] [CrossRef] - Zhou, Z.; Li, X.; Tuo, W.; Wang, F. Design of active disturbance rejection control with noise observer for an optical reference unit. Control Eng. Pract.
**2023**, 132, 105427. [Google Scholar] [CrossRef] - Shao, X.; Fan, Y.; Shao, J.; Sun, G. Improved active disturbance rejection control with the optimization algorithm for the leg joint control of a hydraulic quadruped robot. Meas. Control
**2023**, 1. [Google Scholar] [CrossRef] - Li, J.; Liu, J.; Huangfu, S.; Guoyan Cao, G.; Yu, D. Leader-follower formation of light-weight UAVs with novel active disturbance rejection control. Appl. Math. Model.
**2023**, 117, 577–591. [Google Scholar] [CrossRef] - Zhu, L.; Zhang, G.; Jing, R.; Bi, G.; Xiang, R.; Wang, G.; Xu, D. Nonlinear active disturbance rejection control strategy for permanent magnet synchronous motor drives. IEEE Trans. Energy Convers.
**2022**, 37, 2119–2129. [Google Scholar] [CrossRef] - Silva, W.L.A.; Salazar, A.O.; Cabral Neto, R.J.N.; Villarreal, E.R.L. Radial Position Control of a Bearingless Machine with Active Disturbance Rejection Control. In 2020 IEEE XXVII International Conference on Electronics; Electrical Engineering and Computing (INTERCON): Lima, Perú, 2020; pp. 1–5. [Google Scholar]
- Silva, W.L.A.; Salazar, A.O.; Vieira, P.V.F.; Jácome, M.C.; Villarreal, E.R.L. Radial Position Control of a Bearingless Machine with Active Disturbance Rejection Control Fuzzy an approach. In Proceedings of the 2021 IEEE International Conference on Automation/XXIV Congress of the Chilean Association of Automatic Control (ICA-ACCA), Online, 22–26 March 2021; pp. 1–5. [Google Scholar]
- Salazar, A.O.; Stephan, R.M. A bearingless method for induction machines. IEEE Trans. Magn.
**1993**, 29, 2965–2967. [Google Scholar] [CrossRef] - Ferreira, J.M.S.; Salazar, A.O. Máquina de Indução Sem Mancais: Modelo e Acionamento. Eletrônica de Potência
**2007**, 12, 2509–2521. [Google Scholar] - De Paiva, J.A.; Salazar, A.O.; Maitelli, A.L. Review of Control Strategies and Model Estimation Techiniques Applied to Bearingless Induction Machine with Divided Winding. In Proceedings of the 1st Brazilian Workshop on Magnetic Bearings, Rio de Janeiro, Brazil, 25–26 October 2013; Volume 1, pp. 1–6. [Google Scholar]
- Victor, V.F.; Quintaes, F.O.; Lopes, J.S.B.; Santos Junior, L.D.; Lock, A.S.; Salazar, A.O. Analysis and Study of a Bearingless AC Motor Type Divided Winding, Based on a Conventional Squirrel Cage Induction Motor. IEEE Trans. Magn.
**2012**, 48, 3571–3574. [Google Scholar] [CrossRef] - Nunes, E.A.D.F.; Salazar, A.O.; Villarreal, E.R.L.; Souza, F.E.C.; Dos Santos Júnior, L.P.; Lopes, J.S.B.; Luque, J.C.C. Proposal of a fuzzy controller for radial position in a bearingless induction motor. IEEE Access
**2019**, 7, 114808–114816. [Google Scholar] [CrossRef] - Carvalho Souza, F.E.; Silva, W.; Ortiz Salazar, A.; Paiva, J.; Moura, D.; Villarreal, E.R.L. A Novel Driving Scheme for Three-Phase Bearingless Induction Machine with Split Winding. Energies
**2021**, 14, 4930. [Google Scholar] [CrossRef] - Gao, Z. Scaling and bandwidth-parameterization based controller tuning. In Proceedings of the 2003 American Control Conference, Denver, CO, USA, 4–6 June 2003; Volume 6, pp. 4989–4996. [Google Scholar]
- Maopeng, R.; Li, J.; Xie, L. A new extended state observer for uncertain nonlinear systems. Automatica
**2021**, 131, 109772. [Google Scholar] - Mota, A.I.P.; Silva, W.L.A.; Souza, F.E.C.; Salazar, A.O. Synchronous disturbance suppression in bearingless machines with active disturbance rejection controller. In Proceedings of the 2021 Brazilian Power Electronics Conference (COBEP), João Pessoa, PB, Brazil, 7–10 November 2021; pp. 1–5. [Google Scholar]

**Figure 1.**Spatial arrangement of the stator windings of a bearingless induction motor with split winding.

**Figure 4.**Stator of the bearingless induction motor with split-winding subjected to right-side radial force.

**Figure 14.**Steady state response of radial position control for the linear and nonlinear controllers in 3D. (

**a**) Linear ADRC. (

**b**) Nonlinear ADRC.

**Figure 15.**Response of radial position control under step setpoint changes for Linear ADRC. (

**a**) X-axis behavior with step setpoint changes applied. (

**b**) Y-axis behavior with step setpoint changes applied to X-axis. (

**c**) X-axis behavior with step setpoint changes applied to Y-axis. (

**d**) Y-axis behavior with step setpoint changes applied.

**Figure 16.**Response of radial position control under step setpoint changes for Nonlinear ADRC. (

**a**) X-axis behavior with step setpoint changes applied. (

**b**) Y-axis behavior with step setpoint changes applied to X-axis. (

**c**) X-axis behavior with step setpoint changes applied to Y-axis. (

**d**) Y-axis behavior with step setpoint changes applied.

**Figure 18.**Estimated states behavior for linear ADRC under radial load application. (

**a**) Linear ADRC—X-axis states. (

**b**) Linear ADRC—Y-axis states.

**Figure 19.**Estimated states behavior for nonlinear ADRC under radial load application. (

**a**) Nonlinear ADRC—X-axis states. (

**b**) Nonlinear ADRC—Y-axis states.

**Figure 20.**Generalized disturbance estimation and mean steady state error for X and Y axes to different values of radial load aligned with the X-axis. (

**a**) Generalized disturbance estimation (${z}_{3}$). (

**b**) Mean absolute error for X and Y axes.

**Figure 21.**Generalized disturbance estimation and mean steady state error for X and Y axes to different values of radial load aligned with the Y-axis. (

**a**) Generalized disturbance estimation (${z}_{3}$). (

**b**) Mean absolute error for X and Y axes.

Parameters | Values |
---|---|

Frequency | 60 Hz |

Poles number | 4 |

Supply voltage | $220/380$ V |

Current | $3.02/1.75$ A |

No-load current | $1.9$ A |

No-load power | 160 W |

Stator resistance per phase | $0.63$ Ohm |

**Table 2.**Mean values of the states estimated by the linear and nonlinear ESO before and after the radial load application.

Controller | State ${\mathit{z}}_{1}$ | State ${\mathit{z}}_{2}$ | State ${\mathit{z}}_{3}$ | |||
---|---|---|---|---|---|---|

Load Application | Before | After | Before | After | Before | After |

Linear ESO | $0.57$ | $0.64$ | $-0.32$ | $-0.33$ | $1.64$ | $-7$ |

Nonlinear ESO | $0.48$ | $0.48$ | $-1.34$ | $-2.6$ | $-1522$ | $-7909$ |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Teixeira, R.d.A.; da Silva, W.L.A.; Amaral, A.E.S.; Rodrigues, W.M.; Salazar, A.O.; Villarreal, E.R.L. Application of Active Disturbance Rejection in a Bearingless Machine with Split-Winding. *Energies* **2023**, *16*, 3100.
https://doi.org/10.3390/en16073100

**AMA Style**

Teixeira RdA, da Silva WLA, Amaral AES, Rodrigues WM, Salazar AO, Villarreal ERL. Application of Active Disturbance Rejection in a Bearingless Machine with Split-Winding. *Energies*. 2023; 16(7):3100.
https://doi.org/10.3390/en16073100

**Chicago/Turabian Style**

Teixeira, Rodrigo de Andrade, Werbet Luiz Almeida da Silva, Adson Emanuel Santos Amaral, Walter Martins Rodrigues, Andrés Ortiz Salazar, and Elmer Rolando Llanos Villarreal. 2023. "Application of Active Disturbance Rejection in a Bearingless Machine with Split-Winding" *Energies* 16, no. 7: 3100.
https://doi.org/10.3390/en16073100