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Abstract: This paper aims to establish a predictive model for battery lifetime using data analysis. The
procedure of model establishment is illustrated in detail, including the data pre-processing, modeling,
and prediction. The characteristics of lithium-ion batteries are introduced. In this study, data analysis
is performed with MATLAB, and the open-source battery data are provided by NASA. The addressed
models include the decision tree, nonlinear autoregression, recurrent neural network, and long
short-term memory network. In the part of model training, the root-mean-square error, integral of
the squared error, and integral of the absolute error are considered for the cost functions. Based on
the defined health indicator, the remaining useful life of lithium-ion batteries can be predicted. The
confidence interval can be used to describe the level of confidence for each prediction. According
to the test results, the long short-term memory network provides the best performance among all
addressed models.
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1. Introduction

In recent years, the growth of electric vehicles has been accelerated under the policy of
global carbon reduction. In battery electric vehicles or other types of hybrid electric vehicles,
the Li-ion battery is a core component operating as the power source or power transformer.
For the battery-driven equipment, the operating effectiveness strongly relies on a reasonable
battery quality. Battery quality could be evaluated by measuring the battery internal
resistance or temperature. Practically, routine checking usually costs a lot of manpower, and
regular maintenance is not suitable for the unexpected cases where failures occur suddenly.
In contrast to preventive maintenance, predictive maintenance (PdM) aims to predict the
health status of a piece of equipment according to the model built from the measured
characteristics such as voltage, current, and temperature [1–3]. Thus, the equipment
operation can be real-time-monitored, and the demanded operations can be ensured.
Predictive maintenance brings with it several advantages such as avoiding unexpected
failures, reducing maintenance costs, and executing necessary module replacements more
effectively. As the predictive maintenance of Li-ion batteries, the health status can be
determined from the learning models so that the sudden failures can be avoided, and the
batteries can be effectively operated in a well-defined condition.

Batteries have been used in various energy storage systems. The health management
and degradation models of batteries have attracted a lot of attention. Lithium-ion batter-
ies have characteristics such as high energy density, less self-discharge, and long cycle
life [4–6]. The battery performance degrades throughout its lifetime, which is known as
battery aging. Battery aging is irreversible because of various reasons [7], such as the
influence of temperature [8–10], the increase in internal resistance caused by chemical
reactions [11], the battery charging current [12,13], and the series- or parallel-connection
of batteries [14]. Due to the characteristics of long lifetime, high density, and light weight,
lithium-ion batteries are preferred over other battery technologies in various applications,
including electric vehicles, satellites, laptops, and other consumer electronics.
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In recent years, the state of health (SOH) and remaining useful life (RUL) have raised
many concerns in the study of battery quality [15]. Both SOH and RUL are important
indicators to reflect battery health. Typical methods for the evaluation of battery status
include the direct measurement method, physical model method, and data analysis method.
In direct measurement methods, an open-circuit voltage is applied to calculate the battery
capacity [16], and the battery impedance can be measured by electrochemical impedance
spectroscopy [17]. Alternatively, in the physical model methods, the battery degradation
behaviors are described by an equivalent model developed from the electrochemical mech-
anism or equivalent circuit [18–20]. In [21–23], machine learning methods were adopted
to train the SOH model through the history data of batteries. Because of the progressive
development of machine learning technologies, data analysis approaches have become the
main research trends of battery health analyses.

Over the past several years, traditional maintenance strategies of inspection, testing,
repair, and replacement have been applied to ensure equipment are in good condition with
high availability and service life [24–26]. Basically, the maintenance will not be activated
unless a fault occurs. This seeing-is-believing policy could result in significant costs in
manpower, time, or money in fault recovery. To improve maintenance effectiveness, the
maintenance strategy has gradually changed to the so-called prevention maintenance. For
example, a time-based maintenance is in accordance with a pre-defined time routine [27].
However, the maintenance periods are usually varied subject to the working conditions in
different devices. In another way, a condition-based maintenance was proposed, where
certain thresholds are set for the addressed equipment modules [28]. However, the pre-
determined thresholds could be conservative and may involve taking a risk in failure
prevention [29]. Condition-based maintenance seems to improve the maintenance perfor-
mance in a certain degree compared with the time-based maintenance. However, there
still exists suspicion in the aspect of failure detection in time. With the popularization
of monitoring equipment, predictive maintenance becomes more feasible [30]. In [31], a
sliding window algorithm was developed to predict the remaining service life of the battery,
and the results showed that the error was within 1.5% and the root-mean-square error
in predictive replacement can be made in advance within 20 cycles. In [32], a predictive
maintenance strategy was proposed for transformers to attain low cost and high reliability.
According to the factors of life reduction and fault increase, a failure rate evolution model
was proposed. Predictive maintenance aims to effectively predict equipment failures, pre-
vent problems, save unnecessary maintenance costs, and hope to achieve better results than
traditional preventive maintenance strategies.

In this paper, the health status of Li-ion batteries is analyzed such that the remaining
useful life can be determined in accordance with the learning models. The learning models
are generated according to the operating conditions and measured parameters. To build
the learning models, the battery features during the charging and discharging processes
must be identified. Moreover, the selection of crucial features is performed by using the
correlation analysis. Thus, the computation complexity of the model building can be
reduced. Finally, the remaining useful life of Li-ion batteries can be predicted. In this
paper, the NASA battery dataset is adopted as the real measurements. From the analysis
results, the predicted RUL of Li-ion batteries is basically consistent with the trend of the real
data. The whole analysis procedures, including the feature selection, correlation analysis,
model building, and prediction analysis, addressed in this paper could be helpful for the
predictive maintenance of Li-ion batteries in practical cases.

2. Properties of Li-Ion Batteries

The operating principle of lithium-ion batteries, a kind of rechargeable battery, mainly
relies on lithium ions moving between the positive and negative electrodes. In the stage
of charging, lithium ions move from the positive electrode to the negative plate through
the electrolyte and separator. While in the discharging state, lithium ions move from the
negative electrode back to the positive electrode. Basically, the structures of the positive
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and negative electrodes remain the same, and the associated electrochemical reactions are
carried out because of the Li-ion migration between electrodes.

2.1. State of Charge

The state of charge (SoC), which is valuable information of the battery, represents
the remaining available power of the battery, as shown in Equation (1), where Q is the
existing battery capacity and Qn is the rated capacity of the battery [33]. In practice, the
available battery capacity depends on the charge and discharge rate, temperature, and
aging phenomenon [34,35]. Absolute state of charge and relative state of charge are two
popular types of SoCs. Usually, the relative state of charge is in the range of 0% to 100%,
from fully discharged to fully charged. The absolute state of charge is counted as the battery
is manufactured. A new fully charged battery has an absolute state of charge of 100%,
while an aging battery, even if fully charged, cannot reach 100% in different charge and
discharge situations.

SoC =
Q
Qn

(1)

SoC is a crucial parameter of battery management. It is necessary to pay attention
all the time while normally using batteries. Due to the complexity of the structure and
the chemical reactions involved during charging and discharging, the state of charge of
lithium-ion batteries cannot be directly measured. Alternatively, some methods have been
presented to estimate the state of charge according to the internal resistance, open-circuit
voltage, temperature, current, etc.

2.2. Methods of Battery Charging
2.2.1. Constant-Current Method (CC)

In the CC charging process, a constant current is applied for battery charging. The
associated charging time is related to the magnitude of charging current [36]. In general,
charging with a small charging current will result in a longer charging time. On the contrary,
if a larger charging current is applied, a shorter charging time is required to attain the
necessary battery capacity. However, it is easy for battery charging with large charging
current to damage the battery, decrease the battery capacity, and shorten the battery life. It
is noted that the battery voltage increases smoothly during the CC charging process.

2.2.2. Constant-Voltage Method (CV)

Operating with the CV charging method, a constant voltage is applied in the charging
process. Compared to the constant-current method, the constant-voltage method has
the advantages of being a simple circuit and easy to control. However, due to the low
battery voltage in the early stage of charging, it is easy to cause excessive charging current.
This situation often causes the rise in battery temperature and the deformation of the
battery plate, thereby affecting battery life. It is noted that the battery current decreases
continuously during the CV charging process.

2.2.3. Constant-Current and Constant-Voltage Method (CC-CV)

The method combined with the CC and CV charging has better charging performance
compared to a single CC or CV method. In the early stage, CC charging is adopted to save
charging time and avoid excessive charging current. When the battery voltage rises to
the set value, it is converted into CV charging. Then, the charging current will gradually
decrease. The battery tends to a saturated state such that the phenomenon of battery
overcharge and virtual charging can be prevented [36]. An example of the CC-CV charging
procedure is shown in Figure 1.
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3. Framework for Predictive Maintenance

Predictive maintenance refers to the maintenance before assets or equipment fail ac-
cording to the operating information received. In this study, the entire framework of the
battery maintenance is divided into three stages: data preprocessing, model construction,
and the prediction of remain useful life, as shown in Figure 2. In general, the original data
need to be normalized before the process of feature analysis. In the stage of model construc-
tion, candidate models are selected and trained to validate which ones are appropriate for
the used cases. Finally, based on the trained models, the health indicator can be generated,
and the consequent remaining useful life can be predicted.

Energies 2023, 16, 3096 5 of 22 
 

 

 
Figure 2. Framework for the predictive maintenance of Li-ion batteries. 

3.1. Dataset 
In this study, the open-source Prognostics Data Repository Battery Data Set is adopted 

[37–39]. The used data, provided by NASA, are stored in the mat files, which contains four 
18650-model battery data samples, B0005, B0006, B0007, and B0018. Each battery data sam-
ple has four columns: type, ambient_temperature, time, and data array [39]. The data type 
includes the status of battery charging and discharging. The ambient_temperature records 
the temperature around the testing battery. According to the recorded data, the environ-
mental temperatures are all at 24 °C. The time array corresponds to the time period of the 
charging and discharging process. The data field contains an array of records including the 
voltages and currents in the charging and discharging phases. The conditions of the charg-
ing and discharging processes are listed as Table 1, and the corresponding features are se-
lected as Table 2. 

Table 1. Operating conditions for charging and discharging process. 

Cut-off Voltage (V) Current (A) Capacity (Ahr) 
Charging Discharging Charging Discharging Rated Lower Bound 

4.2 2.7 1.5 2 2 1.4 

Table 2. Features of battery charging and discharging operations. 

Features Description 
Voltage_b The battery voltage in the charging stage 
Current_b The battery current in the charging stage 
Voltage_c The charger voltage in the charging stage 
Current_c The charger current in the charging stage 
Voltage_l The load voltage in the discharging stage 
Current_l The load current in the discharging stage 

Figure 2. Framework for the predictive maintenance of Li-ion batteries.

3.1. Dataset

In this study, the open-source Prognostics Data Repository Battery Data Set is
adopted [37–39]. The used data, provided by NASA, are stored in the mat files, which
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contains four 18650-model battery data samples, B0005, B0006, B0007, and B0018. Each
battery data sample has four columns: type, ambient_temperature, time, and data ar-
ray [39]. The data type includes the status of battery charging and discharging. The
ambient_temperature records the temperature around the testing battery. According to the
recorded data, the environmental temperatures are all at 24 ◦C. The time array corresponds
to the time period of the charging and discharging process. The data field contains an array
of records including the voltages and currents in the charging and discharging phases.
The conditions of the charging and discharging processes are listed as Table 1, and the
corresponding features are selected as Table 2.

Table 1. Operating conditions for charging and discharging process.

Cut-Off Voltage (V) Current (A) Capacity (Ahr)

Charging Discharging Charging Discharging Rated Lower Bound

4.2 2.7 1.5 2 2 1.4

Table 2. Features of battery charging and discharging operations.

Features Description

Voltage_b The battery voltage in the charging stage

Current_b The battery current in the charging stage

Voltage_c The charger voltage in the charging stage

Current_c The charger current in the charging stage

Voltage_l The load voltage in the discharging stage

Current_l The load current in the discharging stage

Temperature The battery temperature in the charging and discharging stages

Capacity The capacity after charging and discharging cycles

Time The time stamp including date, hour, minute, second

The battery charging and discharging method used in the dataset adopts the CC-CV
method introduced in Section 2. According to the operating conditions shown in Table 1,
one example of a charging and discharging cycle is shown in Figure 3. The time-based
operation in Figure 3 can be divided into three phases, i.e., constant-current charging
(CC_C), constant-voltage charging (CV_C), and constant-current discharging (CC_D). A
constant charging current of 1.5 A is applied at the beginning of the charging phase. When
the battery voltage reaches the cut-off charging voltage of 4.2 V, a constant-voltage mode
starts to work. Consequently, when the current continues to drop to 20 mA, the battery
reaches the CC_D discharge state.

3.2. Data Preprocessing

In general, before the feature analysis, attention must be given to the collected raw
data in many aspects, such as inappropriate data format, missing data, and symbol en-
coding. The battery dataset provided by NASA has no problems such as missing data
and symbol coding. However, the numbers of different batteries happen to not match.
By close observation, although the battery capacity has dropped to the lower bound, the
data recording is continued. To unify the sampled data, the number of data samples are
trimmed to 168 and divided into charging and discharging stages. In this study, the data
preprocessing mainly focuses on the scaling to avoid weight bias in building the learning
model. In many cases, feature items often have different size ranges that will be misleading
in model building.
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3.2.1. Feature Scaling

It is often that features are in different ranges. If the raw data are directly used, it
will possibly cause excessive bias of the weights upon model building. Typically, feature
normalization is applied such that the source data will be proportionally transferred into
the interval [0, 1] [40]. For example, let the maximum and minimum number of a data
array be xmax and xmin, respectively. The normalized value xi,nom of the input data xi can
be calculated as (2):

xi,nom =
xi − xmin

xmax − xmin
(2)

3.2.2. Feature Analysis

The capacities of three batteries are shown in Figure 4. The capacity decreases along
with the increase in charging and discharging cycles. The reason for the capacity decline is
mainly due to the electrochemical reaction during the charge and discharge cycle. During the
electrochemical process of lithium ions in the solution, some passive film will be generated on
the surface of carbon materials. Consequently, the battery capacity will decrease [41].
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With the increase in cycles, the corresponding features mentioned in Table 2 are
shown in Figures 5 and 6. According to the recorded data, the total number of charg-
ing/discharging cycles is 170. The cycle 10% notation indicates the situation after
17 charging and discharging processes. In the same way, cycle 30% indicates the situ-
ation after 51 charging/discharging cycles. In Figure 5, the approach of the battery voltage
to the cut-off voltage of 4.2 V is faster along with the increase in cycles. In addition, the drop
in the battery current to 20 mA is faster with the increase in charging/discharging cycles. In
addition, the peak of the battery temperature occurs earlier with more cycles. Similarly, in
the discharging stage, the abrupt changes in battery temperature and battery/load voltages
and currents occur earlier along with the increase in cycles. To further explore the useful
information behind the raw time-series data, the following metrics are adopted.
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The time-domain analysis refers to the fact that the signal changes over time. Typical
quantitative metrics are the mean, skewness, kurtosis, shape factor, etc. For example, a set
of data is represented as {xi}, i = 1, 2, . . . , n, where n is the number of data points. The
mean and standard deviation of the dataset can be calculated as (3) and (4), respectively:

x =
1
n ∑n

i=1 xi (3)

σ =

√
1
n ∑n

i=1(xi − x)2 (4)

In addition, the skewness, kurtosis, and shape factor can be used to describe the
characteristics of data distribution, summarized in Table 3, where xrms represents the root-
mean-square value of {xi}. Furthermore, the crest factor, impulse factor, and margin factor
are used to check whether there is an impact signal in the data. The existence of an impact
signal could be considered as a warning that something has occurred to the devices. In
practice, theses three factors are crucial in the discussion of predictive maintenance. The
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total features with the combination of the factors in Tables 2 and 3 are shown in Table 4,
where there are 48 features. All features refer to their time interval or time instance and
are highlighted in Figures 7 and 8, corresponding to the charging and discharging stages,
respectively. For example, the notation “1” shown in Figure 7 indicates the first item in
Table 4, which is the time interval of CC charging. The rest of the features in Table 4 can be
cross-checked from Figures 7 and 8.
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Table 3. Time-domain metric formula.

Item Formula

Skewness xsk =
1
n ∑n

i=1(xi−x)3

( 1
n ∑n

i=1(xi−x)2)
3/2

Kurtosis xku =
1
n ∑n

i=1(xi−x)4

( 1
n ∑n

i=1(xi−x)2)
2

Shape factor xs f =
xrms

1
n ∑n

i=1|xi |

Crest factor xc f =
max{xi}

xrms

Impulse factor xi f =
max{xi}
1
n ∑n

i=1|xi |

Margin factor xm f =
max{xi}

( 1
n ∑n

i=1|xi |)
2

3.2.3. Correlation Analysis

Correlation analysis is an analytical technique used to analyze the degree of correlation
between feature items. It can extract some crucial features for the consequent model
building with less computation complexity. The Pearson correlation, Spearman correlation,
and Kendall correlation coefficient are commonly used in correlation analyses [42].
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The Pearson Correlation Coefficient is typically used to determine the degree of linear
correlation between two sets of data, {xi} and {yi}, i = 1, 2, . . . , n. The correlation
coefficient is determined as

corr = ∑n
i=1(xi − x)(yi − y)√

∑n
i=1(xi − x)2

√
∑n

i=1(yi − y)2
(5)

The absolute value of the correlation coefficient is less than or equal to one. The higher
the value, the closer the relationship between {xi} and {yi}, as shown in Table 5. The
sign of the correlation coefficient represents a positive or negative correlation between
{xi} and {yi}.
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Table 4. Summary of all features.

Item Description Correlation

1 time interval of CC charging •
2 time interval of CV charging •
3 battery temperature after charging

4 skewness of temperature in charging

5 kurtosis of temperature in charging

6 waveform factor of temperature in charging •
7 crest factor of temperature in charging •
8 impulse factor of temperature in charging •
9 margin factor of temperature in charging •
10 skewness of battery voltage in charging •
11 kurtosis of battery voltage in charging

12 waveform factor of battery voltage in charging •
13 crest factor of battery voltage in charging •
14 impulse factor of battery voltage in charging •
15 margin factor of battery voltage in charging •
16 skewness of charger voltage in charging

17 kurtosis of charger voltage in charging

18 waveform factor of charger voltage in charging

19 crest factor of charger voltage in charging

20 impulse factor of charger voltage in charging

21 margin factor of charger voltage in charging

22 skewness of battery current in charging

23 kurtosis of battery current in charging

24 waveform factor of battery current in charging

25 crest factor of battery current in charging

26 impulse factor of battery current in charging

27 margin factor of battery current in charging

28 skewness of battery voltage in discharging •
29 kurtosis of battery voltage in discharging •
30 waveform factor of battery voltage in discharging •
31 crest factor of battery voltage in discharging

32 impulse factor of battery voltage in discharging

33 margin factor of battery voltage in discharging •
34 skewness of load voltage in discharging •
35 crest factor of load voltage in discharging •
36 waveform factor of load voltage in discharging •
37 crest factor of load voltage in discharging •
38 impulse factor of load voltage in discharging •
39 margin factor of load voltage in discharging •
40 time interval of discharging •
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Table 4. Cont.

Item Description Correlation

41 battery temperature after discharging

42 skewness of temperature in discharging •
43 kurtosis of temperature in discharging •
44 waveform factor of temperature in discharging •
45 crest factor of temperature in discharging •
46 impulse factor of temperature in discharging •
47 margin factor of temperature in discharging •
48 capacity •

Table 5. The relationship strength according to the correlation coefficient.

Strength Positive Correlation Negative Correlation

Strong 0.5–1 −1–0.5

Moderate 0.3–0.5 −0.5–0.3

Weak 0.1–0.3 −0.3–0.1

Negligible <0.1 −0.1–0

In this study, the Pearson correlation coefficient is used to analyze the correlation of
the 48 features. After the correlation analysis, the dominant features are selected, as shown
by the notation • in Table 4. In the following, the sorted dominant features are adopted for
the building of learning models.

3.3. Model Building

The data provided by the data preprocessing are used for the consequent model
building. The process of model building goes through model selection, model training,
and model testing, as shown in Figure 9. In the context of predictive maintenance, the
method of supervised learning is adopted, where a model is built to regressively predict the
battery capacity.

Energies 2023, 16, 3096 12 of 22 
 

 

48 capacity • 

3.2.3. Correlation Analysis 
Correlation analysis is an analytical technique used to analyze the degree of correla-

tion between feature items. It can extract some crucial features for the consequent model 
building with less computation complexity. The Pearson correlation, Spearman correla-
tion, and Kendall correlation coefficient are commonly used in correlation analyses [42]. 

The Pearson Correlation Coefficient is typically used to determine the degree of lin-
ear correlation between two sets of data, 𝑥  and 𝑦 , 𝑖 = 1, 2, … , 𝑛. The correlation co-
efficient is determined as 𝑐𝑜𝑟𝑟 = ∑ (𝑥 − �̅�) (𝑦 − 𝑦)∑ (𝑥 − �̅�) ∑ (𝑦 − 𝑦)  (5) 

The absolute value of the correlation coefficient is less than or equal to one. The 
higher the value, the closer the relationship between 𝑥  and 𝑦 , as shown in Table 5. 
The sign of the correlation coefficient represents a positive or negative correlation between 𝑥  and 𝑦 . 

Table 5. The relationship strength according to the correlation coefficient. 

Strength Positive Correlation Negative Correlation 
Strong 0.5–1 −1–0.5 

Moderate 0.3–0.5 −0.5–0.3 
Weak 0.1–0.3 −0.3–0.1 

Negligible <0.1 −0.1–0 

In this study, the Pearson correlation coefficient is used to analyze the correlation of the 
48 features. After the correlation analysis, the dominant features are selected, as shown by 
the notation • in Table 4. In the following, the sorted dominant features are adopted for the 
building of learning models. 

3.3. Model Building 
The data provided by the data preprocessing are used for the consequent model 

building. The process of model building goes through model selection, model training, 
and model testing, as shown in Figure 9. In the context of predictive maintenance, the 
method of supervised learning is adopted, where a model is built to regressively predict 
the battery capacity. 

 
Figure 9. Flow of model building. Figure 9. Flow of model building.

3.3.1. Model Selection

The learning models adopted in this study are briefly explained in the following.
Decision Tree is a tree-like structure, starting from a root node, where each inner node
represents a test on an attribute, each branch indicates an outcome of the test, and each
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leaf node stands for a class label. Decision Tree is a non-parametric supervised learning
method used for classification and regression. The goal is to create a model that predicts the
value of a target variable by learning simple decision rules inferred from the data features.
Basically, the learning of decision tress includes the following steps: feature selection, tree
generation, and pruning. The selection of features determines which feature to use as a
judgment. After deciding the features, it is triggered from the data sample (root node), and
the information gain of all features is calculated for the node. The feature with the largest
gain is selected and the child node is established, and then the new child node is generated
in the same way for each child node until the information gain is small or no features can
be selected. Finally, the pruning of the decision tree is applied to avoid the decision tree
growing too deep that may result in high computation complexity and possible overfitting.

Nonlinear autoregressive with external input (NARX) is a nonlinear autoregressive
model that has exogenous inputs. NARX models relate the current value of a time series
to past values of the same series and current and past values of the driving series. The
structure of the NARX network generally consists of an input layer, hidden layers, and an
output layer. The NARX network has the feedback and memory functions inherited from
the input and output delays, such that the prior information can be retained and added to
the calculation of the next moment. The Recursive Neural Network (RNN) is similar to the
NARX network. In contrast to the NARX model, RNN does not have feedback connections
from the output to the input. The feedback connection exists only among the neurons in
the hidden layer. The Long Short-Term Memory Network (LSTM) is an extension of RNN,
and the hidden layer in RNN is improved to solve the problem of long-term dependencies.
The main difference between an LSTM unit and a standard RNN unit is that the LSTM unit
is composed of the so-called gates that supposedly regulate better the flow of information
through the unit.

3.3.2. Model Training

Before model training, the data are divided into three sets for training, validation,
and testing. In supervised learning, the model makes predictions according to the data
in the training set. Compared with the differences between the prediction results and
actual targets, the model parameters can be progressively adjusted. The validation set is
basically used for the validation of the preliminary capabilities of trained models. The
hyperparameters such as the depth of the hidden layer and the number of neurons can be
further adjusted. In practice, the validation process is not necessary in data partitioning.
The performance verification of the trained models can be validated through the unused
test set, where the capabilities of prediction and classification are commonly addressed.
Considering that the size of NASA battery datasets is limited, in this paper, 70% of the
battery datasets are used for model training and the remaining 30% of data are used for
model testing [43]. It is reasonable that if more data are available, the outcomes from
trained models will approach those of the actual data. From Figures 10 and 11, it can be
seen that the prediction outcomes with the 70% training dataset are much better than the
counterparts with the 50% training dataset; especially, the predictions from RNN and LSTM
are significantly improved, where the prediction trends are close to the real data.

3.3.3. Model Testing

In the previous step, 70% of the dataset are used to build the model, and then the
remaining 30% of the data are used in the model testing to verify the established model.
The output values of the trained models are point-wisely compared with the actual values
to find the loss function. In this study, the measurements of root-mean-square error,
the integral of absolute error, and the integral square error are considered. In Table 6,
the RNN and LSTM have a better performance than the outcomes of Decision Tree and
NARX. Among all the applied learning models, LSTM has the superiority in all aspects of
error metrics.
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Table 6. Comparison of different learning models in model testing.

Model RSME IAE ISE

Tree 0.138 6.082 10.919

NARX 0.185 8.202 13.171

RNN 0.045 1.641 6.433

LSTM 0.038 1.423 4.593
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The decision tree model is used for common regression applications. For time-series
data with multiple categories, the prediction capability is limited. In the NARX model,
the feedback output can be considered as an extra feature. However, if the information
is not effectively denoised, it often causes the wrong judgment. The RNN model has the
recurrent characteristics. Theoretically, RNN is suitable for any length of time series data.
However, there exists the problems of gradient explosion or gradient disappearance. As a
derivative of the RNN model, the LSTM model introduces the design of new memory units
and gate controls such as input, output, and forget gates. The problems caused by gradient
explosion or gradient disappearance can be solved. In addition, better prediction results
can be obtained.

4. Prediction of Remain Useful Life

In the stages of feature analysis and model building, the B0005 and B0006 data are
used. After the PdM model is built, new battery data from B0007 are used to validate
the prediction performance of the RUL. In this study, without loss of generality, the first
50 cycles of B0007 are considered as the new information. By feeding the new information
into the learning models, the remaining useful life can be predicted through a process of
prediction analysis. The execution process is shown as Figure 12, where the remaining
useful life can be determined from the health indicator.
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4.1. Health Indicator

In predictive maintenance, the health indicator (HI) refers to a value that can represent
the current health status of the equipment based on some analyses of long-time recorded
data. For the Li-ion battery, the state of charge is considered as the health indicator of the
battery. In this study, the health index is between 0 and 1, where the value of 1 represents
the state of complete health and the value of 0 represents complete failure of the battery.
The study in [31] indicates that the degradation will be aggravated if the capacity is lower
than 80%. Under this situation, the battery is still workable. However, if the capacity is
lower than 70%, the battery degradation becomes severe and the battery is not normally
workable. By looking closely at the NASA battery dataset, the data are only recorded to
70% of the rated capacity. In this study, the status of the battery is “good” when the HI is
more than 90%, “normal” when the HI is 75–90%, and “bad” when the HI is below 75%.

Taking the first 50 cycles as the operating record of the battery B0007, the associated
predictions from different models are shown in Figures 13–16. In Figure 13, it can be
observed that the predicted battery capacity is 93.87% immediately after the first 50 cycles.
According to the previously mentioned metrics about the health status of the battery, the
battery is in the “good” status analyzed by the Tree model. Similarly, the predicted health
indicators of other learning models, NARX, RNN, and LSTM, are summarized in Table 7,
where the status “good” is afforded by each model. From the real data of the B0007 battery,
the health indicator is 93.84% and the battery is actually in the “good” status. Closely
checking the prediction results of Decision Tree, the predicted health indictor seems to be
saturated around 80% regardless the increase in cycles. In Figure 14, the NARX model
can generate a deteriorating trend more precisely. However, predicted battery capacities
lower than 75% exhibit obvious bias compared to the real data. From Figures 15 and 16,
the learning models RNN and LSTM can provide better predictions, where the variation in
LSTM is smoother than the results from RNN.
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Table 7. Health indicators of different models (50 cycles).

Model HI Status

Tree 93.87% good

NARX 95.45% good

RNN 90.05% good

LSTM 91.34% good

Real value 93.84% good
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4.2. Prediction Analysis

The remaining useful life can be determined according to the calculated health index.
Practically, health indicators will gradually drop to zero or certain well-defined values
over a period of time, and this time interval is the remaining life [44]. From the NASA
dataset, the total number of whole charging/discharging processes is 180. In this study,



Energies 2023, 16, 3096 16 of 20

the cycle number of 180 is considered as the whole life of a testing battery. According to
the discussion in Section 4.1, the health indicator below 75% is considered as “bad”. The
battery needs to be replaced to maintain the working battery in the health status. Without
loss of generality, the behavior during the first 50 cycles is considered as the currently new
information of the battery. If the capacity prediction is lower than 75% at a certain cycle,
the difference between this cycle and 50 can be considered as the remaining useful life
predicted by a certain learning model of interest. For example, the analysis results of LSTM
are shown in Figure 17, where the red line is the capacity prediction beyond 50 cycles.
From Figure 17, the capacity is below 75% at cycle 126. Thus, the remaining useful life is
76. According to the real data, the remaining useful life is 84. The prediction results with
different learning models are shown in Figure 18, and the predicted RULs are summarized
in Table 8. In Table 8, it can be seen that the RUL obtained from LSTM is closer to the real
data compared to other models.
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Table 8. Remaining useful life of different trained models.

Model
HI < 75%

(cycle)
RUL

(Cycle)
Error Index

RMSE IAE ISE

Tree na na 0.164 20.521 44.001

NARX 84 34 0.276 35.113 30.918

RNN 146 96 0.129 16.869 39.781

LSTM 126 76 0.063 7.130 18.249

Real value 136 84

5. Discussion

In this paper, the NASA battery dataset is adopted for the prediction of remaining
useful life. The essential properties of Li-ion batteries are briefly introduced such as the state
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of charge and the current and voltage profiles during the charging/discharging stages. The
state of charge is a crucial factor to identify the battery quality such that the battery capacity
is particularly selected as one feature in the feature analysis and consequent model building.
In addition, possible features are selected from the charging and discharging processes
such as the battery current, voltage, and temperature. The feature selection analysis is
clearly addressed in this paper, including the correlation analysis. In the model building,
several learning methods, Tree, NARX, RNN, and LSTM, are used. In this paper, they are
mainly used to analyze which method is more appropriate to the model building based on
the addressed dataset. Through the data analysis, the CC-CV charging method is applied
in the NASA battery dataset. The information in the dataset is quite complete, including
the period of charging/discharging time and the corresponding currents, voltages, and
temperatures. Due to the completeness, the NASA battery dataset is very suitable for the
health status analysis of Li-ion batteries. However, one drawback is that there are only
4 batteries, each with 170 charging/discharging cycles. Considering the possible prediction
bias, confidence intervals are introduced in Figures 13–17. The proposed results could be
useful for the RUL prediction of Li-ion batteries in other practical cases. In addition, the
learning methods may be modified to enhance the prediction performance of battery health
in future works.

6. Conclusions

This paper introduces the essential characteristics of lithium-ion batteries and the
charging and power measurement methods. In this study, MATLAB is used to design an
analysis process to predict the remaining useful life of Li-ion batteries according to NASA’s
Li-ion battery aging datasets. The main steps of data processing include data preprocessing,
feature extraction, and finding dominant features through correlation analysis. In addition,
model training and testing are carried out according to the selected model, and then health
indicators and the remaining useful life are generated. During the analysis process, it
can be found that the model produced by less data has a large difference between the
predicted and actual ones. As the amount of training data increases, the variations in the
predicted trends will gradually converge, and the confidence of results will also increase.
From the final prediction results, it is known that if the model has a lower loss function,
the corresponding remaining life prediction accuracy is higher. After comparative analysis,
among the four selected models, the long short-term memory network model has the best
prediction effect. The long short-term memory network has the advantage of sharing the
characteristics of the recurrent neural network, and adds mechanisms such as the forgetting
gate, input gate, and output gate to the hidden layer to discard and update the state to
solve the problem of long-term dependence of the recurrent neural network. In this study,
the software is successfully used to complete the remaining useful life of Li-ion batteries.
In the future, the process developed in this study can be extended to various applications
in predictive maintenance.
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