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Abstract: This study measured the lifecycle carbon emissions of buildings in 30 Chinese provinces
from 2005 to 2020 and decomposed the drivers of carbon emissions in the materialization stage
and operation stage of building, respectively, using the Stochastic Impacts with the Regression
on Population, Affluence, and Technology (STIRPAT) model in order to investigate the drivers of
carbon emissions and their spatial influence effects in the building sector. The spatial Durbin model
(SDM) was used to thoroughly investigate the spatial effects of carbon emissions and their drivers in
the building sector under geographic and economic distances. According to the findings, China’s
building sector has a high concentration of carbon emissions in the east and a low concentration
in the west. There is also a sizable spatial autocorrelation, and the spatial spillover effects in the
materialization and operation stages shift in opposite directions. To help the building sector to
achieve the carbon peaking and neutrality goals, specific policy recommendations are made based on
the study’s findings.

Keywords: building sector; carbon emissions; driving factors; spatial autocorrelation; spatial
spillover effect

1. Introduction

The Intergovernmental Panel on Climate Change (IPCC) stressed the need for “im-
mediate, rapid and large-scale reductions in greenhouse gas emissions, without which
limiting warming to approximately 1.5 ◦C or perhaps 2 ◦C may not be achievable” in its
2021 report in response to the threat posed by greenhouse gas emissions [1], underscoring
the urgency of tackling climate change. To meet the challenges posed by climate change,
there are currently 133 countries and 121 regions with net zero targets [2]. China is the
main source of carbon emissions worldwide, and its carbon emissions are expected to peak
by 2030 and reach carbon neutrality by 2060 [3].

In 2020, the building sector accounted for 36% of global end-use energy consumption
and 37% of energy-related CO2 emissions [4]. The lifecycle carbon emissions of China’s
buildings made up 50% of the country’s total carbon emissions in 2019 [5], and the building
sector has great potential to reduce its emissions and is considered one of the key targets
for controlling global temperature rise [6]. The manufacturing of building materials and
buildings’ operation processes both contribute significantly to the building sector’s indirect
and implicit carbon emissions [7], and, hence, it is important to take these emissions into
account. Urbanization and industrialization have sped up the growth of the building
sector’s energy consumption and carbon emissions [8], promoting cross-regional mobility
of the population and making the connection between provinces closer. Under the com-
bined effect of various factors, carbon emissions between provinces show a certain spatial
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correlation [9]. Clarifying the primary sources of carbon emissions and their spatial effects
in the building sector is essential for the relevant departments to develop targeted carbon
reduction strategies in the building sector, which is important from a practical standpoint
and will help the industry reach its carbon peaking and carbon neutrality goals.

In order to analyze the variables that affect carbon emissions, researchers frequently
employ index decomposition analysis (IDA) [10], structural decomposition analysis (SDA) [11],
Kaya identity [12], IPAT model, and its extended model STIRPAT [13]. In comparison,
the Kaya identity can generally only be used for the decomposition of drivers, and the
specific utility of each driver cannot be measured [14]. SDA demands extensive and
thorough sectoral input–output data, which are frequently challenging to obtain in a timely
manner. Based on the IPAT model, which divides the driving factors of environmental
performance into three types—population, affluence, and technology—the STIPRPAT
considers nonlinear situations, overcomes the limitations of the original model, and allows
for more refined analysis, such as determining ecological resilience, conducting falsifiable
tests of theories such as the Environmental Kuznets Curve (EKC), and exploring the
nonlinear effects of drivers on environmental impacts. Compared with IDA, the STIRPAT
model has superior scalability and is more suitable for multidimensional driving factors
studies [15], so the STIRPAT model was chosen to analyze the drivers of carbon emissions
in the building sector (CEBS).

It is vital to take into account CEBS because China currently lacks government statistics
on carbon emissions from the building sector. The process-based methodology and the
input–output methodology are two typical approaches used in the lifecycle assessment
process [16]. The process-based approach focuses on assessing the inputs and outputs of
each process in the lifecycle of the object and enables the detailed dismantling of carbon
emissions and the analysis of specific processes [17]. The input–output method uses
economic flow to reflect the energy flow process, which needs to use data from the input–
output table [18]. However, the input–output table is updated less frequently, while the
process method can obtain relevant data through the statistical yearbook, and given data
availability and timeliness, this paper adopts the process method to account for building
carbon emissions.

Numerous studies on drivers of CEBS focus on specific building types or stages,
such as public buildings [14,19], urban buildings [20], construction stages [21], operation
stages [22], etc. It lacks a holistic perspective to comprehend the lifecycle of CEBS. There
are some differences between the primary driving forces behind carbon emissions in the
embodied phase and the operation stage as a result of the various sources of carbon
emissions. The construction industry is more closely tied to the materialization stage,
whereas the population and the growth of tertiary industries are more closely connected
to the operation stage. This study divides the CEBS into the materialization stage and the
operation stage in order to clearly understand the driving factors of carbon emissions at
each stage of the whole building’s lifecycle.

In addition, most studies do not consider the spatial effect of CEBS or just focus on
the differences in carbon emissions between regions, such as using geographically and
temporally weighted regression (GTWR) models [23] or the Theil index [24] to measure the
regional heterogeneity of drivers, while few studies have decomposed the effect of building
carbon emissions drivers on the influence of different regions. Spatial econometric models
can effectively identify the direct impacts of drivers and their spatial effects, and they are
widely used in research about carbon emissions [25], but their utilization in the field of
buildings is not yet extensive enough. The spatial Durbin model (SDM) contains both
the spatial terms of the dependent and independent variables and can analyze the spatial
spillover effects of the dependent and independent variables simultaneously, providing
it with superiority over other spatial econometric models such as the spatial error model
(SEM) and spatial autoregressive model (SAR). Therefore, this paper initially selects SDM
for the analysis of spatial effects, and it is found that the model that meets the actual
situation is derived by the Lagrange multiplier (LM) test and the likelihood ratio (LR) test.
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In addition, most of the current studies only use a single geographical or economic weight
matrix to portray the spatial relationship [26], while, in fact, the proximity of geographical
location and economic level may have different influence paths and results on carbon
emissions, and it is challenging to fully comprehend the spatial consequences of CEBS
with a single spatial weight matrix. So, the effect of different spatial distances is taken into
account in this paper.

This study uses the STIRPAT model to dissect the drivers of lifecycle CEBS, which
offers a more thorough perspective for the research on the drivers of CEBS to address
these research gaps. The structure of this paper is as follows: Section 2 presents research
methods and data sources; Section 3 depicts the empirical results; Section 4 presents the
analysis and discussion of the results; Section 5 provides the research conclusions and
corresponding policy recommendations, as well as the shortcomings of this study and
future research prospects.

2. Materials and Methods
2.1. Accounting for CEBS

The overall carbon emissions of a building consist of the emissions caused by the
energy used in the four phases of the lifecycle of a building: the manufacturing and
transportation of building materials, construction, operation, and demolition. Since the
yearbook statistics combine the energy consumption of both construction and demolition,
these values are typically included in the calculating procedure. The following is the
calculating formula:

CE = CEma + CEcon + CEop (1)

where CE denotes the lifecycle CEBS. The carbon emissions from the manufacture and
transportation of building materials, the building’s construction and deconstruction, and
its operation are represented, respectively, by CEma, CEcon, and CEop.

The following equation accounts for carbon emissions from the manufacturing and
delivery of building materials:

CEma =
5

∑
i=1

[Mi × EFma,i × (1− εi)] +
3

∑
r=1

5

∑
i=1

(qir × dir × EFtr,r) (2)

where Mi denotes the usage of construction material i—there are five main building
materials that are used (steel, cement, glass, wood, and aluminum) based on the available
data. EFma,i and εi denote the carbon emissions factor and recycling factor of the material i,
respectively. Since recycled glass and wood are usually not used in building structures, only
the recycling factors of steel and aluminum are considered [27]. Construction materials are
mainly transported by means of three modes of transportation—rail, road, and waterways—
and qir denotes the weight of material i transported by the mode of transportation r, which
is calculated from the percentage of freight transported by rail, road, and waterways in
that year. dir denotes the average transportation distance of the building material i by the
mode of transportation r, and EFtr,r denotes the carbon emissions factor of the mode of
transportation r.

Equation (3) illustrates that the direct and indirect carbon emissions from these energy
consumptions are the carbon emissions in this stage:

CEcon =
n

∑
j=1

(Ej × EFj) + Eel × EFel + Ehe × EFhe (3)

where CEcon denotes the carbon emissions of the construction and demolition stages; Ej
denotes the energy consumption from fossil energy j; EFj denotes the carbon emissions
factor of the fossil energy j; Eel and EFel denote the use of electricity and the carbon
emissions factor of electricity, respectively; and Ehe and EFhe denote the use of heat and the
carbon emissions factor of heat, respectively.



Energies 2023, 16, 3094 4 of 21

The primary and secondary energy consumption of natural gas, electricity, and heat
is where the majority of the carbon emissions from the operation phase of the building
come from. In this paper, we referred to the building energy consumption splitting model
established by Cai [28] for carbon emissions accounting in the operation stage, as shown in
Equation (4):

CEop = CEser + CEoth + CEres − CEtra (4)

where CEser denotes the carbon emissions of the “wholesale, retail, accommodation and
catering” sector, CEoth denotes the “other” sector’s carbon emissions, CEres denotes the
carbon emissions of “residential consumption”, and CEtra denotes the carbon emissions
of transportation consumption from the above three sectors, which is represented by all
gasoline and all diesel used in household life, along with 95% of the gasoline and 35% of
the diesel used in commercial and public services [29]. The calculation of carbon emissions
of individual sectors is based on Equation (3).

2.2. Spatial Weight Matrix

Quantifying geographic locational relationships is the aim of the spatial weight matrix.
Different spatial weight matrices reflect different spatial relationships. Considering that the
carbon emissions of buildings in each place may be influenced by both the geographical
location distribution and the economic development level of each province, the following
three spatial weight matrices were considered simultaneously in the subsequent spatial
measurement analysis to explore the spatial effects under different distance relationships.

1. The binary contiguity spatial weight matrix (W1) uses the binary form to reflect
the geographic proximity, where wij is 1 if two provinces border each other and
0 otherwise;

2. The geographical distance weight matrix (W2) is measured as:

wij =

{
1/

∣∣dij
∣∣ i 6= j

0 i = j
(5)

where dij represents the geographical distance between two provinces calculated using the
longitude as well as the latitude of their respective provincial administrative centers;

1. The economic distance weight matrix (W3) is defined as:

wij =

{
1/

∣∣Qij
∣∣ i 6= j

0 i = j
(6)

where Qij denotes the gap between the two provinces’ annual average GDP per capita.
In addition, Moran’s I and its scatter plot are important tools for exploring spatial

autocorrelation. Moran’s I may be used to perform a preliminary test of spatial correlation,
and the various stages of spatial correlation can be easily seen on Moran’s scatter plot. The
global Moran’s I is defined as follows:

Moran′s I =
n

∑
i

∑
j

wij
×

∑
i

∑
j

wij(xi − x)(xj − x)

∑
i
(xi − x)2 (7)

where wij denotes the spatial weight matrix, xi denotes the observed value of area i, and the
significance of the global Moran’s I means that there is a spatial correlation, and a positive
value indicates a positive spatial relationship and vice versa.

To further examine the aggregation phenomenon in specific regions, the local Moran’s
I can be applied to reveal the spatial aggregation characteristics of independent units. The
equation of the local Moran’s I is as follows:

Ii =

n(xi − x) ∑
i 6=j

wij(xj − x)

∑
i
(xi − x)2 (8)
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The local Moran’s I results can be used to generate the Moran’s I scatter plot, which
displays the aggregation dispersion between regions.

2.3. Model Settings

Based on the STIRPAT model, this study develops a decomposition model of the
drivers of CEBS. The STIRPAT model is obtained by improving on the IPAT model, which is
a quantitative relational model for measuring human activities’ effects on the environment.
The original STIRPAT model is as follows:

I = aPb AcTde (9)

where I denotes the environmental impact, and P, A, and T refer to population, affluence,
and technology, respectively; a is a constant term, e is the random disturbance term, and
b, c, and d are exponents of P, A and T, respectively. Equation (10) is usually written in
logarithmic form in the calculation as follows:

I = a + b ln P + c ln A + d ln T + e (10)

Considering that building carbon emissions are spatially correlated, a spatial econo-
metric method is introduced, and a general equation to the specific spatial measurement
model is adopted, with the model set as follows:

Yit = ρWYit + Xitβ + θWXit + α + µi + υt + εit (11)

where W is a spatial weight matrix; µi and υt denote province individual fixed effects and
time fixed effects, respectively; ρ is the explained variable’s spatially lag-added value; and
θ denotes the explanatory variables’ spatial correlation coefficient.

The carbon emissions characteristics at every phase of the construction are combined
to create the decomposition models for the materialization stage and operation stage,
respectively, based on the aforementioned model.

2.3.1. Materialization Stage

Carbon emissions in the building materialization stage mainly originate from the new
construction process in that year. Based on the existing literature and the decomposition
improvement of the STIRPAT model, the drivers of carbon emissions in the building
materialization stage were selected as follows.

• Construction area (CA). For the population factor in the model, it is important to
consider that the carbon emissions in the annual building materialization stage mainly
originate from the new buildings in that year, which could not be measured simply
with the population number. Since the building area and population usually show a
high correlation [30], the annual new building construction area was chosen to reflect
the population factor in the original model;

• Unit completed area value (UV). To correspond to the selection of the population factor
indicator above, the unit completed area value was chosen to represent affluence in
the materialization stage [31];

• Labor productivity (LP). Labor productivity in the construction industry can reflect the
technological level of the building construction process, but the direction of the impact
of the improvement of labor productivity in the building materialization stage remains
to be explored. So, this paper selected the performance-based variable construction LP
to reflect the technological level of the construction industry;

• Energy intensity (EI). The energy used during the building construction process is
what causes the direct carbon emissions of the materialization stage, and in this case,
the energy intensity of the building industry was chosen to reflect the energy used
during the materialization stage;
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• Industrial structure (IS). A sizable portion of carbon emissions during the material-
ization stage come from the production of building materials, which means that the
construction industry largely promotes the development of heavy industries such as
steel and cement. So, the ratio of the production value of the secondary industry to the
total output value served as a measure of the impact of industrial structure on carbon
emissions in the materialization stage in this study;

• Carbon emissions intensity of building materials (MI). The manufacture of building
materials generates the majority of indirect carbon emissions during the materializa-
tion stage, and these emissions are typically linked to the industrialization process
of building material producers. Referring to Zhu [31], the technological elements
involved in the manufacture and processing of building materials were measured
by the amount of carbon emissions produced by construction materials per unit
of production.

2.3.2. Operation Stage

In the building operation stage, existing residential and public buildings are the
primary sources of carbon emissions, which is more likely to be impacted by stock consid-
erations than the materialization stage. The following are descriptions of the motivating
reasons and metrics.

• Population (P). Both the daily life and consumption activities of the population
contribute to the energy consumption of residential and commercial buildings, so
the population size has a significant impact on carbon emissions in the building
operation stage;

• Economic growth (PGDP). The affluence factor is typically quantified by GDP per
capita, and the relationship between carbon emissions and economic expansion might
not be linear. According to the traditional EKC hypothesis, environmental damage
and economic expansion are inversely correlated in a U-shaped pattern. Furthermore,
Bruyn [32] argued that the impact of industrial structure and technical development on
emissions reduction will gradually wane, and when it cannot offset the environmental
pressure caused by economic scale expansion, the Kuznets curve will rise again,
showing an N-shaped dynamic trend. Therefore, the higher sub-term of GDP per
capita was considered in this study;

• Level of urbanization (UP and UT). Urbanization drives economic growth and the
raising of people’s living standards, which is also usually accompanied by large
amounts of carbon emissions [33]. Urbanization causes the growth of the urban
population and the prosperity of tertiary industry, which are the main sources of
carbon emissions in the operation phase. Therefore, this paper selected the urban
population share (UP) and tertiary industry share (UT) as the structural metrics of the
urbanization level;

• Energy consumption (EI, ER, and EC). The principal source of carbon emissions during
the building’s operational phase is the use of primary and secondary energy sources
such natural gas, electricity, and heat. Energy intensity (EI) and energy structure
are the metrics used in this paper to reflect energy use throughout the operational
stage. The average carbon emissions intensity (EC) of energy consumption and the
proportion of electricity are the major indicators of the energy structure (ER) because
electricity is the most promising secondary energy among the main energy sources
to achieve low and zero carbon development, and promoting electrification of the
operation stage has considerable potential to reduce emissions in the future when
clean energy generation technologies are increasingly mature.

2.4. Data Sources

The building materials consumption data in each province were from the China
Construction Statistical Yearbook. The China Statistical Yearbook provides data on the
volume of freight transported annually with railroads, highways, and canals, and the China
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Energy Statistical Yearbook provides data on the use of different types of fossil fuels. The
General Guidelines for Determining Comprehensive Energy Consumption GB/T 2589-2020
and the China Energy Statistics Yearbook are used to calculate the average low-level heat
generation. The unit calorific value carbon content data were obtained from the “Carbon
content per unit calorific value of fossil fuels by sector and fuel species” of the provincial
inventory, and the carbon oxidation rate is taken from the data published in the 2005 China
Greenhouse Gas Study and Carbon Emission Accounts & Datasets (CEADs). Because
of the difficulty of splitting the power grids of individual provinces with neighboring
provinces, the carbon emissions factor of regional power grids was used in this paper to
calculate the carbon emissions of purchased electricity, and the data were obtained from
the Average Carbon Dioxide Emissions Factor of China’s Regional Power Grids in 2011
and 2012 published by the National Development and Reform Commission.

The descriptions of the driving factors are shown in Table 1.

Table 1. Descriptions of the driving factors.

Symbol Variable Definition Unit

CE Carbon emissions Lifecycle CEBS Million tons

CA Building construction area Building construction area at the
end of the year Million m2

P Population The number of residents at the end
of the year 104 people

UV Value of unit building area
The proportion of a building’s

completed value to its
completed area

CNY 104/m2

PGDP GDP per capita The ratio of GDP to the population CNY 104

LP Labor productivity
The ratio of total output value to

employees in the
construction industry

CNY 104/person

EI Energy intensity Direct energy consumption to
added value ratio PJ/CNY 108

IS Industry structure The proportion of secondary
industry output to overall output %

MI Carbon emissions intensity
of building materials

The ratio of carbon emissions from
building materials to the

construction industry output
Tons/CNY 104

UP The proportion of the
urban population

The proportion of urban residents
to all people %

UT The proportion of the
tertiary industry

The proportion of the tertiary
industry to total output %

ER Level of electrification
The ratio of the electricity

consumption to total
energy consumption

%

EC Carbon emissions intensity
of energy consumption

Carbon emissions from direct
energy consumption per unit Tons/tons

3. Results
3.1. CEBS from 2005 to 2020

Since there are missing data for some provinces, this paper selected the data from
30 provinces from 2005 to 2020 for carbon emissions accounting, and the results are shown
in Figure 1. China’s CEBS in 2020 is 5.238 billion tons, 3.46 times that in 2005. The overall
trend of CEBS is on the rise, maintaining an annual growth rate of about 15% until 2009, with a
faster growth rate and large fluctuations from 2010 to 2014. This abnormal fluctuation mainly
exists in the materialization stage, and it cannot be excluded that there is a problem with the
statistical caliber of building materials in the yearbook data [34]. The growth rate from 2015 to
2020 gradually becomes smaller, reaching less than 10%. It is noteworthy that, except for the
abnormal fluctuation from 2010 to 2014, the CEBS in 2020 decreased for the first time.
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Figure 1. China’s CEBS from 2005 to 2020.

Figure 2 reflects the spatial distribution of CEBS in 2005, 2010, 2015, and 2020. With a
gradual increase from the west to the east, the building sector’s carbon emissions in the
eastern coastal area are typically greater than those in the western region, and the difference
in carbon emissions between regions has further expanded over time. The provinces with
the highest building carbon emissions in 2020 are Jiangsu (443.73 million tons) and Zhejiang
(438.98 million tons), while the provinces with the lowest building carbon emissions are
Hainan (16.13 million tons), Qinghai (17.48 million tons), and Ningxia (17.89 million tons),
with large differences between provinces. In terms of growth rate, the provinces with the
highest growth rates of building carbon emissions from 2005 to 2020 were Fujian, Jiangxi,
and Sichuan, with growth rates of 615.16%, 563.16%, and 464.85%, respectively.
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3.2. Spatial Correlation Test

The global Moran’s I test was performed for the CEBS from 2005 to 2020 using W1, W2,
and W3, respectively, and Table 2 displays the final outcomes. The spatial distribution of
carbon emissions in the Chinese building industry is not fully random and clearly exhibits
a positive spatial correlation, as shown by the global Moran’s I of CEBS under various
spatial weight matrices, being positive in all cases and passing the significance test in most
instances—i.e., provinces with high carbon emissions tend to be spatially adjacent—and
there is a certain spatial spillover effect which needs to be taken into consideration. Moran’s
I under W3 has a low significance among them, demonstrating that the spatial spillover
impact of CEBS is more a function of the surrounding area. In addition, except for the
anomalous years of 2010–2014, the overall Moran’s I shows an increasing trend, indicating
that the spatial effect of CEBS is gradually increasing.

Table 2. Global Moran’s I under different spatial matrices.

Year W1 W2 W3

2005 0.152 ** 0.052 *** 0.071
2006 0.156 ** 0.052 *** 0.063
2007 0.158 ** 0.059 *** 0.121 *
2008 0.171 ** 0.055 *** 0.136 *
2009 0.169 ** 0.063 *** 0.134 *
2010 0.115 * 0.042 ** 0.113
2011 0.062 0.007 * 0.025
2012 −0.030 −0.022 −0.112
2013 0.061 0.030 ** 0.102
2014 0.056 0.027 ** 0.066
2015 0.160 ** 0.064 *** 0.125 *
2016 0.146 ** 0.066 *** 0.089
2017 0.199 ** 0.079 *** 0.135 *
2018 0.203 ** 0.080 *** 0.126 *
2019 0.283 *** 0.095 *** 0.130 *
2020 0.235 *** 0.080 *** 0.136 *

Note: *** p < 0.01, ** p < 0.05, * p < 0.1.

To further investigate the spatial association among provinces, the Moran’s I scatter plot
was calculated and drawn based on the adjacency matrix using the local Moran’s I. Due to space
limitations, only Moran’s I scatter plots for 2005 and 2020 are shown here in Figure 3. The first
and third quadrants of the figure include the majority of the corresponding points, showing that
the majority of the provinces are either of the high–high (H–H) or low–low (L–L) aggregation
type. This is in line with the global Moran’s I test findings.

3.3. Selection of Spatial Econometric Models

Some tests, such as the Lagrange multiplier test (LM test), likelihood ratio test (LR
test), and Hausman test, can be used to examine the spatial effects of carbon emissions in
the materialization and operation stages and to choose an appropriate spatial economet-
ric model. The aforementioned tests were conducted for the carbon emissions models
in the materialization stage and operational stage using three different spatial weight
matrices, and the outcomes are displayed in Table 3. Significant terms are found in
all of the LM tests using various spatial weight matrices, demonstrating the necessity
of using a spatial econometric model for the analysis. The SDM model is chosen for
the regression, since the LR test indicates that it should not degenerate into the SEM
or SAR model. It should be decided based on a fixed-effects model, according to the
Hausman results.
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Table 3. The results of tests.

Tests
Materialization Stage Operation Stage

W1 W2 W3 W1 W2 W3

LM-err 0.758
(0.38)

2.549
(0.11)

7.769 ***
(0.005)

42.796 ***
(0.00)

94.399 ***
(0.00)

60.814 ***
(0.00)

LM-lag 24.142 ***
(0.00)

3.808 *
(0.05)

1.121
(0.29)

27.481 ***
(0.00)

115.578 ***
(0.00)

4.553 **
(0.03)

LR test SDM
(0.00)

SDM
(0.00)

SDM
(0.00)

SDM
(0.00)

SDM
(0.00)

SDM
(0.00)

Hausman 23.61 **
(0.034)

125.47 ***
(0.00)

25.63 **
(0.019)

104.30 **
(0.00)

39.13 ***
(0.001)

50.34 ***
(0.001)

Note: *** p < 0.01, ** p < 0.05, * p < 0.1, p-values in parentheses, LM test results are selected for robustness.

3.4. Regression Results
3.4.1. Stationary Test

Panel data need to be tested for stationarity before regression to avoid spurious
regression. To explore whether a variable is a stationary time series, a unit root test is
usually performed on it, and the Im, Pesaran, and Shin (IPS) test was chosen to test the unit
root, since this paper uses short panel data. Since the initial test found unit roots in the
variables, the IPS test was performed after taking the first-order difference for all variables
to determine whether cointegration analysis could be performed. Table 4 reflects the results
of the test after first-order difference, and it can be seen that the first-order difference of
all variables passed the unit root test, which means that all variables are integrated of
order one.

To verify whether there is a common stochastic trend in multiple unit root series, the
Pedroni test was selected for cointegration analysis. Table 5 reflects the Pedroni cointegra-
tion test results for the variables in the materialization stage and operation stage, and the
panel data all passed the cointegration test, allowing for subsequent analysis.
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Table 4. IPS test results after 1st difference.

Variables
IPS Test

Variables
IPS Test

Panel Panel and Trend Panel Panel and Trend

d.lnCE(M) −10.910 ***
(0.00)

−10.859 ***
(0.00) d.lnCE(O) −9.385 ***

(0.00)
−9.402 ***

(0.00)

d.lnCA −6.637 ***
(0.00)

−6.403 ***
(0.00) d.lnP −3.030 ***

(0.00)
−5.733 ***

(0.00)

d.lnUV −10.932 ***
(0.00)

−10.628 ***
(0.00) d.lnPGDP −3.540 ***

(0.00)
−4.806 ***

(0.00)

d.lnLP −10.598 ***
(0.00)

−8.919 ***
(0.00) d.lnUP −6.970 ***

(0.00)
−8.200 ***

(0.00)
d.lnEI −10.44 *** −10.709 *** d.lnUT −6.631 *** −6.777 ***

(0.00) (0.00) (0.00) (0.00)
d.lnIS −6.739 *** −7.773 *** d.lnER −9.120 *** −9.650 ***

(0.00) (0.00) (0.00) (0.00)
d.lnMI −11.465 *** −11.191 *** d.lnEI −8.832 *** −9.495 ***

(0.00) (0.00) (0.00) (0.00)
d.lnEC −9.524 *** −9.718 ***

(0.00) (0.00)
Note: *** p < 0.01, p-values in parentheses. lnCE(M) denotes carbon emissions in the materialization stage; lnCE(O)
denotes carbon emissions in the operation stage.

Table 5. Pedroni cointegration test results.

Materialization Stage Operation Stage

Modified Phillips–Perron t 8.246 ***
(0.00)

9.297 ***
(0.00)

Phillips–Perron t −8.893 ***
(0.00)

−15.785 ***
(0.00)

Augmented Dickey–Fuller t −7.804 ***
(0.00)

−7.673 ***
(0.00)

Note: *** p < 0.01, p-values in parentheses.

3.4.2. Results of the Materialization Stage

The SDM model’s regression findings for the materialization stage are shown in Table 6.
In a spatial econometric model with a spatial lag term, the regression coefficient alone could
not express the connection between the independent and dependent variables [35]. LeSage
and Pace [36] separated the effect into three categories: the direct effect, indirect effect, and
total effect, which represent the direct effect of the independent variable on the dependent
variable in the region, the indirect effect on the dependent variable in neighboring regions,
and their overall effect, respectively. Hence, Table 6 solely displays the outcomes of direct,
indirect, and cumulative effects.

Under various spatial weights, the direct effect coefficients almost always point in
the same direction, demonstrating the robustness of the regression findings. Local carbon
emissions have a significant promoting effect on local carbon emissions in the materializa-
tion stage and a significant radiating pulling effect on neighboring areas’ carbon emissions.
Although the value of the unit building space promotes local carbon emissions, the impact
on the neighborhood is adverse, and the inhibiting effect on the surrounding areas is less
than the promoting effect on the local area. The impact of construction labor productivity
varies under different spatial matrix conditions, with a relatively weak promoting effect on
local carbon emissions in the materialization stage and a suppressing effect on regions with
similar levels of economic development. The direction of energy intensity’s influence in the
materialization stage is significantly positive, but the effect is not as strong as it might be
due to the fact that the intensity of direct energy consumption corresponds to the carbon
emissions in the construction and demolition stage, whereas these emissions are much
lower in the materialization stage and are primarily caused by indirect carbon emissions.
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Therefore, it is easier to see how construction materials’ carbon emissions intensity affects
local carbon emissions during the materialization stage while also having a minor moder-
ating effect on emissions in nearby locations. In the materialization stage, the growth of
the secondary industry significantly contributes to local carbon emissions and has more
pronounced spillover effects in areas with comparable economic development. Due to
competition between construction businesses in nearby regions, the spatial coefficient of
carbon emissions at the materialization stage is notably negative.

Table 6. Spatial panel regression results of the materialization stage.

Variables
Direct Effect Indirect Effect Total Effect

W1 W2 W3 W1 W2 W3 W1 W2 W3

lnCA 0.810 *** 0.831 *** 0.803 *** 0.213 *** 0.539 *** −0.004 1.022 *** 1.369 *** 0.798 ***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.93) (0.00) (0.00) (0.00)

lnUV 0.519 *** 0.522 *** 0.504 *** −0.224 *** −0.344 * −0.162 * 0.295 *** 0.178 0.341 ***
(0.00) (0.00) (0.00) (0.01) (0.09) (0.08) (0.01) (0.37) (0.00)

lnLP 0.090 ** 0.045 0.075 * −0.052 −0.205 −0.201 *** 0.038 −0.16 −0.126 *
(0.01) (0.23) (0.05) (0.30) (0.10) (0.00) (0.48) (0.19) (0.05)

lnEI 0.065 *** 0.059 *** 0.076 *** 0.091 *** 0.064 0.031 0.156 *** 0.122 * 0.108 ***
(0.00) (0.00) (0.00) (0.00) (0.36) (0.33) (0.00) (0.09) (0.00)

lnIS 0.464 *** 0.487 *** 0.490 *** −0.262 ** −0.267 0.754 *** 0.202 ** 0.22 1.244 ***
(0.00) (0.00) (0.00) (0.02) (0.38) (0.00) (0.11) (0.48) (0.00)

lnMI 0.933 *** 0.931 *** 0.932 *** −0.059 ** −0.139 ** −0.029 0.874 *** 0.792 ** 0.903 ***
(0.00) (0.00) (0.00) (0.03) (0.05) (0.39) (0.00) (0.00) (0.39)

Spatial ρ −0.180 ** −1.009 *** −0.233 ***
(0.04) (0.00) (0.00)

LR test both both both
R2 0.905 0.967 0.929

Log-L 439.27 448.22 438.88

Note: *** p < 0.01, ** p < 0.05, * p < 0.1, p-values in parentheses.

3.4.3. Results of the Operation Stage

The SDM model’s regression findings for the operating stage are shown in Table 7.
Each driver has a sizable direct impact on the region’s carbon emissions at the operational
stage, and the effects persist under various spatial matrices with some robustness.

The population contributes significantly to carbon emissions during operation, exerts
the most direct influence, and has a slight radiation pull effect on emissions during opera-
tion in nearby areas. The operational stage of the connection between economic growth
and carbon emissions is represented by an N-shaped curve. Specifically, early economic
growth will cause a sharp rise in carbon emissions during the operational period, and at
a later stage, due to increased environmental protection awareness and advancements in
technology, there is a certain suppression effect on carbon emissions, followed by a rebound
trend. Similar impacts on carbon emissions are caused by economic development in nearby
areas during the operational phase. The degree of urbanization significantly promotes the
region’s operational carbon emissions., and there is no evidence of the inverted U-shaped
influence curve that has been described in some studies. The growth of tertiary industry
likewise raises carbon emissions during operation, although it has a dampening effect
on emissions during operation in the neighborhood. In terms of energy consumption,
both energy intensity and average energy carbon intensity have a significant contribution
to operational carbon emissions, while increasing the share of electricity in energy end
consumption helps to reduce operational stage carbon emissions. Energy-type influencing
factors typically do not have strong enough geographic effects, and, hence, they are not
discussed. The spatial coefficients of carbon emissions in the operational stage are notably
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positive, suggesting that there is a spatial spillover effect and a positive impact effect of
reciprocal promotion between surrounding areas and provinces with similar economic
development levels.

Table 7. Spatial panel regression results of the operation stage.

Variables
Direct Effect Indirect Effect Total Effect

W1 W2 W3 W1 W2 W3 W1 W2 W3

lnP 1.623 *** 1.567 *** 1.511 *** 0.297 ** −0.035 0.363 ** 1.920 *** 1.532 ** 1.874 ***
(0.00) (0.00) (0.00) (0.03) (0.95) (0.04) (0.00) (0.01) (0.00)

lnPGDP 1.338 *** 1.308 *** 1.282 *** 0.077 0.671 *** 0.449 *** 1.414 *** 1.979 *** 1.731 ***
(0.00) (0.00) (0.00) (0.35) (0.01) (0.00) (0.00) (0.00) (0.00)

lnPGDP2 −0.229 *** −0.234 *** −0.178 *** −0.003 −0.348 * −0.192 ** −0.232 *** −0.582 * −0.370 ***
(0.00) (0.00) (0.00) (0.97) (0.06) (0.04) (0.00) (0.00) (0.00)

lnPGDP3 0.042 *** 0.048 *** 0.040 *** 0.005 0.121 * 0.060 * 0.047 ** 0.169 ** 0.100 ***
(0.00) (0.00) (0.00) (0.79) (0.06) (0.05) (0.04) (0.01) (0.00)

lnUP 0.686 *** 0.538 *** 0.389 *** 0.596 2.668 * −0.453 1.282 * 3.206 ** −0.064
(0.00) (0.00) (0.01) (0.28) (0.06) (0.44) (0.05) (0.03) (0.92)

lnUP2 0.354 *** 0.267 *** 0.178 ** 0.326 2.163 *** 0.221 0.680 * 2.429 *** 0.400
(0.00) (0.00) (0.03) (0.28) (0.01) (0.48) (0.06) (0.00) (0.23)

lnUT 0.617 *** 0.670 *** 0.658 *** −0.225 *** −0.531 ** 0.023 0.392 *** 0.139 0.681 ***
(0.00) (0.00) (0.00) (0.00) (0.02) (0.82) (0.00) (0.55) (0.00)

lnER −0.082 *** −0.104 *** −0.080 *** 0.247 *** 0.362 0.049 0.165 * 0.258 −0.031
(0.00) (0.00) (0.00) (0.00) (0.27) (0.63) (0.08) (0.45) (0.78)

lnEI 0.862 *** 0.864 *** 0.890 *** 0.049 0.017 0.097 0.911 *** 0.880 *** 0.987 ***
(0.00) (0.00) (0.00) (0.30) (0.92) (0.23) (0.00) (0.00) (0.00)

lnEC 1.030 *** 1.053 *** 1.084 *** −0.457 −1.557 0.480 * 0.572 −0.504 1.565 ***
(0.00) (0.00) (0.00) (0.13) (0.16) (0.06) (0.10) (0.66) (0.00)

Spatial ρ 0.355 *** 0.499 *** 0.406 ***
(0.00) (0.00) (0.00)

LR test ind ind ind
R2 0.761 0.923 0.924

Log-L 952.04 957.71 956.29

Note: *** p < 0.01, ** p < 0.05, * p < 0.1, p-values in parentheses.

4. Discussion
4.1. Population-Based Driving Factors

Population-based drivers (CA and P) significantly boost CEBS as well as those in
surrounding provinces due to spatial spillover effects. This is consistent with Chen [22]
and Wu [37]. The growth in population size creates a demand for housing and public
services, which contributes to the growth in the number of houses and the operational
energy consumption of residential and public buildings. Typically, there is more frequent
population movement between adjacent provinces. These movements alter the population
stock, altering the demand for floor space and raises carbon emissions in adjacent provinces.
Figure 4 reflects the changes in population and building construction area in China from
2005 to 2020, showing that the construction area and population have changed in the same
direction, both showing an upward trend, but the growth rate has slowed down. In addition
to satisfying people’s living needs, real estate also has a certain financial nature [38], which
makes the change in building construction area and population number not fully consistent
and may lead to excessive building area expansion.
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tion projects [31], and as people’s living standards and income levels increase, they are no 
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4.2. Affluence-Based Driving Factors

The affluence-based drivers VA and PGDP both contribute to CEBS, where GDP per
capita has an N-shaped curve on carbon emissions in the operation stage, which is the
same as in the findings of Fakher [39] and Allard [40]. The value of a unit building area can
reflect people’s requirements for the quality, functionality, and aesthetics of construction
projects [31], and as people’s living standards and income levels increase, they are no
longer satisfied with the general residential nature of houses and have higher requirements
for their quality, workmanship, and appearance. The increased consumption of building
supplies and labor causes the output value per finished area to climb steadily (as depicted
in Figure 5), which raises carbon emissions during the materialization stage. The GDP per
capita is likewise continuously increasing. The holdings of all types of electrical equipment
dramatically expand as people’s living conditions significantly improve during the early
stages of economic development, which has a large pulling effect on carbon emissions
during the operational stage. However, as the economy grows to a certain point, low-
carbon technology advancement, environmental legislation, and increased environmental
protection consciousness all work to slow the growth of carbon emissions in the operating
stage. With the optimization of structure and technology, the marginal effect of progress
gradually decreases, and when its growth cannot cover the increment of operational carbon
emissions brought by the expansion of economic scale, economic growth can no longer be
decoupled from the operation stage carbon emissions but again shows a promoting effect.
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4.3. Technology-Based Driving Factors
4.3.1. Urbanization and Industrial Structure

Urbanization greatly contributes to carbon emissions in the operating stage of build-
ings, and the quadratic term’s coefficient is also highly positive, suggesting that as urban-
ization and economic development continue, so will their effect on these emissions, which
verifies the findings of Huo [30] for carbon emissions in public buildings. Urbanization
is usually accompanied by economic growth and an increase in residents’ income level,
and its influence path on carbon emissions in the operation stage is similar to that of
affluence-based drivers, but there is no inflection point effect yet, which may be due to the
fact that the existing urbanization level has not yet met the demands of the rural–urban
migration population. The urbanization rate in developed countries is generally above 80%
at present [41], while the only provinces in China with an urbanization rate above 80% in
2020 were Beijing, Tianjin, and Shanghai, and the urbanization rate in some provinces is
just above 50%. Therefore, for the time being, the effect of urbanization on carbon emissions
is still being promoted positively. The rise in tertiary output value is also one of the signs of
urbanization, and it has also promoted carbon emissions in the operation stage of the region.
The tertiary industry is represented by the carbon emissions of public buildings, which in
2020 represented 42% of total emissions during the operation stage and were the highest
among all categories of civil buildings. As a result, an increase in the tertiary industry’s
share will drive an increase in carbon emissions in the operation stage, which is similar to
the findings of Xiao [42] on carbon emissions from urban buildings. The siphoning effect
may be to blame for the fact that the growth of the tertiary industry has a certain inhibitory
effect on the carbon emissions in the operational stage of the surrounding areas [43]. Since
competition exists between cities in geographical proximity, the distribution of resources of
high-quality service industries may be skewed toward the central city, which is detrimental
to the development of the tertiary industry in the surrounding areas. Secondary industry
contains the construction and building materials’ manufacturing industries, and the in-
crease in its output value share will promote carbon emissions. Secondary industry also
has a certain siphoning effect in neighboring areas, but there is a positive spatial spillover
effect among regions with similar economic development, which may be explained by the
different optimal choices of industrial structure in cities at different stages of development.
Therefore, the industrial development paths of cities with similar economies are similar,
and there is a mutual promotion effect.

4.3.2. Energy Intensity and Structure

As a direct source of carbon emissions, energy intensity contributes significantly to
CEBS. Its spatial spillover effect is not robust, and the positive spillover effect is more
obvious under the adjacency matrix. It is favorable to reduce carbon emissions at the build-
ing operation stage by increasing the share of electricity in end-use energy consumption,
which is in line with the findings of Liu [19]. Because increasing the amount of power
produced from renewable sources can lower the intensity of carbon emissions, the average
carbon emissions factor of the grid in China has decreased from 0.6101 tCO2/MWh in
2015 to 0.5703 tCO2/MWh in 2022, meaning that China is likely to achieve zero carbon
emissions in the future [44]. Moreover, the average carbon emissions intensity of total
energy consumption can partially represent the structure of energy use. The percentage
of energy with a high carbon emissions factor increases with an increase in the average
carbon emissions intensity of energy. The main energy usage in the building sector changed
between 2005 and 2020, as shown in Figure 6. This statistic only accounts for the energy
used during the structure’s construction, demolition, and operating phases because it is
challenging to measure the energy used during the creation of building components. These
days, the three main energy sources employed in the building sector are electricity, coal, and
natural gas. Compared with 2005, the consumption and share of coal have decreased, the
consumption and share of electricity have increased significantly, and the consumption of
natural gas and LPG have also increased, while the overall change in other energy sources
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is not significant. The average carbon emissions intensity of energy decreased compared to
2005, but rebounded after 2017, indicating that the energy consumption structure of the
building sector needs to be further optimized.
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4.3.3. Labor Productivity in the Construction Industry

The impact of labor productivity on CEBS is a topic of some debate among academics.
Li [25] argued that the rise in worker productivity in the construction sector indicates that
the sector is advancing energy-saving technology, embracing technological innovation, and
modernizing, while Zhang [45] argued that higher labor productivity means higher output
value can be created per unit of labor, and this process is usually accompanied by higher
carbon emissions, so labor productivity in the construction sector reduces carbon emissions
in the sector. The regression results in 3.4 demonstrate that, whereas labor productivity
in the building industry significantly inhibits emissions in locations with similar levels of
economic growth, it adds positively to carbon emissions in the region’s materialization
stage. This may be because an increase in labor productivity leads to an increase in the
region’s construction output, which in turn results in higher carbon emissions. Meanwhile,
due to the competition effect, construction enterprises in other provinces with similar
development will improve their competitiveness through technological innovation and
other means, and, thus, the suppression phenomenon occurs. It can be seen that the
decomposition results with the spatial effects can explain the controversial phenomena in
the literature and are more accurate in representing the actual situation.

4.3.4. Carbon Emissions Intensity of Building Materials

The strongest pulling force on local carbon emissions occurs at the materialization
stage due to the carbon emissions intensity of construction materials, which is consistent
with Zhu [31]. More than half of lifecycle CEBS are linked to building materials [46].
Carbon emissions from building materials are primarily affected by the preparation process
and the consumption structure, and this article focuses primarily on the latter. Figure 7
illustrates how the consumption pattern of building materials can be inferred from the
carbon emissions intensity of these materials. Cement, as the world’s third largest artificial
carbon emissions source [47], has a changing share that is basically consistent with the
trend of carbon emissions intensity of building materials. Additionally, cement has a non-
recyclable nature, unlike steel and aluminum, which can reduce the carbon emissions of
the production process by increasing the recycling ratio [44], so the use of cement needs to
be controlled to reduce the carbon emissions intensity of building materials. At present, the
proportion of cement in China has decreased from 74.19% in 2005 to 62.81% in 2020, which
means that the consumption structure of building materials has been optimized to some
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extent. The carbon emissions intensity of construction materials has a suppressive influence
on the materialization stage of carbon emissions in the nearby bordering areas, similar to
the spatial effect of the value of the unit building area. Due to the market segmentation
effect, administrative boundaries and local protectionism have an impact on the value
of unit building area as well as the structure of building materials consumption, which
both measure the technical proficiency of regional design and construction firms. Thus, it
appears to have a negative effect on the neighborhood.
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5. Conclusions

This study divided the causes of CEBS into two categories using the STIRPAT model—
the materialization stage and the operation stage—and determined the drivers of ten
aspects, such as population, construction area, GDP per capita, the value of unit building
area, urbanization rate, industrial structure, energy intensity, energy structure, the labor
productivity of the construction industry, and the carbon emissions intensity of building
materials, allowing us to test and discuss the possible non-linear effects of factors such as
GDP per capita and urbanization rate. By combining the SDM model to decompose the
spatial effects of carbon emissions and their drivers in the building sector, the following
conclusions were obtained.

1. Except for the abnormal fluctuations from 2010 to 2014, China’s building sector has
seen an increase in carbon emissions, which peaked in 2019 and then started to decline
in 2020. Each province’s carbon emissions from the building industry exhibit an
uneven distribution tendency, gradually increasing from the west to the east, and the
gap between areas is widening over time.

2. All of the drivers of CEBS, except for the level of electrification, have a significant
positive contribution to carbon emissions in the region. Among them, the effect
of GDP per capita shows a rising N-shaped curve, which verifies the N-shaped
environmental Kuznets curve hypothesis. The carbon emissions intensity of building
materials, construction area, and value of unit building area are the factors that have
the biggest impacts on carbon emissions in the region’s materialization stage, while
population, GDP per capita, and energy carbon emissions intensity have the biggest
impacts on carbon emissions in the operational stage.

3. There is a positive spatial autocorrelation of CEBS. As far as the spatial effect of carbon
emissions in each province is concerned, there is a negative effect of carbon emissions
in the materialization stage on carbon emissions in the neighboring areas, which is
manifested in the crowding-out effect of drivers such as the value of unit building area
and the structure of consumption of building materials on the neighboring areas. Due
to the influence of demographic factors, the construction area has a positive spatial
spillover effect among neighboring regions, and for regions with similar economic
development levels, they mainly influence each other through labor productivity and
the industrial structure. There is a positive pulling effect of carbon emissions in the
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operation stage on the neighboring regions, mainly because of the radiation effect of
population and economic development on the neighboring regions, but due to the
existence of the siphoning effect, the amount of tertiary industry will negatively affect
the carbon emissions from operations in nearby areas.

This paper gives the following policy recommendations in response to the above analysis.

1. Controlling the scale of construction. Currently, the rate of change in the building con-
struction sector far exceeds the rate of population growth. Housing speculation can be
combated through taxation and purchase restrictions to curb the blind expansion of the
construction scale in order to reduce carbon emissions in the materialization phase.

2. Establishing a complete building life-cycle carbon footprint regulatory system. The
materialization stage of building materials contributes large amounts of carbon emis-
sions, and it is necessary to establish a full lifecycle carbon footprint regulation system
to promote low-carbon technology innovation by upstream building materials en-
terprises. This can encourage or urge construction enterprises to choose green and
low-carbon building materials through subsidies or carbon emissions limit regulations,
reduce the proportion of high-carbon emissions building materials such as cement,
actively develop and promote wood structures and assembled steel structures, and
increase the proportion of recycled metal materials such as steel.

3. Promoting low-carbon and energy-saving lifestyles and optimizing the internal struc-
ture of industries. Population growth and urbanization processes are unavoidable.
They can change residents’ lifestyles, optimize consumption structures, and pro-
mote energy-saving behaviors by increasing education and publicity, advocating
low-carbon lifestyles. At the same time, the scale of urban development needs to be
controlled to avoid the inefficiency and higher carbon emissions brought about by
blind expansion. At the same time, investment in low-carbon industries needs to be
strengthened in order to play its leading role in industrial restructuring.

4. Increasing the percentage of clean energy while adjusting the structure of energy use.
The building sector should optimize its energy consumption patterns, cut back on
the usage of energy with high carbon emissions, and boost the proportion of clean
energy to decrease carbon emissions at the source. Governments should increase
investment in technical research and the industrial development of clean energy
generation technologies such as wind, hydro, solar PV, biomass, etc.

5. Reducing regional administrative barriers and promoting coordinated regional devel-
opment. The empirical results show that there may be a certain market segmentation
effect in the construction industry, which is not conducive to the exchange and dissem-
ination of advanced low-carbon, energy-saving technologies. Therefore, it is essential
to lower regional administrative obstacles, maximize human resource use, encourage
resource and technology movement across provincial boundaries, and build a net-
work of synergistic sharing mechanisms to promote inter-regional synergistic carbon
reduction development.

The drawback of this study is that it used the regional grid carbon emission factors
from 2012, which have a time lag and do not accurately reflect the dynamic changes in the
electricity carbon emission factors. Therefore, it is difficult to see how the increase in the
share of electricity changes the intensity of energy carbon emissions. In addition, this study
used a static spatial panel model, which cannot reflect the dynamic changes in the time
dimension. Dynamic spatial panel models and multi-perspective decomposition of CEBS
can be taken into account in future studies.
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Nomenclature
The nomenclature of used abbreviations in this article are explained as follows.

Abbreviations Full Name
CEBS Carbon Emissions in the Building Sector
IPCC Intergovernmental Panel on Climate Change
IPAT the model for Environmental Impacts of Population, Affluence, and Technology
STIRPAT Stochastic Impacts by Regression on Population, Affluence, and Technology
IDA Index Decomposition Analysis
SDA Structural Decomposition Analysis
GTWR Geographically and Temporally Weighted Regression
CEADs Carbon Emission Accounts & Datasets
EKC Environmental Kuznets Curve
LM test the Lagrange Multiplier test
LR test the Likelihood Ratio test
IPS The Im, Pesaran, and Shin test
SDM Spatial Durbin Model
SEM Spatial Error Model
SAR Spatial Autoregressive Model
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