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Abstract: This paper takes advantage of the high control flexibility and fast response time of the
interfacing power electronic converter for doubly fed wind turbine grid-connected systems to address
inter-area oscillations caused by inadequate system damping in power systems. A reactive-power-
coordinated damping controller for a doubly fed induction generator (DFIG) is proposed, and it
makes use of second-order sliding-mode technology. The suggested controller improves damping
performance by controlling the reactive power. It provides benefits such as a quicker damping rate
and resilience to modeling errors and parameter changes. The simulation results indicate the system’s
improved performance in inter-area oscillation damping and the robustness of the suggested control
technique over a broad range of functional areas.
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1. Introduction

Clean and efficient new energy generation technologies continue to play a strong role
in the context of the global environmental and energy crisis, with wind power accounting
for the largest share of the global energy generation market and the largest increase,
considering that double-fed induction wind turbines (DFIG) are one of the common variants
and presently account for over 90% of installed capacity [1,2]. However, the ensuing large-
scale grid integration of wind power has led to disruptions in grid voltage security and
system stability [3] and even to system voltage collapse [4]. Ensuring the stability of the
grid connection is currently a top priority in wind power research. The connection of large,
double-fed wind farms to the grid may make the rotor angle of the power system lose
stability [5].

For systems with high DFIG penetration, flexibility can be improved by using ad-
vanced power electronic converters in DFIG, i.e., coordinated control with reactive power
compensation devices installed inside the wind farm, to dampen power system oscillations.
For the improvement of inter-area oscillation damping, a DFIG damping controller based
on root trajectory analysis was developed [6]. A reactive power support system employing
DFIG stator side and grid side converter reactive-power-coordinated control is suggested
in the literature [7] to enhance the reactive power damping modulation of its components.
Root locus analysis served as the foundation for the creation of a damping controller for
DFIG [8] and is utilized to improve inter-area oscillation damping. Regarding wind farms
with doubly fed induction generators, heuristic dynamic programming controllers with
target representation have also been developed to make the system more stable under
transitory conditions when there is a malfunction [9]. For the addition of a sub-synchronous
control interaction damping controller to the turbine’s static synchronous compensator
(STATCOM), Essay [10] suggests a grid-side suppression method for the Goodyear wind
farm. It was shown that the DFIG can contribute to damping through active and reactive
power modulation. As active power modulation might result in shaft oscillations, the
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research in the literature [11] shows that damping control of the DFIG’s reactive power
modulation is an alternate way. The dynamic response of system can also be improved by
introducing intelligent algorithms [12]. In reality, both active and reactive power modula-
tion may dampen the DFIG. Despite the fact that the electricity grid operates over time, the
damping control of DFIG is based on a small-signal linearization technique created for a
fixed operating point. Hence, these methods were not robust to altering parameters and
system functioning. The stability of the system may be compromised by the controller in
actual power system operation because of the unpredictable and stochastic character of the
power system state [13,14].

We will attempt to design a reliable damping controller for doubly fed controllers
for system uncertainty and parameter variation based on an improvement of slide mode
control method. The algorithm is robust concerning parameter and uncertainty shifts
in the system. The approach offers new prospects as a means of coping with growing
levels of unpredictability. Sliding-mode control has the advantages of being relatively
straightforward, simple to use, and requiring little computing work. The control can
accommodate a wide range of inside and external perturbations, model uncertainties, and
operating point variations. Static var compensator (SVC)–based reactive power control
has been used previously, and the introduction of first-order sliding-mode algorithms in
reactive power control has been used in multi-area power networks to dampen power
fluctuations between zones [15]. Although DFIG cannot provide discrete reactive power
outputs or achieve first-order sliding-mode control, discrete control actions are required.
The report discusses a second-order sliding-mode damping controller for doubly fed inter-
area oscillations that is given as a solution to the aforementioned issues. The approach
effectively eliminates the need for discrete reactive power output by making use of the
DFIG’s flexible reactive power modulation capabilities with the purpose of reducing power
fluctuations. High resilience to time-varying systems and smooth control action are two
benefits of the suggested second-order sliding-mode damping control. The efficiency of
the suggested second-order sliding-mode damping controller in stifling inter-area power
system oscillations is shown via simulations of a two-area power system.

For addressing oscillations across areas, a DFIG damping controller based on a second-
order sliding mode is suggested in this paper. While disturbance-induced perturbations are
present with in power system, the proposed damping modulation method was designed to
stabilize the mechanism via the use of the DFIG’s reactive power modulation capabilities.
The remaining portions continue as follows: Part 2 introduces the interregional oscillation
issue and the simulation model. Part III offers a second-order damping control loop with
accidental sliding-film control and a sliding-mode damping controller for a two-area power
system. Section IV implements the damping controller in a two-area system. Part V contains
the simulation findings and a full commentary. Section VI draws conclusions.

2. System Dynamic Modeling

We will talk about how the system responds to changes when DFIG is grid-connected
from the classical two-area system modeling.

As shown in Figure 1, a two-area system containing a DFIG is considered in this
section to illustrate inter-zone oscillations. With the use of a dual AC transmission line, the
two zones are linked. The DFIG wind farm is considered to be incorporated in zone I for
the purposes of this research.
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Figure 1. DFIG grid-connected system. 

The oscillating equation shown in (1), which is frequently used in [16,17], enable one 
to characterize the operation of a two-region system independent of wind power. 
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where the generator rotor speed is given by the following formula, δ , and the generator 
rotor angle,ω , by the sign. The relative rotor angle and speed between the two zones are 
represented by the values 12ω   and 12δ  , respectively, with 12 1 2δ δ δ= −   and 

12 1 2ω ω ω= − . The total impedance of the dual circuit AC power lines makes up the reac-
tance X  . 1H   and 2H   represent the comparable inertia of region. Synchronous ma-
chine damping coefficient is ignored in (1). The damping coefficient is an uncertain factor 
in sliding-mode damping control design. The dynamic equation of the system composed 
of: 

( ) ( )
12 12

12 1 1 2 2
1 2

1
12

1 2 2

1 1

1 1         sin

m w L m LP P P P P
H H

V
H H V

δ ω

ω

δ

=

= + − − −

 
− + 
 



  
(2) 

where Pw represents the power that the wind farm is actively producing. The angular dif-
ference between the two zones is linked to the active power delivered between them. Thus, 
reactive power transmitted from zone 1 to zone 2 is proportional to voltage, as seen in (3). 
For voltage fluctuations generated by reactive power, the bus voltage can be regulated by 
improving the way through the reactive power [18]. 
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The oscillating equation shown in (1), which is frequently used in [16,17], enable one
to characterize the operation of a two-region system independent of wind power.
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where the generator rotor speed is given by the following formula, δ, and the generator
rotor angle, ω, by the sign. The relative rotor angle and speed between the two zones are
represented by the values ω12 and δ12, respectively, with δ12 = δ1 − δ2 and ω12 = ω1 −ω2.
The total impedance of the dual circuit AC power lines makes up the reactance X. H1 and
H2 represent the comparable inertia of region. Synchronous machine damping coefficient
is ignored in (1). The damping coefficient is an uncertain factor in sliding-mode damping
control design. The dynamic equation of the system composed of:

.
δ12 = ω12.

ω12 = 1
H1

(Pm1 + Pw − PL1)− 1
H2

(Pm2 − PL2)

−
(

1
H1

+ 1
H2

)
V1
V2

sin δ12

(2)

where Pw represents the power that the wind farm is actively producing. The angular
difference between the two zones is linked to the active power delivered between them.
Thus, reactive power transmitted from zone 1 to zone 2 is proportional to voltage, as
seen in (3). For voltage fluctuations generated by reactive power, the bus voltage can be
regulated by improving the way through the reactive power [18].

Q1 = Qw + Qs0 =
V2

2 −V1V2 cos δ12

X
(3)

where reactive power Q1 is the amount of energy moved from region 1 to region 2. Qw is
the reactive power injected by DFIG, and Qs0 is reactive power produced by capacitive com-
pensators and synchronous generators. Under steady-state circumstances, both generators
function simultaneously. Relative angle δ12 and rotor speed ω12 stay constant zero.

However, when there is a disturbance, the generator’s electrical and mechanical
abilities become out of balance, causing power fluctuations in both areas. It is crucial
to dampen such oscillations promptly to ensure the system’s stability. In this article, we
implement a damping controller using a second-order sliding-mode control technique to
change the amount of reactive power in DFIG.

3. Controller Design

For the most part, second sliding controllers are used to maintain zero relative degree
2 outputs or to prevent chattering while zeroing relative degree 1 outputs. To implement
them effectively, one must take into account the first-time derivative of the output, which
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may make the method vulnerable to sampling disturbances. In this article, we examine
these three issues and provide some common approaches to fixing them.

3.1. Selecting Variables

For dynamic systems such as the following:

.
x = a(t, x) + b(t, x)u, σ = σ(t, x) (4)

where x ∈ Rn, u ∈ R is control; smooth functions a, b, σ and the dimension n are uncertain;
and s is the sole output of n that can be measured. The expected relative degree is two [19].
The objective is to eliminate the output s in limited time and maintain σ ≡ 0 using a
discontinuous, globally-bounded feedback control. For each finite input, system trajectories
should be indefinitely extendible in time. The system is comprehended according to the
Filippov sense [20].

Under these conditions, we compute the second derivative together with the trajecto-
ries of the two points (5).

..
σ = h(t, x) + g(t, x)u, h =

..
σ
∣∣
u=0, g =

∂

∂u
..
σ 6= 0 (5)

where two unnamed smooth functions are g and h. Consider the circumstances of inputs
and outputs.

0 < Km ≤
∂

∂u
..
σ ≤ KM, | ..σ|u=0| ≤ C (6)

Be patient for some Km, KM, and C > 0. Keep in mind that (4) holds for any smooth
system with the specified relative degree 2.

Evidently, the outlined issue cannot be resolved by a continuous feedback controller.
Any continuous control u = ϕ(σ,

.
σ) that allows for s and 0 has to satisfy the equality

ϕ(0, 0) = −h(t, x)/g(t, x) whenever σ =
.
σ = 0 holds. The simple autonomous lin-

ear system
..
σ = c + ku, Km ≤ k ≤ KM,

∣∣c∣∣≤ C with ϕ(0, 0) 6= −c/k will not respond to
the controller.

The first-order derivative of the chosen sliding-mode variable as well as zeroing both
are the goals of the second-order sliding-mode control algorithm. To assure control at = 0,
the sliding variable is chosen based on the intended control aim. In this study, maintaining
a constant angle between the two zones is referred to as damping power oscillations. In
other words, it entails maintaining a zero value for the relative rotor speed ω12. Therefore,
σ = ω12 can be used as the sliding variable to establish the second-sliding mode σ = 0.
Assume that (3) is true universally. The differential inclusion is implied by (2) and (3).

..
σ ∈ [−C, C] + [Km, KM]u (7)

In most cases, a second-sliding controller may be seen as a controller for (4), where the
goal is to reduce σ and

.
σ to zero within some specified period. Consequently, the challenge

lies in locating such feedback.
u = ϕ(σ,

.
σ) (8)

The starting point of the phase plane is eventually reached by all paths starting at
(7) and (8).

The Filippov notion of differential inclusion (7), (8) entails a particular enlargement of
the right-hand vector set to meet specific convexity and semi-continuity constraints [21].
When σ continuous, ϕ(σ,

.
σ) is replaced by u in (7), which is being the convex closure of

all feasible ϕ(σ,
.
σ) limits obtained when the continuity point (σ1,

.
σ1) approaches (σ,

.
σ).

The function ϕ assumes Borel-measurability with a locally bounded domain. All sliding-
mode control functions meet this criterion. Any absolutely continuous function (σ(t),

.
σ(t))

satisfying (4), (5) for almost all t is the solution.
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3.2. Damping Controller Design

Modifying the DFIG’s active and reactive power changes bus voltage, including phase
angle and magnitude. By supplying braking or accelerating torque in the opposite direction
during the swing of synchronous machines, they may assist to attenuate oscillations if they
are appropriately managed.

Through selecting the system dynamics for the two-zone power system shown in
Figure 1, use angle 2 = 0 as the reference angle expressed in terms of the variables in
Equation (1). The modulation variable is Qω . Thus, the system oscillation equation may be
solved using the relationship shown in (3) in position of bus 1 voltage to obtain the results
shown below.

.
ω12 = 1

H1
(Pm1 − PL1)− 1

H2
(Pm2 − PL2)

−
(

1
H1

+ 1
H2

)(
sin δ

X cos δ V2
2 −

sin δ
cos δ (Qw + Qs0)

) (9)

In this paper, reactive power Qw is modulated as a sliding-mode control variable for
inter-area oscillations. The DFIG’s reactive power does not abruptly change because sliding-
mode control calls for discrete control actions. As a result, it is not possible to perform direct
control actions using reactive power. The reactive power is controlled using a dual-loop PI
controller, which consists of an outer reactive power loop and an interior current loop [22].
Figure 2 depicts the control scheme that the DFIG reactive power reference Qref can be the
actual control action used for the sliding damping control. If reactive power is used directly
in the control loop, the relative degree can become significant. Therefore, the reactive power
control loop’s dynamic variables use a first-order inertia loop. That allows the designed
control to perform better in terms of control robustness to bounded systems.
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The behavior of the first-order inertial response as it relates to dynamics used in the
equivalent reactive control loop is equivalent to the dynamic behavior of a full-order model
system [23]. As the doubly fed reactive control loop’s dynamic nature is shown, the whole
system’s dynamic equations may be written as

.
δ = ω12

.
ω12 = 1

H1
(Pm1 − PL1)− 1

H2
(Pm2 − PL2)−

(
1

H1
+ 1

H2

)
sin δ
cos δ

(
V2

2
X − ∆Qw −Qw −Qs0

)
∆

.
Qw = u−∆Qw

T

(10)
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where u is the extra reactive power element (Qref) that is utilized to modify damping.
Qw is the wind farm’s rated reactive power in nominal operation. As a result, the wind

farm’s reactive power is ∆Qw + Qw. The degree of tsliding variable (σ = ω12) is 2, where

..
ω12 =

(
1

H1
+ 1

H2

)(
−V2

2
X + ∆Qw + Qw + Qs0

)
1

cos2 δ
ω12

−
(

1
H1

+ 1
H2

)
sin δ
cos δ

∆Qw
T +

(
1

H1
+ 1

H2

)
sin δ

T cos δ u
= F(ω12, δ, ∆Qw, t) + G(δ, t)u

F(ω12, δ, ∆Qw, t) = −
(

1
H1

+ 1
H2

)(
sin δ
cos δ

∆Qw
T

−
(
−V2

2
X + ∆Qw + Qw + Qs0

)
1

cos2 δ
ω12

)
G(δ, t) =

(
1

H1
+ 1

H2

)
sin δ

T cos δ

(11)

The objective of control is defined as selecting the variables u that brings the relative
rotor speed and its first order to zero. Both the reactive power of the damping control (Qw)
and the relative rotor ω12 are zero in the steady state. Consequently, the fixed part F(0,δ,0,t)
equals 0. Many second-order sliding-mode controllers can be utilized to 0 in unlimited
time according to Equation (11). Such a controller is obviously resilient to any perturbation
because Equation (11) ignores external disturbances. Therefore, the goal is to design a
feedback control u that converges all trajectories in Equation (11) to the phase plane in
finite time, at the origin σ =

.
σ = 0.

As can be seen from the above section, we need to select a second-order sliding control
loop that can ensure that the parameters converge to zero in the phase plane of σ and

.
σ.

Consequently, the homogeneous analog of the terminal controller is an algorithm based on
second-order sliding [24], and the control signal u can be chosen as

u = −α

.
σ + β

∣∣σ∣∣1/2signσ∣∣ .
σ
∣∣+β

∣∣σ∣∣1/2 (12)

The output of any uncertain single-input, single-output system may be controlled by a
universal finite-time convergent controller with a known permanent relative degree. A con-
trol that is continuous everywhere and solely depends on σ =

.
σ = . . . = σ(r−1) = 0 steers

the tracking error to zero with the discontinuous function sign(σ) =
{

1, σ > 0
−1, σ < 0

, where

the variables α > 0 and β > 0 are the control gains. The terminal sliding-mode controller,
which originally had a singularity at σ = 0, is a 2-sliding analog of this controller [25]. With
the above control action, the second-order of sliding variable is described by

..
ω12 = F(ω12, δ, ∆Qw, t) + G(δ, t)[

−αsign
( .
σ + β

∣∣σ∣∣1/2signσ
)] (13)

To force and to zero in a finite period, the control gains must be greater than the size
of the uncertainties in F and G.

4. Stability Derivation for Second-Order Sliding-Mode Controllers

In this section, the DFIG integration technique for a two-area power system is provided.
Designing the damping controller for DFIG makes use of the second-order sliding mode.

4.1. Figures, Tables and Schemes

Assumptions on function conditions α, β > 0, αKm − c > 0 and the inequality

αKm − C− 2αKm
β

ρ + β
− 1

2
ρ2 > 0 (14)
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Controller (12) provides the second-sliding mode σ = 0 that holds for positive α > β,
which is always the case for sufficiently huge α.

Denote ρ = −σ/|σ|1/2. Then, the controller u is u = α(ρ − β)/(|ρ| + β), and ow-
ing to the symmetry of the issue, it suffices to examine the situation in which σ > 0.
.
ρ ∈

(
[−C, C]− [Km, KM]α

ρ−β
|ρ|+β

+ 1
2 ρ2signσ

)
|σ|−1/2, −∞ < ρ < ∞.

Due to the above assumptions, the rotational velocity
.
ρ is always positive for negative

or tiny positive ρ; as a result, there is such a positive ρ1 < β that the trajectories reach the
area ρ1 < ρ. It is now necessary to demonstrate that there is ρ2 > β such that the inequality
.
ρ < ρ2 is true close to the point when ρ2 = ρ. That is the precise circumstance (14). There-
fore, conditions (14) allow for the creation and maintenance of the inequality ρ1 < ρ < ρ2.

The only exception to this constant control is the origin. On the parabola
.
σ + β

∣∣σ∣∣1/2signσ = 0 , it disappears. Each trajectory reaches the region between curves
.
σ + β

∣∣σ∣∣1/2signσ = 0 and cannot exit it when an is large enough. These values are ρ1, ρ2
and 0 < ρ1 < β < ρ2. The phase trajectory of the power system in the state space is shown in
Figure 3. It is clear that the controlled system reached the sliding surface when both the
sliding variable and its first order were set to zero.
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Below is a description of the sequential impedance model for the power system,
whereas the full-order DFIG model is employed in the simulation research. This model
will be used in the simulation analysis part to demonstrate the efficacy of the developed
sliding-mode-based DFIG damping controller in reducing power system oscillations.

4.2. Frequency Domain Analysis of DFIG

From the standpoint of the sequence impedance, we will study the effect of the control
loop on the operational state of the DFIG and discuss the change in sequence impedance
when the control parameters are changed.

Figure 4 depicts the construction of the DFIG. The grid-side converter (GSC) is linked
to the grid via the L-filter, whereas the rotor-side converter (RSC) is attached to the rotor
of an asynchronous motor. Cdc and udc are the DC bus capacitance and voltage; Uref

dc is
the given DC bus voltage; ua, ub, uc and ia, ib, ic are the voltage and current at (point of
common coupling)PCC; iga, igb, igc and uia, uib, uic are the output current and voltage at
GSC port; isa, isb, isc are the generator stator side port currents; usa, usb, usc are the output
modulation signals at RSC and GSC; and θpLL is the output modulation signal at RSC and
GSC obtained by PLL sampling voltage locking at PCC. mra, mrb, mrc and mia, mib, mic
are the output modulation signals of RSC and GSC, respectively; θpLL is the phase angle
obtained by voltage locking at the PCC sampled by (phase-locked loop)PLL; and θr is the
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rotor electric angle measured by the position sensor. Hsi(s), Hri(s) are the GSC and RSC
current loop PI control transfer functions, respectively, and Hu(s) is the voltage loop PI
control transfer function. HP(s) and HQ(s) are the power loop PI control transfer functions,
and Krd and Ksd are the current loop decoupling coefficients of RSC and GSC, respectively.
The rotor rotational angular velocity is ωr differential angular velocity ωs = ω1 − ωr, and
the differential rate is S = ωs/ωr.
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The system sequential resistance is shown below. The PCC steady-state operating
voltage current ua = U1 and ia = I1 is overlaid with positive sequence voltage harmonics of
frequency f p. Due to the dynamic DC bus procedure and the asymmetry of the dq control,
harmonic small signal components will pass each other and couple multiple frequency
harmonics within the unit [17,18]. The positive-sequence current harmonic Ip1 with f p

and the negative-sequence current harmonic Îp2 with symmetric frequency f p − 2f 1 about
f 1 are generated at the PCC and the voltage harmonic in the negative series Ûip2 with
f p − 2f 1 at the port, respectively. Define the voltage and current harmonics at the PCC as

ûa =


0
0

Ûp
0
0

←


fp − 2 f1
fp − f1

fp
fp + f1

fp + 2 f1



îa =


Îp2
0
Îp
0
0

←


fp − 2 f1
fp − f1

fp
fp + f1

fp + 2 f1


(15)

where Ûip2, ϕup and Ûp = Upe±j ϕup are the amplitude and phase, respectively, and the
other variables are defined similarly.
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Define the steady-state values of the GSC port output voltage and current as uia = Ui1,
iga = Ig1, and the harmonics are

ûia =


Ûip2

0
Ûip

0
0

←


fp − 2 f1
fp − f1

fp
fp + f1
fp + 2 f1



îga =


Îgp2

0
Îgp
0
0

←


fp − 2 f1
fp − f1

fp
fp + f1

fp + 2 f1


(16)

Due to the power balance on the DC bus, the network-side and machine-side current-
voltage harmonics generate voltage harmonics of frequency fp− f1 on the DC bus, defining
the DC voltage as the steady-state value Udc = Uref

dc and harmonics ûdc:

ûdc =


0

Ûdc
0
0
0

←


fp − 2 f1
fp − f1

fp
fp + f1
fp + 2 f1

 (17)

The RSC uses rotor voltage directional control with a rotor frequency of fr. The RSC
port modulated voltage and current are affected by Ûdc with positive sequence harmonics
Ûrp and Îrp with frequencies fp − fr and negative sequence harmonics Ûrp2 and Îrp2 with
frequencies fp − 2 f1 + fr. The steady state values of RSC port current and voltage are
defined as ura = Ur1, ira = Ir1 and harmonics as

ûra =


Ûrp2

0
Ûrp

0
0

←


fp − 2 f1 + fr
fp − f1 − fr

fp − fr
fp + f1 + fr

fp + 2 f1 − fr



îra =


Îrp2

0
Îrp
0
0

←


fp − 2 f1 + fr
fp − f1 − fr

fp − fr
fp + f1 + fr

fp + 2 f1 − fr


(18)

In constant conditions, the stator side current isa = Is1 and the harmonics are

îsa =


Îsp2

0
Îsp
0
0

←


fp − 2 f1
fp − f1

fp
fp + f1
fp + 2 f1

 (19)
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4.3. Asynchronous Induction Generator Impedance Modeling

Equations for the magnetic chain and voltage across the stator of a three-phase, stati-
cally connected asynchronous induction generator are

usabc = Rsisabc +
d
dt ψsabc

urabcKe = Rr
irabc

Ke
+ d

dt ψrabc

ψsabc = Lssisabc + Lsr
irabc
Ke

ψrabc = Lrsisabc + Lrr
irabc

Ke

(20)

where Rs, Rr are the resistance values of each phase of the stator rotor winding; Ψsabc,
Ψrabc are the three-phase magnetic chains of the stator-rotor; Lss, Lsr, Lrs, the stator-rotor
winding’s mutual-inductance is denoted by Lrr; Ke is the stator-rotor turns ratio. Lss, Lsr, Lrs,
Ke are the stator-rotor turns ratio. From the voltage equation and magnetic chain equation,
we can obtain the generator. The impedance model is{

îra= G11 îsa+G12ûa
ûra= G21 îsa+G22ûa

(21)

The modulation equation of GSC is

uia = Kgmudcmia (22)

Consider the DC voltage outer-loop of GSC and obtain port output voltage. Then
establish the relationship between GSC port output voltage. The relationship between the
current is [17]

ûia = P1ûdc + P2 îga (23)

The net-side filter inductor has the relationship on both sides.

ûia = ûa + Lîga (24)

where L = diag
[
sLp, (s− j2ω1)Lp

]
.

The current at the PCC can be expressed as

îa îga − îsa (25)

The impedance characteristics of the DFIG unit are shown by the voltage and current
harmonics at the PCC point Yp, Yn, Yc and Yr. Yp and Yc are the positive sequence conduc-
tance, the negative sequence conductance, and the coupling conductance, and where Yp
and Yc are 

Yp(s) = −
Îp

Ûp

Yc(s) = −
Îp2

Ûp

(26)

Meanwhile, the negative order conductance Yn and Yr can be obtained from Yp and
Yc after discounting, obtained as:{

Yr(s) = Y∗c (j2ω1 − s)
Yn(s) = Y∗p (−s) (27)

5. Simulation Research

In the following, we have carried out time-domain simulations from the power system
to show how well the newly developed doubly fed motor damping controller for minimiz-
ing power system oscillations works in sliding mode. In the simulation, the DFIG drive
train is modelled using the commonly used two-mass model.
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In Figure 5, we see the first system under discussion, and a two-area power system
with A 350 km transmission line connects the two locations. At steady state, there is
260 MW of transmitted electricity between the two locations. In Area I, a DFIG-based wind
farm is linked to the grid as one aggregated DFIG. When the DFIG is producing at full
capacity, its size is scaled down such that the whole system experiences no more than 10%
wind penetration. The regulatory boundaries are 0.1 p.u. and the rated reactive power of
DFIG is 0.5 p.u. The system parameters are shown in Table 1.
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Figure 5. Two-zone power system with DFIG sliding-mode control.

Table 1. Main parameters of the components.

Rated capacity S/MW 1.5
DC voltage Udc/kV 1.5

AC voltage V1/V 563
Polar logarithm p 2

Mutual inductance Lm(pu) 4.1
Stator resistance rs(pu) 0.007
Rotor resistance Rr(pu) 0.005

Rotor inductance Llr(pu) 0.11
line inductor inductance XL/km 0.25

line inductor resistance R/km 0.023
line capacitance resistance nF /km 12

Coupling inductor inductance L(pu) 0.00178
Coupling inductor resistance R(pu) 0.000929

A three-phase fault is simulated which occurs at t = 1 s at a distance of 10 km from
bus 1 and is cleared after 0.05 s. Inter-zone oscillations are caused by this fault. A damping
control that utilized a sliding mode of second order was designed to be activated in reaction
to the rotor angle differential produced at bus 1. Quickly stifling power oscillations is the
job of the damping controller, which controls the DFIG’s reactive power.

Three symmetrical faults are set up in the system shown in Figure 5, with the fault
point located at the midpoint of the contact line. Compare the transient response of the
system when the DFIG has a damping controller and without a damping controller, as
shown in Figure 6.
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Figure 6. The dynamic reaction of line in case of a malfunction in bus 1.

The above Figure 6 illustrates that reactive power oscillations are suppressed by
injecting the DFIG’s modulated reactive power into the system through a sliding-mode
dampening controller. Inter-area power oscillations caused by line failures have been
effectively mitigated thanks to the upgraded DFIG.

After adding reactive damping control, we examine the DFIG unit’s dynamic reaction
to see how the unit’s output and stability performance change in the face of a problem.

Figure 7 depicts the transient performance of the DFIG, indicating that the proposed
damping control scheme has essentially no influence on the active output power and motor
torque of the DFIG.
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Figure 7. The dynamic reaction of DFIG in case of a malfunction in bus 1.
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The above faults all occur close to the DFIG in the simulation model and are able to
cause sufficient response from the DFIG step-down modeling loop. In the following, we
study the faults that occur at the far end away from the DFIG equipment and vary the
power transmitted by the contact line to verify the universality of the proposed control
loop. The DFIG model with a damped control loop without a second-order sliding film is
also introduced for comparison. When the three-phase short-circuit fault point occurs at
two regional contact lines, the electrical quantities passing through the line and the power
emitted by the DFIG are shown in Figures 8 and 9.
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Figure 8. The dynamic reaction of line in case of a malfunction in midpoint.
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From the dynamic responses in Figures 8 and 9, it can be seen that the reactive
power deficit in the system is significantly improved after the introduction of the damping
control. However, the fluctuation time when returning to normal value in response to the
dynamic response is not effective, while the time from the system to the return to stability
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is shortened after the introduction of the sliding mode improved damping control, which
proves that the loop is effective in responding to the fluctuation of the system.

Even though the parameters of the control are within on reduced-order model of DFIG,
simulation results on the full-order model simulations demonstrate that the proposed
damping control is able to handle mechanism dynamic processes by unmodeled part
failures. This is the case despite the fact that the reduced-order model of DFIG was used to
design the parameters of the damping control loop.

The magnitude of the negative sequence impedance is less than the positive sequence
impedance in the frequency range when the impedance is negatively resistive and capaci-
tive. That is why all the publications focus on the positive kind of sequence impedance.
Thus, only the positive sequence impedance is examined [26].

In the frequency range of 40–100 Hz, the phase shift between the positive and negative
sequence impedances of doubly fed wind power systems is more than 90 degrees, which
tends to interact with the inductive qualities of the weak grid and create oscillations
throughout a broad frequency spectrum. Figure 10 shows the frequency response of the
output impedance, with α varying from 1 to 10. A comparison shows that a larger leakage
inductance increases the impedance amplitude and reduces the phase shift beyond 90◦ as
the control parameter is varied from 1. However, when the parameter is chosen too large,
too high an α causes a phase shift that makes the system unstable. This means that the α

value should be chosen within a reasonable range.

Energies 2023, 16, x FOR PEER REVIEW 16 of 19 
 

 

close to the fundamental frequency. The reliability of the system is compromised as a 
result. The values of α and β thus selected are given in Appendix A. 

-60

-90
101 102 103

-40

-80

-120

101 102 103

M
ag

ni
tu

de
( d

b)
Ph

as
e(d

eg
)

101 102 103

200

100

0

Zn

M
ag

ni
tu

de
( d

b)
Ph

as
e(d

eg
)

-70

-60

-80

-90

-100

-200

1α

=
α
α

=
=

5
10

-90。

-80

-70

101 102 103

(s)Zp

(s)

 
Figure 10. Frequency responses of output impedance as α changes. 

103101 102

-60

-90

101 102

200

100

0

-100

M
ag

ni
tu

de
(d

b)
Ph

as
e(

de
g)

103

1β =
5β =
10β =

103

M
ag

ni
tu

de
(d

b)
Ph

as
e(

de
g) -40

-80

-120

101 102 103

-60

-80

-90
101 102

-70

-160

-70

-80

-200

(s)Zp

Zn(s)

-90。

 
Figure 11. Frequency responses of output impedance as β changes. 
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The frequency response of the output impedance is shown as a plot in Figure 11, where
the value of goes from 1 all the way up to 10. Larger values increase both the impedance
amplitude and the phase shift by more than ninety degrees when they are close to the
fundamental frequency. The reliability of the system is compromised as a result. The values
of α and β thus selected are given in Appendix A.
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6. Conclusions

This article presents a DFIG-based damping control strategy for enhanced reactive
power Q coordination. A reactive power modulation approach enhanced by a second-order
sliding-mode algorithm is used by the control method. Changing the sliding mode of the
second order gives the benefits of dither suppression and rapid reaction modifications. This
maximizes the use of the DFIG’s damping control capacity, hence enhancing the damping
performance. Using this damping controller, the stability of the system can be improved
across a wide range of operating points and system parameters. This controller is better
than traditional controllers because it can handle system uncertainty and unmodulated
system dynamics better. The results of the simulation performed as part of a two-area
power system study are then put through a sequential impedance analysis. The durability
and efficiency of this damping controller are shown in the simulation results. The system
power oscillations are dampened faster than they would have been without the damping
controller. The simulation outcomes show that the proposed sliding-mode damping control
controller on DFIG successfully drains the oscillation modes.
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Nomenclature

DFIG doubly fed induction generator
SSCI sub-synchronous control interaction
STATCOM static synchronous compensator
SVC static var compensator
δ generator rotor angle
δ12 relative rotor angle
ω12 relative rotor speed
H1 inertia of area 1
H2 inertia of area 2
Pw wind farm power
Q1 moved power
Qs0 SG reactive power
Qw DFIG reactive power
s sole output of n
a, b, σ smooth functions
GSC grid side converter
RSC rotor side converter
PCC point of common coupling
Cdc DC bus capacitance
Udc DC bus voltage
Uref

dc given DC bus voltage
ua, ub, uc voltage at PCC
ia, ib, ic current at PCC
iga, igb, igc output voltage at GSC port
uia, uib, uic output current at GSC port
isa, isb, isc generator stator side currents
usa, usb, usc generator stator side voltage
θpLL phase angle obtained by PLL
mra, mrb, mrc output modulation signals of RSC
mia, mib, mic output modulation signals of GSC
Rs, Rr resistance values of winding
Yp positive sequence conductance
Yc negative sequence conductance
HP(s), HQ(s) loop PI control transfer functions

Appendix A

The parameters of the designed sliding-mode damping controller are given below:
α = 5.5; β = 0.01.
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