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Abstract: High-power electronic devices with multiple heat sources often require temperature
uniformity and to operate within their functional temperature range for optimal performance. Micro-
channel cooling could satisfy the heat dissipation requirements, but it may cause temperature non-
uniformity. In this paper, simulations are performed for different geometric parameters of the channel
and the position of the heat source. The results show that a flattened channel can effectively reduce
the heat source temperature, broadening the straight channel can reduce the flow resistance and
enhance heat transfer, while widening the channel at the bend may lead to local dryness. Meanwhile,
a thermal model is established to analyze the influence of the position of the heat source. The results
also show that with the increase in the curved channel radius, the phenomenon of vapor–liquid
separation becomes more obvious, the pressure drop decreases, but the heat transfer effect worsens.

Keywords: numerical simulations; heat transfer enhancement; performance analysis; two-phase flow

1. Introduction

The miniaturization and increased integration of multi-chip electronic devices causes
high heat flux [1,2]. The main purpose of thermal management is to decrease the temper-
ature and/or temperature distribution. Micro-channel cooling is a promising technique
that could satisfy the heat dissipation requirements, but large increases in the temperature
of the refrigerant along the direction of flow could affect the temperature uniformity of
multiple electronic devices [3]. Researchers often solve the problem by improving the heat
source layout, designing the channel structure, and optimizing the channel layout [4,5].

Cho [6] designed micro-channels for nine chips distributed in a 3 × 3 array and
optimized the micro-channel fins from a flat structure to a wedge structure with a gradually
changing width. These two micro-channels are used to dissipate heat for nine chips,
respectively. The research shows that a wedge channel structure with a gradually changing
width has better temperature uniformity.

Kim et al. [7] investigated the thermal management of liquid-cooled cooling plates
for multiple heat sources. Two array types of cooling plates to cool multiple heat sources
scattered inside a humanoid robot are compared and analyzed according to total thermal
resistance, total heat transfer rate, and surface temperature increases from a heating block
to six multiple cooling plates. The results indicate that two-way parallel circulation shows
better thermal performance in all cases.

Mao et al. [8] established a compact thermal model for a micro-channel with high
temperature uniformity subjected to multiple heat sources. The compact thermal model is
used to optimize the geometrical structure of a fractal tree-like micro-channel substrate to
achieve temperature uniformity of the heat sources. Ma et al. [9] conducted a thermal anal-
ysis and modeling of an LED array integrated as a liquid cooling module. Yuan et al. [10]
analyzed the thermal performance of a high-power LED array with a microchannel cooler.
Tan et al. [11] designed three micro-channel topologies for a multi-heat source-phased
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array antenna, and improved the micro-channel structure with the aim of temperature
equalization among multiple heat sources. A T-shaped longitudinal microchannel structure
has the best temperature uniformity when the heat source power is high.

Other micro-channel shapes and configurations, such as H-type bifurcation struc-
ture [12], density-based topology optimization [13], fractal tree-like structures [14], hier-
archical manifolds [15], and spider web-like structures [16], have also been proposed to
satisfy the heat dissipation and temperature uniformity requirements. The optimization of
the micro-channel structures is a passive enhancement; some researchers also adopt the
active control method. Bo et al. [17] propose a combined solution for the heat dissipation of
multi-chip devices by independently controlling multiple thermoelectric cooler currents.
Laguna et al. [18] propose a cooling array with self-adaptive micro-valves to improve the
temperature uniformity of chips and reduce the pumping power. Li et al. [19] propose a self-
adaptive micro-channel cooling system with a thermal-sensitive nanocomposite hydrogel
to intelligently adjust the coolant. The details of these studies are shown in Table 1.

Table 1. Results of previous studies investigating the solution to heat dissipation and temperature
uniformity for multiple heat sources.

Study Improvement Result

H-type bifurcation structure [12] The average temperature deviation is less than
±5 K.

density-based topology optimization [13]
The highest temperature and average

temperature are both decreased by 10 ◦C while
the pressure drop is unchanged.

fractal tree-like structures [14] The maximum temperature difference among
the heat sources is 1.3 K.

hierarchical manifolds [15]

The heat sink with 15 µm × 300 µm channels is
shown to dissipate base heat fluxes up to
910 W/cm2 at pressure drops of less than

1.62 bar.

spider web-like structures [16]
The optimal structure can meet the

requirements of temperature uniformity within
2 K at a higher heat flux of 150 W/cm2.

a combined solution of thermoelectric coolers
and micro-channels [17]

It can achieve precise temperature control of
multiple chips with maximum temperature
difference less than 0.3 K and temperature

standard deviation less
than 0.07 K when the heat flux is 50 W/cm2.

a cooling array with self-adaptive micro
valves [18]

The tailored micro-channel device reaches a
temperature uniformity of 4 K with a pumping

power lower than 0.001% of the chip power.

self-adaptive chip cooling with
template-fabricated nanocomposite
hydrogel [19]

A heat flux of 100 W/cm2 can be extracted
with a similar increase in temperature, while

the coefficient of performance (COP) is
improved by an order of magnitude.

In the present research, the heat sink with a single channel is preferred because single
channels exhibit better flow boiling stability compared with multiple channels [20], so it is
particularly critical to design the channel layout. The primary objective of this work is to
better understand the effect of the geometric parameters of the channel and the position
of the heat source on the performance of heat transfer, in order to optimize the design of
a cooling plate channel subjected to multiple heat sources. From the review, most of the
literature discussed the multi-channel optimization for multi heat sources, while this study
focuses on the single channel for multiple heat sources, which is usually encountered in
actual cases. This study could provide a reference for the channel design of a cooling plate.
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Numerical simulations are performed for different geometric parameters of the channel
and the radius of the curved channel. The effect of the position of the heat source is also
studied in detail.

2. Calculation Method
2.1. Physical Model

Figure 1a shows the structure of the heat sink; the total size is 170 mm × 170 mm. It
is composed of (1) 16 discrete heat sources with dimensions of 10 mm × 10 mm × 3 mm,
each with a heating power of 125 W; (2) 16 thermal expansion boards with dimensions of
13 mm × 35 mm × 2 mm just below the heat sources; and (3) a cooling plate with assembly
holes and its cover plate. The flow channel is set in the substrate. The section is shown as
Figure 1b.
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R134a is selected as the refrigerant flowing in the channel. Compared with single-phase
flow, two-phase flow forced convection boiling could better satisfy the heat dissipation
requirements. To ensure the heat transfer effect, the channel is set just below the heat
sources and is already designed for temperature uniformity. The channel is shown as
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the blue line in Figure 1c. The temperature of the working fluid increases along the flow
direction; therefore, the temperature of the downstream heater is much higher than that
of the upstream heater. The channel in this study is designed to flow through the last few
heaters first to reduce the temperature of the downstream heater, in order to improve the
temperature uniformity.

As shown in Figure 1b, the main heat exchange area of the heat sink lies in the area
from the lower surface of the heat source to the upper surface of the channel. The superior
height of the channel makes it hard to make full use of the refrigerant at the bottom, so
increasing the area of the upper surface of the channel can improve the heat exchange
effect. Therefore, keeping the channel size in the non-heat area and the distance from the
upper surface of the channel to the upper surface of heat sink unchanged, the channel will
be increasingly flat as the channel width increases. A tangent arc is produced to make
the interface change smoother, reduce the pressure drop, avoid the local liquid phase
and vapor stagnation zone, and prevent the local heat transfer from deteriorating. The
schematic diagram of the channel with variable cross-section is shown in Figure 2. Figure 2b
shows the dimensions of the channel. In the present study, five designs are prepared; the
width and height of the channels are 4 mm × 3 mm, 5 mm × 2.4 mm, 6 mm × 2 mm,
7 mm × 1.714 mm, and 8 mm × 1.5 mm, respectively. The R1 of the 4 channel designs
after broadening are 2.25 mm, 3.73 mm, 4.80 mm, and 5.60 mm, respectively, and the R2
of the 4 channel designs after broadening are 1.61 mm, 3.31 mm, 5.02 mm, and 6.73 mm,
respectively.
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straight channels are wider.  

Figure 2. Schematic diagram of (a) structure of channel with variable cross-section; (b) channel
section and dimensions.

As shown in Figure 1c, there are 23 bends in the single channel, which forms four long
straight areas. The channel section of these four straight areas is an important geometric
parameter for the flow boiling characteristics of heat sink. Therefore, it is necessary to
design the channel after broadening. Figure 3b shows the broadened channel. Compared
with the original channel (Figure 3a), there is no difference except that the four straight
channels are wider.
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Figure 3. Schematic diagram of expansion of straight channel. (a) Original channel; (b) broadened
channel.

Figure 1c also shows that the channel structure at the bottom of the heat source exhibits
two typical characteristics: straight channel and curved channel. The 16 heat sources have
different positional relationships with the closest bend: the heat source is placed in front of
the bend, near the bend, just above the bend, or behind the bend. The models shown in
Figure 4 are designed for the purpose of comparison.
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2.2. Mathematical Models

A suitable multi-phase model is crucial to accurately obtain correct simulation results
in flow boiling. The Volume of Fluid (VOF), Mixture and Eulerian models are widely
applied in multi-phase simulation. Using the VOF model, it is easy to capture vapor–liquid
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interface and bubbles, but its simulation accuracy in the temperature field is unsatisfactory,
so VOF is only used to simulate bubble activity in the relevant research. The Mixture model
has good convergence, but its accuracy and capacity to capture the vapor–liquid interface
are poor. The Eulerian model is the most complex multi-phase flow model. RPI model in
the Eulerian model is well matched with the boiling heat transfer mechanism. Adopting the
Eulerian model for steady-state calculation can not only obtain correct simulation results,
but also reflect the two-phase flow in the channel by phase volume fraction. Thus, the
Eulerian model is adopted in the present research.

In order to establish a reasonable and simplified simulation model, the following
assumptions are adopted:

(1) The mass flow rate is steady.
(2) All energy lost by the bubble due to drag is converted to turbulence kinetic energy of

the liquid in the wake of the bubble.
(3) The outer surfaces of the model are all adiabatic.

The fluid flow and heat exchange in the heat sink are analyzed using the ANSYS
Academic Research CFD. Equations (1)–(6) [21,22] show the governing equations solved in
the present CFD model.

Mass equation of phase q:

∂

∂t
(αqρq) +∇(αqρqνq) =

n

∑
p=1

(mpq −mqp) + Sq (1)

where αq and ρq represent the volume fraction and density of phase q, vq represents the
velocity vector, mpq represents the mass transferred from phase p to phase q, mqp represents
the mass transferred from phase q to phase p, Sq represents the source item, n ≥ 2.

Energy equation of phase q:

∂
∂t (αqρqhq) +∇(αqρquqhq)

= αq
∂pq
∂t + τσ∇uq −∇qq + Sq +

n
∑

p=1
(Qpq + mpqhpq −mqphqp)

(2)

where hq represents the enthalpy of phase q, qq represents the heat flux, Qpq represents the
thermal transfer intensity of two phases, hpq represents the enthalpy difference caused by
the transformation of the phase p to the phase q, hqp represents the enthalpy difference
caused by the transformation of the phase q to the phase p.

Momentum equation of phase q:

∂
∂t (αqρqνq) +∇(αqρqνq)

= −αq∇p +∇τq + αqρqg +
n
∑

p=1
(Rpq + mpqvAq −mepvqp)

+(Fq + Fli f t,q + Fwl,q + Fvm,q + Ftd,q)

(3)

where τq represents the strain tensor of phase q; Fq, Flift,q, Fwl,q, Fvm,q, and Ftd,q represent
external volume force, buoyancy, wall infiltration force, virtual mass force, interface force,
and turbulent dispersion force of the phase q, respectively.

The pressure loss of refrigerant in the channel is mainly divided into the resistance
loss along the way caused by viscous force and the local pressure loss at the bend caused
by the change of channel direction.

Equation of pressure drop along the way:

∆p1 = λ
l
D
× ρU2

2
(4)

where λ represents the along-way resistance coefficient related to the roughness of the
channel surface, l represents the length of the channel, D represents the hydraulic diam-
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eter, ρ represents the density of the refrigerant, U represents the average flow rate of the
refrigerant in the channel.

Equation of local pressure loss:

∆p2 = ξ
ρU2

2
(5)

where ξ represents the local resistance coefficient. In this paper, all the bends of the channel
are 90◦, so the local resistance coefficient can also be calculated as:

ξ = 0.13 + 1.85(D/2R)3.5 (6)

where D represents the hydraulic diameter, R represents the bend radius of the channel.
The most common and known model for the numerical simulation of boiling is the

RPI wall boiling model [23]. According to the RPI model, the total heat flux from the wall
to the fluid is divided into three parts: qC is the liquid-phase heat flux caused by the vicinity
of the wall, qQ is the quenching heat flux related to the convection of bubbles, and qE is the
evaporation heat flux:

qw = qC + qQ + qE (7)

The convection of heat flux:

qC = hC(Tw − T1)(1− Ab) (8)

where hC is the convection heat transfer coefficient of liquid phase; Tw and Tl are the wall
temperature and fluid temperature neighbor to the wall, respectively; Ab is the wall surface
to the area covered by the bubble.

qQ, part of the total heat flux, which is periodically filled with T period by the liquid
after separating the bubble from the surface, is given as:

qQ =
2kl√
πλlT

(Tw − T1) (9)

where kl is the thermal conductivity of liquid phase, λl is the rate of diffusion, T is the
period of time.

The evaporation heat flux is calculated from the following equations:

qE = VdNwρvh f v f (10)

where Vd is the volume of the bubble, Nw is the active nuclear density, ρv is the vapor
density, hfv is the evaporation latent heat, and f is the bubble departure frequency.

2.3. Numerical Method and Boundary Conditions

The finite volume-based technique is used for numerical modeling. Three-dimensional
calculation is carried out by a double-precision solver. The first-order-upwind scheme is
adopted for the discretization of the governing equations. The pressure and velocity are
coupled using the couple algorithm. For the modeling of turbulence in flow boiling, the
k-epsilon 2 eqn model is adopted. The calculated Coulomb number is set to 5. To improve
the calculation accuracy, the Warped-Face Gradient Correction algorithm is activated. The
iteration stops if the convergence criterion for the residual error is satisfied, which is
xn − xn−1 < 10−5. x presents continuity, velocity, vf-vap, energy, k, and epsilon.

At the inlet, the constant mass flow rate is 0.028512 kg/s, and the constant temperature
of super-cooled fluid is 313.15 K. The pressure outlet boundary condition, i.e., the prescribed
constant pressure, is applied to the outlet where saturation conditions are assumed for
backflow. A constant volume heat of 125 W is prescribed in every heat source. At the
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liquid–solid interface, a no-slip condition is applied for liquid, and the temperature and
heat flux are continuous:

ul = 0
Tl = Ts

−kl
∂Tl

∂
→
n
= −ks

∂Ts

∂
→
n

(11)

where the subscripts l and s denote liquid and solid, respectively.

2.4. Grid Generation and Independence Verification

Based on the ANSYS Meshing module, the models in this paper are meshed, and the
tetrahedral and hexahedral grids are mixed. Mesh is refined where local velocity gradient
and temperature gradient are large. The grid model is shown in Figure 5.

Energies 2023, 16, 3060 8 of 16 
 

 

activated. The iteration stops if the convergence criterion for the residual error is satisfied, 
which is xn − xn−1 < 10−5. x presents continuity, velocity, vf-vap, energy, k, and epsilon. 

At the inlet, the constant mass flow rate is 0.028512 kg/s, and the constant tempera-
ture of super-cooled fluid is 313.15 K. The pressure outlet boundary condition, i.e., the 
prescribed constant pressure, is applied to the outlet where saturation conditions are as-
sumed for backflow. A constant volume heat of 125 W is prescribed in every heat source. 
At the liquid–solid interface, a no-slip condition is applied for liquid, and the temperature 
and heat flux are continuous: 

n
Tk

n
Tk

TT
u

s
s

l
l

sl

l

 ∂
∂−=

∂
∂−

=
= 0

 
(11) 

where the subscripts l and s denote liquid and solid, respectively. 

2.4. Grid Generation and Independence Verification 
Based on the ANSYS Meshing module, the models in this paper are meshed, and the 

tetrahedral and hexahedral grids are mixed. Mesh is refined where local velocity gradient 
and temperature gradient are large. The grid model is shown in Figure 5. 

  
(a) (b) 

Figure 5. The grid model of (a) solid domain; (b) fluid domain. 

The grid independence is studied under the different number of grids. Table 2 shows 
the variation of the temperature under a different number of grids. The grid independence 
verification was carried out showing convergence as a function of mesh refinement, with 
a final account of 603,921 grids with an error lower than 0.1% on heat source temperature 
compared with a mesh with 830,553 grids. For a single heat source and expansion board, 
the total number of elements is 2166 and 6992, respectively. 

Table 2. The relation between temperature with typical element size and number of grids. 

Typical Element Size/mm Number of Grids Tw/K α 
1 158,418 333.82 0.74% 

0.8 247,298 335.25 0.31% 
0.5 429,389 336.00 0.09% 
0.1 830,553 336.31 - 

Figure 5. The grid model of (a) solid domain; (b) fluid domain.

The grid independence is studied under the different number of grids. Table 2 shows
the variation of the temperature under a different number of grids. The grid independence
verification was carried out showing convergence as a function of mesh refinement, with a
final account of 603,921 grids with an error lower than 0.1% on heat source temperature
compared with a mesh with 830,553 grids. For a single heat source and expansion board,
the total number of elements is 2166 and 6992, respectively.

Table 2. The relation between temperature with typical element size and number of grids.

Typical Element
Size/mm Number of Grids Tw/K α

1 158,418 333.82 0.74%
0.8 247,298 335.25 0.31%
0.5 429,389 336.00 0.09%
0.1 830,553 336.31 -

3. Results and Discussion
3.1. Temperature and Vapor-Phase Distribution

Figure 6 shows the temperature distribution of the heat sources and vapor-phase dis-
tribution of the channel along the flow direction. Figure 7 shows that the vapor separation
occurs at the bend. This was verified in previous experiments carried out by Nan, which
can well verify the simulation results in this paper.
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As can be seen from Figure 6a, the temperature of the heat sources along the flow
direction increases, but the three heat sources marked in the figure are contrary to this trend.
It is not difficult to find that the three heat sources all take a continuous corner position,
that is, there are more than two bends near the heat source.

Figure 6b shows that vapor separation occurs at the corners; there is a great difference
in vapor volume fraction between the inside of the corner and the outside of the corner.
The phenomenon of vapor separation is discussed in detail in Section 3.2.

As mentioned earlier, better understanding the effects of the geometric parameters
of the channel and the position of the heat source on the flow boiling characteristics is
the primary objective of this work. Therefore, simulations are performed with different
geometric parameters and positions of the heat source.

3.2. Effect of Channel Section on Heat Transfer Performance and Pressure Drop Characteristics

Figure 8 shows that the difference of vapor-phase fraction between the upper and
lower layers of the channel decreases as the channel width increases, which means the fluid
in the channel is better-mixed. The part circled by the red circle is where the maximum
vapor-phase fraction occurs. The maximum vapor-phase fraction of the straight channel
occurs in the later part of the heat source (Figure 8a), while it occurs in the tapered part of
the broadened channel (Figure 8b). This could be explained by the vapor separation. As
shown in Figure 2b, the channel width is changed, and local fillet treatment is made by a
tangent arc. For the channel after broadening, when the two-phase flow passes through
the tangent arc, under the action of centrifugal force, the liquid preferentially rushes to
the outside of the arc, forming a liquid phase gathering area. On the contrary, the vapor is
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squeezed into the inside of the arc due to its smaller density and faster flow rate, resulting
in the difference of vapor-phase distribution.

Energies 2023, 16, 3060 10 of 16 
 

 

3.2. Effect of Channel Section on Heat Transfer Performance and Pressure Drop Characteristics 
Figure 8 shows that the difference of vapor-phase fraction between the upper and 

lower layers of the channel decreases as the channel width increases, which means the 
fluid in the channel is better-mixed. The part circled by the red circle is where the maxi-
mum vapor-phase fraction occurs. The maximum vapor-phase fraction of the straight 
channel occurs in the later part of the heat source (Figure 8a), while it occurs in the tapered 
part of the broadened channel (Figure 8b). This could be explained by the vapor separa-
tion. As shown in Figure 2b, the channel width is changed, and local fillet treatment is 
made by a tangent arc. For the channel after broadening, when the two-phase flow passes 
through the tangent arc, under the action of centrifugal force, the liquid preferentially 
rushes to the outside of the arc, forming a liquid phase gathering area. On the contrary, 
the vapor is squeezed into the inside of the arc due to its smaller density and faster flow 
rate, resulting in the difference of vapor-phase distribution. 

Table 3 and Figure 9 show that with the increase in channel width, the maximum 
temperature of the heat source decreases and the pressure drop increases gradually, 
which means the flat channel can effectively reduce the heat source temperature. Com-
pared with the original channel, the 8 mm × 1.5 mm channel can reduce the temperature 
of the heat source by more than 2 K. This is because with the decrease in the height of the 
channel, the better-mixed fluid can improve the heat exchange capacity of the heat sink. 

Table 3. Simulation results of different channel size. 

Channel Size Highest Temperature of 
Heat Source/K 

Average Temperature of 
Heat Source/K 

Pressure Drop/Pa 

4 mm × 3 mm 367.34 365.32 1548.4 
5 mm × 2.4 mm 366.49 364.47 1593.9 
6 mm × 2 mm 366.19 364.14 1662.5 

7 mm × 1.714 mm 365.62 363.56 1702.4 
8 mm × 1.5 mm 365.13 363.05 1836.5 

In addition, the heat exchange area of the broadened channel increases, which 
strengthens the heat exchange effect with the heat source and improves the overall heat 
exchange capacity. Moreover, the change of the structure provides disturbance to the flow 
of refrigerant in the channel, which is also an important reason for the improvement of 
heat transfer performance. 

However, the pressure drop increases due to the diffusion and contraction of the fluid 
in the up–down and left–right directions. It is worth mentioning that the pressure drop of 
a single structure is below 400 Pa, and no vapor gathers under the heat source due to the 
widening of the channel, so it can be suggested that the improved channel could improve 
the performance of heat sink. 

  
(a) (b) 

Figure 8. Vapor−phase distribution of different channel sections: (a) 4 mm × 3 mm; (b) 8 mm × 1.5 
mm. The part circled by the red circle is where the maximum vapor-phase fraction occurs. 
Figure 8. Vapor–phase distribution of different channel sections: (a) 4 mm× 3 mm; (b) 8 mm× 1.5 mm.
The part circled by the red circle is where the maximum vapor-phase fraction occurs.

Table 3 and Figure 9 show that with the increase in channel width, the maximum
temperature of the heat source decreases and the pressure drop increases gradually, which
means the flat channel can effectively reduce the heat source temperature. Compared with
the original channel, the 8 mm × 1.5 mm channel can reduce the temperature of the heat
source by more than 2 K. This is because with the decrease in the height of the channel, the
better-mixed fluid can improve the heat exchange capacity of the heat sink.

Table 3. Simulation results of different channel size.

Channel Size Highest Temperature
of Heat Source/K

Average
Temperature of Heat

Source/K
Pressure Drop/Pa

4 mm × 3 mm 367.34 365.32 1548.4
5 mm × 2.4 mm 366.49 364.47 1593.9
6 mm × 2 mm 366.19 364.14 1662.5

7 mm × 1.714 mm 365.62 363.56 1702.4
8 mm × 1.5 mm 365.13 363.05 1836.5
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In addition, the heat exchange area of the broadened channel increases, which strength-
ens the heat exchange effect with the heat source and improves the overall heat exchange
capacity. Moreover, the change of the structure provides disturbance to the flow of refriger-
ant in the channel, which is also an important reason for the improvement of heat transfer
performance.
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However, the pressure drop increases due to the diffusion and contraction of the fluid
in the up–down and left–right directions. It is worth mentioning that the pressure drop of
a single structure is below 400 Pa, and no vapor gathers under the heat source due to the
widening of the channel, so it can be suggested that the improved channel could improve
the performance of heat sink.

3.3. Effect of Channel Expansion on Heat Transfer Performance and Pressure Drop Characteristics

Table 4 shows that the heat source temperature drops by about 9 K after expanding
the channel width of the long straight area to 8 mm, and the heat transfer enhancement is
remarkable. This is because the non-heat source area of the heat sink also plays a great role
in the heat transfer effect. In the expanded channel area, the flow rate of fluid decreases,
and the heat transfer with the plate surface is more sufficient. Moreover, there is a process
of gradual contraction and expansion in each area, which creates a disturbance. For the
later part of two-phase flow, this disturbance also enhances vapor–liquid mixing. At the
same time, the expansion of the channel reduces the pressure drop along the widened part.
Compared with the initial channel, the pressure drops of the channel widened to 6 mm and
8 mm decrease by 5300 Pa and 15,900 Pa, respectively.

Table 4. Numerical results of different channel width.

Channel Width Highest Temperature
of Heat Source/K

Average
Temperature of Heat

Source/K
Pressure Drop/Pa

4 mm 357.72 352.57 236,500
6 mm 353.85 348.71 231,200
8 mm 348.91 343.74 220,600

Broadening the straight channel can not only reduce the flow resistance, but also
increase the heat exchange area so as to reduce the heat source temperature. However,
widening the flow channel at the bend could promote the phenomenon of vapor separation,
resulting in local dryness. Figure 10 shows the vapor-phase distribution at the bend of
different channel sizes. For both channel sizes, when the two-phase flow passes through the
bend, under the action of centrifugal force, the liquid tends to rush to the outside of the bend
and the vapor is squeezed into the inside of the bend, resulting in the difference of vapor-
phase distribution between the inside and outside of the bend. When the channel width is
increased, the vapor separation at the bend is intensified, and the volume and diffusion
area of the steam film inside the bend are significantly larger than those of the channel
before widening, which will cause local dryness and lead to the occurrence of critical heat
flux (CHF). This phenomenon should be avoided when considering engineering safety.
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3.4. Effect of the Relative Position of Heat Source and Curved Channel on Heat Transfer
Performance and Pressure Drop Characteristics

Table 5 shows the numerical results of the highest temperature and average tempera-
ture of the heat source and pressure drop of the channel when the heat sources are located
at different positions. Models 1–4 represent that the heat source is placed in front of the
bend, near the bend, just above the bend and behind the bend, respectively. The heat
transfer effect is the best when the heat source is near the bend, followed by the one behind
the bend, and the worst is that in front of the bend.

Table 5. Numerical results of different heat source positions.

Model Highest Temperature
of Heat Source/K

Average
Temperature of Heat

Source/K
Pressure Drop/Pa

1 371.30 369.28 978
2 368.18 366.13 851
3 370.50 368.16 928
4 369.49 367.46 787

Figure 11 shows the temperature distribution; it can be seen that the temperature
is symmetrically distributed when the heat source is arranged at the straight channel
(Figure 11a,d), while the temperature is higher on the outside and lower on the inside
as the heat source is arranged just above the bend (Figure 11b,c). This is because the
liquid flow rate outside the bend is slow and the heat dissipation effect is poor. This also
explains that when the heat source is located just above the bend (model 3), although the
area of the channel under the heat source is large, the temperature of the heat source is
still high.

Figure 12 shows the vapor-phase distribution. It can be seen that when the heat
source is set in front of the bend, the closer the heat source to the bend, the smaller the
retention area of the liquid phase at the bend, and the less obvious the vapor–liquid
separation, which indicates that the heat source can reform the vapor–liquid flow at the
bend. Figure 12d shows that the downstream heater has little effect on the vapor fraction
at the bend.
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3.5. Effect of the Bend Radius on Heat Transfer Performance and Pressure Drop Characteristics

The radius of the bend will change the centrifugal force of the fluid, as well as change
the velocity, thus, influencing the heat transfer and fluid flow. Figure 13 shows the vapor-
phase distribution of different bend radii, and the relevant numerical results are shown in
Figure 14. The outside radius of the model bend is 5 mm, 7 mm, 9 mm, 11 mm, and 13 mm,
respectively, and the inside radius is 4 mm smaller than the outside radius to control the
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channel width. Two heat sources are located in front of the bend and behind the bend,
respectively, for all the models.
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Figure 13 shows that with the increase in the bend radius, the phenomenon of vapor–
liquid separation becomes more obvious, and the vapor-phase and liquid-phase aggregation
areas tend to extend. Figure 14 shows that with the increase in the radius outside the bend,
the heat transfer effect worsens and the pressure drop in the channel decreases, which
correlates with the local resistance calculation formula. This is because with the increase
in the radius of the bend, the bend is smoother and the disturbance to the fluid decreases;
thus, the boundary layer destruction weakens and the heat transfer effect worsens.
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4. Conclusions

In this paper, the Eulerian method is used to establish a three-dimensional numerical
calculation model of the cooling plate. The temperature of the heat source and the change
of vapor distribution at the bend under different geometric parameters of the channel are
discussed, and the effects of the position of the heat source on the flow boiling performance
of the heat sink are studied. The main conclusions are as follows.

(a) The temperature of the heat sources increases along the flow direction, but the heat
sources in a continuous corner position are contrary to this trend. Vapor separation
occurs at the corners.

(b) A flat channel under the heat source can effectively reduce the heat source temperature
due to the better-mixed flow and disturbance. With the increase in channel width, the
temperature of the heat source decreases. Compared with the original channel, the
8 mm × 1.5 mm channel can reduce the temperature of the heat source by more than
2 K.

(c) Broadening the straight channel can not only reduce the flow resistance, but also
increase the heat exchange area and reduce the heat source temperature. However,
widening the channel at the bend may enhance vapor–liquid separation, resulting in
local dryness.

(d) The relative position between the heat source and the bend can affect the heat dissipa-
tion effect and the vapor–liquid distribution at the bend. When the heat source is in
front of the bend, the vapor–liquid separation is less obvious as it is closer to the bend,
and the heat source located behind the bend has little effect on the vapor fraction at
the bend. The heat transfer effect of the heat source near the bend is the best, followed
by the one behind the bend, and the worst is that in front of the bend.

(e) The radius of the bend affects the vapor–liquid distribution, heat transfer effect,
and pressure drop. With the increase in the bend radius, the phenomenon of vapor
separation becomes more obvious, the pressure drop of the pipeline decreases, but
the heat transfer effect worsens.
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